首页期刊介绍征稿简则下载专区期刊征订电子期刊联系我们帮助English
 
罗非鱼水产品中的喹诺酮类药物耐药菌和耐药基因检测分析
下载次数:29次
作者:郭学中1 2  张瑞泉1  姜兰1  谭爱萍1  邓玉婷1  李金祥3  赵飞1  刘付翠1 2  何山1 2 
单位:1. 中国水产科学研究院珠江水产研究所, 农业农村部渔用药物创制重点实验室, 广东省水产动物免疫技术重点实验室, 广东 广州 510380;
2. 上海海洋大学 水产与生命学院, 上海 201306;
3. 仲恺农业工程学院 广州市水产病害与水禽养殖重点实验室, 广东 广州 510225
关键词:水产品 气单胞菌 大肠埃希菌 喹诺酮类耐药 PMQR 
分类号:S948
出版年·卷·期(页码):2018·25·No.5(1032-1039)
摘要:
本研究旨在了解水产品中携带的细菌对喹诺酮类药物的耐药状况及耐药基因类型,评估水产品中细菌耐药性风险。从广州市14家超市随机购买100条鲜活的罗非鱼,高通量测序分析结果显示,罗非鱼携带的优势菌群为大肠埃希菌(Escherichia hydrophila)和气单胞菌(Aeromonas)。采用大肠埃希菌和气单胞菌筛选培养方法,分别从鳃、肌肉和肠内容物筛选分离出182株大肠埃希菌和280株气单胞菌;运用琼脂二倍稀释法测定了恩诺沙星和环丙沙星对分离菌株的最小抑菌浓度;通过PCR法扩增质粒介导的喹诺酮类耐药(PMQR)基因(qnrA、qnrB、qnrC、qnrD、qnrS、aac(6')-Ib-cr、qepA、oqxAB)并进行测序和比对分析。结果显示,分离的气单胞菌对恩诺沙星和环丙沙星的耐药率分别为2.50%和2.14%;分离的大肠埃希菌对恩诺沙星和环丙沙星的耐药率分别为25.82%和18.13%。肌肉中分离的气单胞菌和大肠埃希菌对恩诺沙星和/或环丙沙星的耐药率均低于鳃和肠道的;各组织分离的大肠埃希菌对氟喹诺酮类药物的耐药率均远高于气单胞菌。分离菌株中,携带PMQR基因的大肠埃希菌占59.89%,且检出的耐药基因种类较多,包括qnrB、qnrD、qnrS、aac(6')-Ib-croqxAB;而携带PMQR基因的气单胞菌仅占6.79%,只检出耐药基因aac(6')-Ib-crqnrS。结论认为,罗非鱼食用部分肌肉携带的耐药菌较少,食品相对安全;肠道和鳃组织携带的耐药菌以大肠埃希菌为主,而且大部分菌株携带有不同类型的PMQR基因,存在一定的耐药传播隐患。
The aim of this study was to investigate and analyze quinolone resistance and plasmid-mediated qui­nolone resistance (PMQR) genes in Aeromonas and Escherichia coli isolated from the commercial aquatic prod­ucts sold in Guangzhou's supermarkets, and to assess the quality and safety of these aquatic products. One hun­dred live tilapias were collected from 14 supermarkets in Guangzhou. The results of high-throughput sequencing analysis indicated that Escherichia coli and Aeromonas were the dominant bacteria. According to bacterial screening culture methods, 280 Aeromonas and 182 E. coli strains were isolated from the gills, muscles, and intestinal contents, respectively. All the isolates were evaluated for resistance to enrofloxacin (ENR) and cipro­floxacin (CIP) by agar dilution method. All of the 280 Aeromonas and 182 E. coli strains were also screened for the qnr, qepA, aac(6')-Ib-cr, and oqxAB genes using PCR. The results showed that 7 (2.50%) Aeromonas and 47 (25.82%) E. coli isolates were resistant to ENR, while 6 (2.14%) Aeromonas and 33 (18.13%) E. coli isolates were resistant to CIP. The resistance rates of ENR and/or CIP in Aeromonas and E. coli isolates obtained from the muscles were much lower than those in the microorganisms isolated from the gills and intestinal contents. All the E. coli isolates obtained from different issues were much more resistant to fluoroquinolones than the Aeromonas isolates. Of these 182 E. coli isolates, 59.89% isolates harbored PMQR genes, and 5 types of PMQR genes were detected, including qnrB, qnrD, qnrS, aac(6')-Ib-cr, and oqxAB. Of the 280 Aeromonas isolates, 6.79% harbored PMQR genes, and only aac(6')-Ib-cr and qnrS were detected. Only a few resistant bacteria were screened in the muscles, which form the edible part of the tilapia; so, the food products were considered relatively safe. However, resistant E. coli was predominantly isolated from the intestinal contents and gills, and most of the E. coli isolates carried various types of PMQR genes, suggesting a potential risk of drug-resistant E. coli transmission from these tissues. Therefore, it is important to strengthen monitoring of antimicrobial resistance of bacteria in aquatic products.
该文献标准引用格式:
GUO Xuezhong, ZHANG Ruiquan, JIANG Lan, TAN Aiping, DENG Yuting, LI Jinxiang, ZHAO Fei, LIUFU Cui, HE Shan,.Detection and analysis of quinolone resistance and resistance-associated genes in bacteria isolated from tilapias sold in the supermarkets[J].Journal of Fishery Sciences of China,2018,25(5):1032-1039.[郭学中, 张瑞泉, 姜兰, 谭爱萍, 邓玉婷, 李金祥, 赵飞, 刘付翠, 何山,.罗非鱼水产品中的喹诺酮类药物耐药菌和耐药基因检测分析[J].中国水产科学,2018,25(5):1032-1039.]
参考文献:
[1] Zhou Y Y, Wang Y M, Chao J M, et al. Development situation and countermeasures of Guangdong tilapia industry in 2015[J]. Guangdong Agricultural Sciences, 2016, 43(6):16-21.[周远扬, 王玉梅, 曹俊明, 等. 2015年广东罗非鱼产业发展形势与对策建议[J]. 广东农业科学, 2016, 43(6):16-21.]
[2] Hheuretzbacher U. Global antibacterial resistance:the never-ending story[J]. Journal of Global Antimicrobial Resistance, 2013, l (2):63-69.
[3] Wielinga P R, Jensen V F, Aarestrup F M. et al. Evidence based policy for controlling antimicrobial resistance in the food chain in Denmark[J]. Food Control, 2014, 40(1):185-192.
[4] Barriere S L. Clinical, economic and societal impact of antibiotic resistance[J]. Expert Opinion on Pharmacotherapy, 2015, 16(2):151-153.
[5] Deng Y, Wu Y, Jiang L, et al. Multi-drug resistance mediated by class 1 integrons in Aeromonas isolated from farmed freshwater animals in China[J]. Frontiers in Microbiology, 2016, 7(935):1-7.
[6] Majumdar T, Das B, Bhadra R K, et al. Complete nucleotide sequence of a quinolone resistance gene (qnrS2) carrying plasmid of Aeromonas hydrophils isolated from fish[J]. Plasmid, 2011, 66(2):79-84.
[7] Han J E, Kim J H, Choresca Jr C H, et al. First description of the qnrS-like (qnrS5) gene and analysis of quinolone resistance-determining regions in motile Aeromonas spp. from diseased fish and water[J]. Research in Microbiology, 2012, 163(1):73-79.
[8] Strahilevitz J, Jacoby G A, Hooper D C, et al. Plasmid-mediated quinolone resistance:a multifaceted treat[J]. Clinical Microbiology Reviews, 2009, 22(4):664-689.
[9] Martinez-Martinez L, Pascual A, Garcia I, et al. Interaction of plasmid and host quinolone resistance[J]. Journal of Antimicrobial Chemotherapy, 2003, 51(4):1037-1039.
[10] Wu Y L, Deng Y T, Jiang L, et al. Antimicrobial susceptibilities of Aeromonas strains isolated from various aquatic animals in Guangdong Province[J]. Journal of Shanghai Ocean University, 2013, 22(2):219-224.[吴雅丽, 邓玉婷, 姜兰, 等. 广东省水产动物源气单胞菌对抗菌药物的耐药分析[J]. 上海海洋大学学报, 2013, 22(2):219-224.]
[11] Cui J J, Wang D, Lu T Y, et al. In vitro study on fluoroquinolone resistance mechanism of Aeromonas hydrophila from cultured fish[J]. Journal of Fisheries of China, 2016, 40(3):495-502.[崔佳佳, 王荻, 卢彤岩, 等. 养殖鱼源嗜水气单胞菌对氟喹诺酮类药物的耐药机制[J]. 水产学报, 2016, 40(3):495-502.]
[12] Deng G H, Zha L Y, Zhang G X, et al. Comparison of human and animal fecal microbiota with illumina sequencing of 16S rRNA tags[J]. Ecological Science, 2014, 33(5):851-857.[邓冠华, 查龙应, 张国霞, 等. 高通量16S rRNA标签测序法比较人与不同动物肠道微生物组多样性[J]. 生态科学, 2014, 33(5):851-857.]
[13] Zhao L, Wang G, Siegel P, et al. Quantitative genetic background of the host influences gut microbiomes in chickens[J]. Scientific Reports, 2013, 3(5):1163.
[14] Borell N, Cinas S G, Figueras M J, et al. Identification of Aeromonas clinical isolates by restriction fragment length polymorphism of PCR-amplified 16S rRNA genes[J]. Journal of Clinical Microbiology, 1997, 35(7):1671-1674.
[15] Yafiez M, Catalan V, Apraiz D, et al. Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(3):875-883.
[16] Weisburg W G, Barns S M, Pelletier D A, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991, 173(2):697-703.
[17] Kim H B, Park C H, Kim C J, et al. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(2):639-645.
[18] O'Connor J, Morris D, DeLappe N, et al. Plasmid-mediated quinolone resistance in non-typhi serotypes of Salmonella enterica in Ireland in 2001-May 2006[J]. International Journal of Antimicrobial Agents, 2007, 29(Suppl.):78.
[19] Cavaco L M, Hasman H, Xia S, et al. qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin[J]. Antimicrobial Agents and Chemotherapy, 2009, 53:603-608.
[20] Park C H, Robicsek A, Jacoby G A, et al. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme[J]. Antimicrobial Agents and Chemotherapy, 2006, 50:3953-3955.
[21] Zhao J J, Chen Z G, Chen S, et al. Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(10):4219-4224.
[22] Zhou J M, Wu Z X, Zeng L B, et al. Microflora in digestive tract of yellow catfish (Pseudobagrus fulvidraco) and in the water[J]. Journal of Huazhong Agricultural University, 2010(5):613-617.[周金敏, 吴志新, 曾令兵, 等. 黄颡鱼肠道及养殖水体中菌群的分析[J]. 华中农业大学学报, 2010(5):613-617.]
[23] Michelle J P, David M S, David J A. Comparison of conventional and molecular techniques to investigate the intestinal microflora of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2006, 261:94-203
[24] Zhang M H, Shen Q, Zhu L Q, et al. Study on antibiotic resistance of Escherichia coli isolated from fishery products[J]. Chinese Journal of Health Laboratory Technology, 2011, 21(10):2543-2548.[张梦寒, 沈强, 朱莉强, 等. 水产品中大肠埃希菌耐药性研究[J]. 中国卫生检验杂志, 2011, 21(10):2543-2548.]
[25] Allen H K, Donato J, Wang H H, et al. Call of the wild:antibiotic resistance genes in natural environments[J]. Nature Reviews Microbiology, 2010, 8(4):251-259.
[26] Zhang W Q, Pan W J, Chen Q, et al. Detection of plasmid-mediated quinolone resistance among Escherichia coli from avian in China[J]. Progress in Veterinary Medicine, 2010, 31(S):78-81.[张维秋, 潘渨涓, 陈祥, 等. 禽源大肠埃希菌质粒介导的喹诺酮类药物耐药基因的检测[J]. 动物医学进展, 2010, 31(S):78-81.]
[27] Jiang H X, Tang D, Liu Y H, et al. Prevalence and characteristics of β-lactamase and plasmid-mediated quinolone resistance genes in Escherichia coli isolated from farmed fish in China[J]. Antimicrobial Agents and Chemotherapy, 2012, 67:2350-2353.
[28] Tan A P, Deng Y T, Jiang L, et al. Analysis of antimicrobial susceptibility and plasmid-mediated quinolone resistance genes in Aeromonas isolated from turtles[J]. Journal of Fisheries of China, 2014, 38(7):1018-1025.[谭爱萍, 邓玉婷, 姜兰, 等. 养殖龟鳖源气单胞菌耐药性与质粒介导喹诺酮类耐药基因分析[J]. 水产学报, 2014, 38(7):1018-1025.]
[29] Tan A P. Surveillance of antimicrobial resistance and study of plasmid-mediated quinolone resistance among Aeromonas isolates from different aquatic animals[D]. Guangzhou:South China Agricultural University, 2016.[谭爱萍. 水产动物源气单胞菌耐药性与质粒介导喹诺酮类耐药研究[D]. 广州:华南农业大学, 2016.]
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:查看此文需要支付$0.00
关于我们  |  联系我们  |  期刊介绍  |   在线留言
Copyright  ©  2009 中国水产科学杂志
京ICP备09074735号-7
京公网安备1101060260001号