首页期刊介绍征稿简则下载专区期刊征订电子期刊联系我们帮助English
 
基于不同模型研究环境因子对中西太平洋鲣资源丰度的影响
下载次数:39次
作者:方舟1 2 3 4  陈洋洋1  陈新军1 2 3 4  郭立新1 
单位:1. 上海海洋大学 海洋科学学院, 上海 201306;
2. 大洋渔业资源可持续开发教育部重点实验室, 上海 201306;
3. 国家远洋渔业工程技术研究中心, 上海 201306;
4. 农业农村部大洋渔业开发重点实验室, 上海 201306
关键词:中西太平洋  资源丰度 环境因子 渔情预报 模型 
分类号:S931
出版年·卷·期(页码):2018·25·No.5(1123-1130)
摘要:
根据1998-2013年中西太平洋鲣(Katsuwonus pelamis)生产数据,选取时空因子(年、月、经纬度)和环境因子[海表面温度(SST)、海表面高度(SSH)、尼诺指数(ONI)和叶绿素a浓度]Chl-a)],通过两种不同的模型(广义加性模型GAM和提升回归树模型BRT)研究各因子对鲣资源丰度(以CPUE表示)的影响。研究结果认为,GAM模型中,经度对CPUE的影响最大,累计解释偏差超过50%,其次为纬度、年和月;在环境因子中,SSH最为重要,其次为ONI,而SST和Chl-a的影响相对较低。BRT模型分析结果与GAM分析结果类似,时空因子相对占据了重要的地位,其中经度的影响最大,其次为年、纬度和月;而在环境因子中,ONI的重要性相对更高,其次为SSH,SST和Chl-a同样影响较低。研究认为,两种模型均能较好地反映出因子对CPUE的影响。由于厄尔尼诺/拉尼娜现象引起的海洋环境变化会使鲣资源分布产生差异,因此在后续的渔情预报研究中,应该更多地考虑将ONI因子纳入渔情预报模型中,以提高预测精度。
Correlations of the catch per unit effort (CPUE) (based on the catch data of skipjack tuna, caught using the purse seine technique in the west-central Pacific Ocean) with spatial-temporal factors (year, month, latitude, and longitude) and environmental factors (sea surface temperature, SST; sea surface height, SSH; oceanic nino index, ONI; and chlorophyll-a, Chl-a) were analyzed, and the relative importance of CPUE was estimated using two different types of models (Generalized additive model:GAM, and Boosted regression tree:BRT). The results showed that longitude is the most important factor in determining the importance of CPUE using GAM, accounting for more than 50% of the total CPUE, while latitude, year, and month had decreasing importance in the order mentioned. SSH is the most important environmental factor in GAM, and ONI, SST, and Chl-a are less important in determining the importance of CPUE. The result of BRT was similar to that of GAM; longitude is the most important spatial-temporal factor, accounting for 60% of the total importance of CPUE, while year, latitude, and month were of less importance, with their importance decreasing in the order mentioned. ONI is the most important environmental factor in BRT, followed by SSH, SST, and Chl-a, in that order. In conclusion, the two types of models can effectively reflect the influence of CPUE. ENSO induced oceanographic variation will change the abundance distribution of skipjack tuna; so, ONI should be included in fishery forecasting models to improve the accuracy of prediction in future.
该文献标准引用格式:
FANG Zhou,, CHEN Yangyang, CHEN Xinjun,, GUO Lixin.Influence of environmental factors on the abundance of skipjack tuna (Katsuwonus pelamis) in west-central Pacific Ocean determined using different models[J].Journal of Fishery Sciences of China,2018,25(5):1123-1130.[方舟,, 陈洋洋, 陈新军,, 郭立新.基于不同模型研究环境因子对中西太平洋鲣资源丰度的影响[J].中国水产科学,2018,25(5):1123-1130.]
参考文献:
[1] Collette B B, Nauen C E. FAO Species catalogue vol 2 scombrids of the world-An annotated and illustrated catalogue of tunas, mackerels, bonitos, and related species known to data[R]. FAO Fisheries Synopsis, 1983, 125(2):83-86.
[2] Jin S F, Fan W. Review and perspectives on skipjack tuna fishery under global climate change[J]. Fishery Information and Strategy, 2014, 29(4):272-279.[靳少非,樊伟. 鲣鱼资源开发利用研究现状及未来气候变化背景下研究展望[J]. 渔业信息与战略, 2014, 29(4):272-279.]
[3] Chen X J, Gao F, Guan W J, et al. Review of fishery forecasting technology and its models[J]. Journal of Fisheries of China, 2013, 37(8):1270-1280.[陈新军, 高峰, 官文江, 等. 渔情预报技术及模型研究进展[J]. 水产学报, 2013, 37(8):1270-1280.]
[4] Guisan A, Edwards T C, Hastie T. Generalized linear and generalized additive models in studies of species distributions:setting the scene[J]. Ecological Modelling, 2002, 157(2-3):89-100.
[5] Chang J H, Chen Y, Holland D, et al. Estimating spatial distribution of American lobster Homarusa mericanus using habitat variables[J]. Marine Ecology Progress Series, 2010, 420:145-156.
[6] Li Z G, Ye Z J, Wan R, et al. Model selection between traditional and popular methods for standardizing catch rates of target species:A case study of Japanese Spanish mackerel in the gillnet fishery[J]. Fisheries Research, 2015, 161(2):312-319.
[7] Crespi-abril A C, Ortiz N, Galván D E. Decision tree analysis for the determination of relevant variables and quantifiable reference points to establish maturity stages in Enteroctopus megalocyathus and Illex argentinus[J]. ICES Journal of Marine Science, 2015, 72(5):1449-1461.
[8] Wang J T, Chen X J. Changes and prediction of the fishing ground gravity of skipjack (Katsuwonus pelamis) in Western-Central Pacific[J]. Periodical of Ocean University of China, 2013, 43(8):44-48.[汪金涛,陈新军. 中西太平洋鲣鱼渔场单位重心变化及其预测模型建立[J]. 中国海洋大学学报, 2013, 43(8):44-48.]
[9] Elith J, Leathwick J R, Hastie T. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 2008, 77(4):802-813.
[10] Friedman J H. Greedy function approximation:A gradient boosting machine[J]. Annals of Statistics, 2001, 29(5):1189-1232.
[11] Brieman L, Friedman J, Olshen R, et al. Classification and Regression Trees[M]. Belmont:Chapman & Hall/CRC, 1984:1-368.
[12] Gao F, Chen X J, Guan W J, et al. Fishing ground forecasting of chub mackerel in the Yellow Sea and East China Sea using boosted regression trees[J]. Acta Oceanologica Sinica, 2015, 37(10):39-48.[高峰, 陈新军, 官文江, 等. 基于提升回归树的东、黄海鲐鱼渔场预报[J]. 海洋学报, 2015, 37(10):39-48.]
[13] Tang H, Xu L X, Chen X J, et al. Effects of spatiotemporal and environmental factors on the fishing ground of skipjack tuna (Katsuwonus pelamis) in the Western and Central Pacific Ocean based on generalized additive model[J]. Marine Environmental Science, 2013, 32(4):518-522.[唐浩, 许柳雄, 陈新军, 等. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响[J]. 海洋环境科学, 2013, 32(4):518-522.]
[14] Lehodey P M, Bertibanac J, Hampton A, et al. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389:715-718.
[15] Zhou S F. Impacts of the El Niño Southern Oscillation on skipjack tuna purse-seine fishing grounds in the Western and Central Pacific Ocean[J]. Journal of Fishery Sciences of China, 2005, 12(6):739-744.[周甦芳.厄尔尼诺-南方涛动现象对中西太平洋鲣鱼围网渔场的影响[J]. 中国水产科学, 2005, 12(6):739-744.]
[16] Zhou S F, Shen J H, Fan W. Impacts of the El Niño Southern Oscillation on skipjack tuna (Katsuwonus pelamis) purse-seine fishing grounds in the Western and Central Pacific Ocean[J]. Marine Fisheries, 2004, 26(3):167-172.[周甦芳, 沈建华, 樊伟. ENSO现象对中西太平洋鲣鱼围网渔场的影响分析[J]. 海洋渔业, 2004, 26(3):167-172.]
[17] Chen Y Y, Chen X J. Influence of El Niño/La Niña on the abundance index of skipjack in the Western and Central Pacific Ocean[J]. Journal of Shanghai Ocean University, 2017, 26(1):113-120.[陈洋洋, 陈新军. 厄尔尼诺/拉尼娜现象对中西太平洋鲣资源丰度的影响[J]. 上海海洋大学学报, 2017, 26(1):113-120.]
[18] Yang S L, Zhou S F, Zhou W F, et al. The relationship between skipjack tuna (Katsuwonus pelamis) catch and water temperature and surface salinity in the west-central Pacific Ocean based on Argo data[J]. Journal of Dalian Fisheries University, 2010, 25(1):34-40.[杨胜龙,周甦芳,周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学报, 2010, 25(1):34-40.]
[19] Ye T H, Feng B, Yan Y R, et al. The relationship between skipjack (Katsuwonus pelamis) catch and vertical water temperature and salinity in the West-central Pacific Ocean[J]. Transactions of Oceanology and Limnology, 2012(1):49-55.[叶泰豪,冯波,颜云榕, 等. 中西太平洋鲣渔场与温盐垂直结构关系的研究[J]. 海洋湖沼通报, 2012(1):49-55.]
[20] Martínez-Rincón R O, Ortega-García S, Vaca-Rodríguez J G. Comparative performance of generalized additive models and boosted regression trees for statistical modeling of incidental catch of wahoo (Acanthocybium solandri) in the Mexican tuna purse-seine fishery[J]. Ecological Modelling, 2012, 233(2):20-25.
[21] Guo A, Chen X J. Studies on the habitat suitability index based on the vertical structure of water temperature for skipjack (Katsuwonus pelamis) purse seine fishery in the west-central Pacific Ocean[J]. Marine Fisheries, 2009, 31(1):1-9.[郭爱,陈新军. 利用水温垂直结构研究中西太平洋鲣鱼栖息地指数[J]. 海洋渔业, 2009, 31(1):1-9.]
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:查看此文需要支付$0.00
关于我们  |  联系我们  |  期刊介绍  |   在线留言
Copyright  ©  2009 中国水产科学杂志
京ICP备09074735号-7
京公网安备1101060260001号