首页期刊介绍征稿简则下载专区期刊征订电子期刊联系我们帮助English
 
生物絮团养殖模式下益生菌添加对异育银鲫生长、消化酶活性及肠道组织结构的影响
下载次数:46次
作者:徐晨1 2  李烨2  孙启睿2  张明明2  王资生2  叶仕根1  乔帼2  李强2 
单位:1. 大连海洋大学, 辽宁 大连 116023;
2. 盐城工学院, 江苏 盐城 224051
关键词:生物絮团技术 益生菌 异育银鲫 生长 消化酶 肠道结构 
分类号:S963;Q96
出版年·卷·期(页码):2018·25·No.5(1004-1011)
摘要:
前期研究表明,生物絮团技术(biofloc technology,BFT)适于异育银鲫(Carassius auratus gibelio)养殖。为进一步优化BFT养殖模式,本研究设置3个实验组:BFT模式下EM菌添加组(BB组)、枯草芽孢杆菌(Bacillus subtilis)添加组(BI组)和BFT对照组(B组),以均体重(1.60±0.50)g的异育银鲫为研究对象,探讨BFT模式下外源添加益生菌对养殖动物生长、消化酶活性及肠道组织结构的影响。结果表明:(1)益生菌添加组异育银鲫增重率和特定生长率显著高于对照组(P<0.05),BB和BI组的增重率分别提高了216.70%和184.04%,特定生长率分别提高了141.18%和125.49%,BB和BI组间差异不显著(P>0.05);(2)益生菌添加组(BB组和BI组)的消化酶(淀粉酶、脂肪酶和胃蛋白酶)活性均显著高于对照组(B组)(P<0.05)。益生菌添加组间,BB组淀粉酶活性显著高于BI组(P<0.05),脂肪酶和胃蛋白酶活性亦高于BI组,但差异不显著(P>0.05);(3)益生菌添加组肠道肌层厚度和黏膜下层厚度显著高于对照组(B组)(P<0.05),BB组异育银鲫肠道黏膜皱襞高度和皱襞间质宽度与BI和对照组相比,均无显著差异(P>0.05)。研究表明,BFT养殖模式下外源添加益生菌可以更好地促进异育银鲫生长。
Probiotics have been defined as live microorganisms, which confer health benefits to the host when administered in adequate amounts. The probiotics used in aquaculture commonly include effective microorganisms (EM bacteria), Bacillus sp. and Lactobacillus sp. The biofloc technology (BFT) is a zero-water exchange and eco-friendly aquaculture system. The BFT can recycle nutrient by introducing additional carbon source to culture water in order to stimulate the growth of heterotrophic bacteria that convert ammonia into microbial biomass. The microbial biomass will further aggregate with other microorganisms and particles to form bioflocs. The bioflocs contain a heterogeneous mixture of diatoms, macroalgae, food and fecal remnants, exoskeletons, bacteria, invertebrates, and other microorganisms. The bioflocs can maintain good water quality, increase fish growth performance, reduce feed cost by recycling feed residues and fecal excrements, aid enzymatic activity, and enhance innate immunity and disease resistance. Meanwhile, the BFT can minimize water exchange to save labor and environmental costs, and reduce water usage and waste generated in aquaculture. It can also avoid drug abuse for disease control, because of the key microorganism in the bioflocs. The BFT has the potential to be used widely in aquaculture. Gibel carp (Carassius auratus gibelio) is one of important freshwater species farmed in China, and it is a representative species of mudflat cultured fish. However, with the rapid development of aquaculture, the waste of water resources, pollution, and diseases seriously affected the sustainable development and aquaculture efficiency of gibel carp. Our previous studies showed that the BFT can be used in gibel carp culture and that it has positive effects on the growth performance and immune response of gibel carp. To further optimize the BFT system in gibel carp culture, a 35-day feeding experiment was conducted to evaluate the effects of probiotics on the growth performance, digestive enzyme activities, and intestinal morphology of gibel carp cultured using the BFT. A total of 1800 normal gibel carps with a mean body weight of 1.60 g were randomly assigned to nine ponds (3.0 m×1.0 m×0.8 m) as three experimental treatments, including the EM bacteria addition group in BFT system (BB), Bacillus subtilis addition group in BFT system (BI), and BFT without any probiotics addition (B). The results revealed the followings (1) Compared with those of the control group, weight gain and specific growth of gibel carp in the BB and BI groups were significantly higher (P<0.05); the weight gain in the BB and BI groups increased by 216.70% and 184.04%, respectively. Furthermore, the specific growth increased by 141.18% and 125.49%, respectively. The weight gain and specific growth in BB group were higher but no significantly different from those in BI group (P>0.05). These results indicate that the addition of probiotics to BFT system can promote the growth of gibel carp. Additionally, compound bacteria (EM bacteria) addition showed better efficiency than the addition of single strain B. subtilis. (2) The activity of digestive enzymes (amylase, lipase and protease) in the probiotics addition groups (BB and BI) was significantly higher than those in control group (P<0.05), and the highest activities were observed in BB group. The activity of amylase in BB group was significantly higher than that in BI group (P<0.05). (3) The thickness of muscularis and submucosa of gibel carp gut in the probiotics addition groups was significantly higher than those in control group (P<0.05). The mucosal fold height and fold mesenchyme width of gibel carp gut were not significantly different among the BB, BI, and control groups (P>0.05). The results suggest that the addition of probiotics can promote growth of gibel carp and improve their intestinal digestive enzyme activities. Furthermore, the addition of probiotics can also affect the intestinal morphology of gibel carp cultured in BFT system. This study provides some valuable information to promote the usage of BFT in aquaculture.
该文献标准引用格式:
XU Chen, LI Ye, SUN Qirui, ZHANG Mingming, WANG Zisheng, YE Shigen, QIAO Guo, LI Qiang.Effects of probiotic addition on the growth performance, digestive enzyme activity, and intestinal morphology of gibel carp (Carassius auratus gibelio) cultured using biofloc technology[J].Journal of Fishery Sciences of China,2018,25(5):1004-1011.[徐晨, 李烨, 孙启睿, 张明明, 王资生, 叶仕根, 乔帼, 李强.生物絮团养殖模式下益生菌添加对异育银鲫生长、消化酶活性及肠道组织结构的影响[J].中国水产科学,2018,25(5):1004-1011.]
参考文献:
[1] Fan Y, Zhou Y, Zeng L, et al. Identification, structural characterization, and expression analysis of toll-like receptors 2 and 3 from gibel carp (Carassius auratus gibelio)[J]. Fish and Shellfish Immunology, 2018, 72:629-638.
[2] Yu Y B, Wang C H, Wang A M, et al. Effects of various feeding patterns of Bacillus coagulans on growth performance, antioxidant response and Nrf2-Keap 1 signaling pathway in juvenile gibel carp (Carassius auratus gibelio)[J]. Fish and Shellfish Immunology, 2018, 73:75-83.
[3] Wu T, Zhu C Y, Wang Y, et al. Prevention and control technology of gill hemorrhagic disease in silver prussian carp (Carassius auratus gibelio)[J]. China Fisheries, 2015(10):92-93.[吴霆, 朱春艳, 王瑶, 等. 异育银鲫病毒性鳃出血病预防与控制技术[J]. 中国水产, 2015(10):92-93.]
[4] Wu T, Ding Z F, Zhu C Y, et al. Epidemiological investigation and survey of gill hemorrhagic disease in silver prussian carp (Carassius auratus gibelio)[J]. Fisheries Science, 2014, 33(5):283-287.[吴霆, 丁正峰, 朱春艳, 等. 异育银鲫鳃出血病流行病学调查和研究[J]. 水产科学, 2014, 33(5):283-287.]
[5] Zhou Y, Jiang N, Ma J, et al. Protective immunity in gibel carp (Carassius gibelio) of the truncated proteins of cyprinid herpesvirus 2 expressed in Pichia pastoris[J]. Fish and Shellfish Immunology, 2015, 47(2):1024-1031.
[6] Shan N. Effects of different environmental and biological stresses on biochemical indexes in the plasma of gibel carp (Carassius auratus gibelio)[D]. Shanghai:Shanghai Ocean University, 2016.[单娜. 不同环境和生物源性因素对异育银鲫血浆生化指标的影响[D]. 上海:上海海洋大学, 2016.]
[7] Li D. Establishment and preliminary application of PCR detection methods for myxosporeans in Carassius auratus gibelio[D]. Wuhan:Huazhong Agricultural University, 2016.[李丹. 异育银鲫粘孢子虫PCR检测方法的建立与初步应用[D]. 武汉:华中农业大学, 2016.]
[8] Wu T, Ding Z F, Ren M, et al. The histo-and ultra-pathological studies on a fatal disease of Prussian carp (Carassius gibelio) in mainland China associated with cyprinid herpesvirus 2(CyHV-2)[J]. Aquaculture, 2013, 412-413:8-13.
[9] Hoseinifar S H, Esteban M Ã, Cuesta A, et al. Prebiotics and fish immune response:A review of current knowledge and future perspectives[J]. Reviews in Fisheries Science and Aquaculture, 2015, 23(4):315-328.
[10] Mo W Y, Chen Z T, Leung H M L, et al. Application of veterinary antibiotics in China's aquaculture industry and their potential human health risks[J]. Environmental Science Pollution Research International, 2017, 24(10):8978-8989.
[11] Avnimelech Y, Kochba M. Evaluation of nitrogen uptake and excretion by tilapia in biofloc tanks, using 15N tracing[J]. Aquaculture, 2009, 287(1-2):163-168.
[12] Azim M E, Little D C. The biofloc technology (BFT) in indoor tanks:Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2008, 283(1-4):29-35.
[13] Xu W J, Pan L Q. Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks[J]. Aquaculture, 2014, 426-427:181-188.
[14] Kim S K, Pang Z G, Seo H C, et al. Effect of bioflocs on growth and immune activity of Pacific white shrimp (Litopenaeus vannamei) postlarvae[J]. Aquaculture Research, 2014, 45(2):362-371.
[15] Zhao P, Huang J, Wang X H, et al. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus[J]. Aquaculture, 2012, 354-355:97-106.
[16] Zhao Z G, Xu Q Y, Luo L, et al. Effect of feed C/N ratio promoted bioflocs on water quality and production performance of bottom and filter feeder carp in minimum-water exchanged pond polyculture system[J]. Aquaculture, 2014, 434:442-448.
[17] Zhang M M, Xu C, Zhao Z G, et al. Effects of biofloc technology on growth performance and disease resistance of gibel carp (Carassius auratus gibelio)[J]. Journal of Fishery Sciences of China, 2017, 24(3):533-542.[张明明, 徐晨, 赵志刚, 等. 生物絮团技术对异育银鲫生长性能和抗性的影响[J]. 中国水产科学, 2017, 24(3):533-542.]
[18] Nayak S K. Probiotics and immunity:A fish perspective[J]. Fish and Shellfish Immunology, 2010, 29(1):2-14.
[19] Gupta A, Gupta P, Dhawan A. Dietary supplementation of probiotics affects growth, immune response and disease resistance of Cyprinus carpio fry[J]. Fish and Shellfish Immunology, 2014, 41(2):113-119.
[20] Liu Z Y, Liu Y, Bao X B, et al. Research advances in aquaculture probiotics[J]. Fisheries Science, 2010, 29(8):500-504.[刘忠颖, 刘洋, 鲍相渤, 等. 水产养殖益生菌的研究进展[J]. 水产科学, 2010, 29(8):500-504.]
[21] Kechagia M, Basoulis D, Konstantopoulou S, et al. Health benefits of probiotics:A review[J]. International Scholarly Research Notices, 2013, 2013:481651.
[22] Steenbergen L, Sellaro R, van Hemert S, et al. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood[J]. Brain, Behavior, and Immunity, 2015, 48:258-264.
[23] Kozasa M. Toyocerin (Bacillus toyoi) as growth promotor for animal feeding[J]. Microbiologie Aliments Nutrition, 1986, 4(1):121-135.
[24] Gatesoupe F J. The use of probiotics in aquaculture[J]. Aquaculture, 1999, 180(1-2):147-165.
[25] Ma Y X, Wu Y, Liu C F, et al. The application of probiotic bacteria as biocontrol agents in aquaculture[J]. Journal of Dalian Fisheries University, 2003, 18(3):180-185.[马悦欣, 吴垠, 刘长发, 等. 益生菌作为生物控制剂在水产养殖中的应用[J]. 大连水产学院学报, 2003, 18(3):180-185.]
[26] Chen Y R, Wang H, Qi F L. Development of studies on microecological modulator as aquatic feed[J]. Fisheries Science & Technology, 2003(3):4-8.[陈有容, 王华, 齐凤兰. 水产微生态调节剂研究进展[J]. 水产科技, 2003(3):4-8.]
[27] Banerjee G, Ray A K. The advancement of probiotics research and its application in fish farming industries[J]. Research in Veterinary Science, 2017, 115:66-77.
[28] Gatesoupe F J. Lactic acid bacteria increase the resistance of turbot larvae (Scophthalnus maximus), against pathogenic Vibrio[J]. Aquatic Living Resources, 1994, 7(4):277-282.
[29] Mohapatra S, Chakraborty T, Prusty A K, et al. Use of different microbial probiotics in the diet of rohu (Labeo rohita) fingerlings:effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora[J]. Aquaculture Nutrition, 2012, 18(1):1-11.
[30] Ziaei-Nejad S, Rezaei M H, Takami G A, et al. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus[J]. Aquaculture, 2006, 252(2-4):516-524.
[31] Hu J. Effects of two kinds of EM probiotics on cultural water quality, growth performance and immunity of sea cucumber (Apostichopus japonicus)[D]. Dalian:Dalian Polytechnic University, 2015.[胡京. 两种EM菌剂对养殖水体水质、海参生长性能及免疫力的影响[D]. 大连:大连工业大学, 2015.]
[32] Zhu X B. Bacteria floccule as diet of filter-feeding fishes[J]. Journal of Fisheries of China, 1989, 13(4):339-345.[朱学宝. 细菌絮凝体对滤食性鱼类饵料效果的研究[J]. 水产学报, 1989, 13(4):339-345.]
[33] Kuhn D D, Boardman G D, Lawrence A L, et al. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed[J]. Aquaculture, 2009, 296(1-2):51-57.
[34] Lin J D. Study on treating municipal sewage with SBR strengthened by EM[D]. Xiamen:Xiamen University, 2008.[林金盾. 采用EM菌强化SBR处理生活污水的试验研究[D]. 厦门:厦门大学, 2008.]
[35] Yu Y, Li H R, Li Y, et al. The application of probiotic preparation to aquaculture[J]. Journal of Fishery Sciences of China, 2001, 8(2):92-96.[余勇, 李会荣, 李筠, 等. 益生菌制剂在水产养殖中的应用[J]. 中国水产科学, 2001, 8(2):92-96.]
[36] Qi B, Wu S G, Wang J, et al. Effects of Bacillus subtilis on growth performance, intestinal morphology and bacterial enumeration of broilers[J]. Chinese Journal of Animal Nutrition, 2016, 28(6):1748-1756.[齐博, 武书庚, 王晶, 等. 枯草芽孢杆菌对肉仔鸡生长性能、肠道形态和菌群数量的影响[J]. 动物营养学报, 2016, 28(6):1748-1756.]
[37] Hu Y, Tan B P, Mai K S, et al. Effects of dietary probiotic on growth, immunity and intestinal bacteria of juvenile Litopenaeus vannamei[J]. Journal of Fishery Sciences of China, 2008, 15(2):244-251.[胡毅, 谭北平, 麦康森, 等. 饲料中益生菌对凡纳滨对虾生长、肠道菌群及部分免疫指标的影响[J]. 中国水产科学, 2008, 15(2):244-251.]
[38] Wu P, Zhao D Q, Cai H H, et al. Effects of three probiotics on water quality and growth in sea cucumber (Apostichopus japonicus)[J]. Journal of Dalian Ocean University, 2013, 28(1):21-26.[武鹏, 赵大千, 蔡欢欢, 等. 3种微生态制剂对水质及刺参幼参生长的影响[J]. 大连海洋大学学报, 2013, 28(1):21-26.]
[39] Lee S, Katya K, Park Y, et al. Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel (Anguilla japonica)[J]. Fish and Shelfish Immunology, 2017, 61:201-210.
[40] Li S, Guan M, Guo W T, et al. Effects of probiotics on growth, and activities of digestive enzymes and enzymes related to non-specific immunity in Chinese sturgeon[J]. Chinese Journal of Fisheries, 2014, 27(1):50-54.[李莎, 管敏, 郭文韬, 等. 微生物制剂对中华鲟生长、消化酶及非特异性免疫酶活性的影响[J]. 水产学杂志, 2014, 27(1):50-54.]
[41] Salinas I, Cuesta A, Esteban M A, et al. Dietary administration of Lactobacillus delbrùeckii and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses[J]. Fish and Shellfish Immunology, 2005, 19(1):67-77.
[42] Wang Y B, Xu Z R. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities[J]. Animal Feed Science and Technology, 2006, 127(3-4):283-292.
[43] Shi D J, Liang Y J, Xu J H, et al. Effects of probiotics on growth, digestive enzymes activity and apparent digestibility of Cyprinus carpio[J]. Jiangsu Agricultural Sciences, 2017, 45(13):136-139.[史东杰, 梁拥军, 许金华, 等. 微生态制剂对锦鲤生长、消化酶活性和表观消化率的影响[J]. 江苏农业科学, 2017, 45(13):136-139.]
[44] Afrilasari W, Widanarni, Meryandini A. Effect of probiotic Bacillus megaterium PTB 1.4 on the population of intestinal microflora, digestive enzyme activity and the growth of catfish (Clarias sp.)[J]. Hayati Journal of Biosciences, 2016, 23(4):168-172.
[45] Liu X Y, Zhang Y, Qi Q, et al. Effects of Bacillus subtilis on growth, digestive enzyme activity, and non-specific immunity in hybrid sturgeon (Acipenser baeri ♂×Acipenser schrenkii ♀) juveniles[J]. Journal of Fishery Sciences of China, 2011, 18(6):1315-1320.[刘晓勇, 张颖, 齐茜, 等. 枯草芽孢杆菌对杂交鲟幼鱼生长性能、消化酶活性及非特异性免疫的影响[J]. 中国水产科学, 2011, 18(6):1315-1320.]
[46] Sharifuzzaman S M, Al-Harbi A H, Austin B. Characteristics of growth, digestive system functionality, and stress factors of rainbow trout fed probiotics Kocuria, SM1 and Rhodococcus, SM2[J]. Aquaculture, 2014, 418-419:55-61.
[47] Gao X. Effects of Bacillus spp. on the growth performance and intestine bacteria in juvenile Cipenser baeri[D]. Shijiazhuang:Hebei Normal University, 2008.[高欣. 芽孢杆菌对西伯利亚鲟幼鱼摄食生长及肠道菌群的影响[D]. 石家庄:河北师范大学, 2008.]
[48] Suzer C, Çoban D, Kamaci H O, et al. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae:Effects on growth performance and digestive enzyme activities[J]. Aquaculture, 2008, 280(1-4):140-145.
[49] Duan Y F, Zhang Y, Dong H B, et al. Effect of dietary Clostridium butyricum on growth, intestine health status and resistance to ammonia stress in Pacific white shrimp (Litopenaeus vannamei)[J]. Fish and Shellfish Immunology, 2017, 65:25-33.
[50] Lou Y D. Embryology[M]. Beijing:China Agriculture Press, 2000:101-104.[楼允东. 组织胚胎学[M]. 北京:中国农业出版社, 2000:101-104.]
[51] Zhang J H. The application studies of different probiotics in caws cultivation[D]. Nanchang:Jiangxi Agricultural University, 2003.[张锦华. 不同微生态制剂在鲤鱼养殖中的应用研究[D]. 南昌:江西农业大学, 2003.]
[52] Daniels C L, Merrifield D L, Boothroyd D P, et al. Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth, performance, gut morphology and gut microbiota[J]. Aquaculture, 2010, 304(1-4):49-57.
[53] Asaduzzaman M, Iehata S, Akter S, et al. Effects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids production of Malaysian mahseer (Tor tambroides)[J]. Aquaculture Reports, 2018, 9:53-61.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:查看此文需要支付$0.00
关于我们  |  联系我们  |  期刊介绍  |   在线留言
Copyright  ©  2009 中国水产科学杂志
京ICP备09074735号-7
京公网安备1101060260001号