基于计算机视觉的大黄鱼表型参数测量研究
CSTR:
作者:
作者单位:

1.浙江海洋大学国家海洋设施养殖工程技术研究中心, 浙江 舟山 316022 ; 2.浙江海洋大学水产学院, 浙江 舟山 316022

作者简介:

冯德军,博士,副研究员,研究方向为海洋养殖工程.E-mail:fengdj@zjou.edu.cn

通讯作者:

中图分类号:

S917

基金项目:

国家重点研发计划项目(2020YFE0200100); 浙江省“尖兵” “领雁”科技计划项目(2023C02029).


Measurement of phenotypic parameters of Larimichthys crocea based on computer vision
Author:
Affiliation:

1.National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022 , China ; 2.School of Fisheries, Zhejiang Ocean University, Zhoushan 316022 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决目前大黄鱼(Larimichthys crocea)表型参数测量研究大多只针对鱼体长度进行测量, 对重要的细节如尾柄参数测量的研究较少, 且人工测量方法费时费力的问题, 本研究提出一种基于改进Mask-RCNN的大黄鱼表型参数测量模型。模型的改进从检测速度和检测精度两个角度出发, 首先以 MobileNetV2 网络替换原始主干网络提升检测速度, 之后引入混合注意力模块CBAM, 并结合Point Rend 算法提高鱼体边缘提取精度。模型得到去除鱼鳍图像后与完整轮廓图像进行融合, 通过关键点检测算法在融合后的图像中自动定位关键点位置, 并计算各表型参数数据。在测试集中, 最优的算法模型对6个待测量参数的总平均相对误差为4.04%。对尾柄附近长度与高度测量的平均相对误差为5.93%和5.09%。对不同大小的大黄鱼各项参数的测量平均绝对百分比误差不超过7%。本研究为大黄鱼表型参数测量提供了新的方法, 为提高测量效率提供了新的思路。

    Abstract:

    Phenotypic parameter measurement is one of the most important methods for monitoring the growth of Larimichthys crocea and estimating its economic benefits. However, most current studies on phenotypic parameter measurements focus only on the length of the fish body, with few studies focusing on essential details such as the measurement of parameters at the caudal peduncle. Also, manual measurement is time-consuming and laborious. This study designed and developed an L. crocea phenotypic parameter measurement system using computer vision technology to measure the phenotypic parameters of L. crocea. First, an improved segmentation model, Mask-RCNN, was constructed to remove the fin from L. crocea. The improvement in the model includes two aspects: detection speed and accuracy. The model replaces the backbone network of the original network model with the MobileNetV2 network to improve detection speed. Subsequently, a hybrid attention module, CBAM, is introduced into the backbone network, and PointRend is imported into the head network. These improvements have enhanced the extraction accuracy of fish body edges. The accuracy of the optimal model was 87.94%, mAP was 83.21%, and average single-image detection time was 70.5 ms. We developed a L. crocea parameter measurement system for the greater amberjack based on PyQt5, which realized the fusion of fin removal images and complete contour images with the location of the key points and calculated the phenotypic parameters through the positional information. The average relative error for systematic measurements of the six parameters was 4.04%. The average absolute percentage error of each parameter for different sizes of L. crocea was under 7%. Overall, the process designed in this study provides a new method for measuring the phenotypic parameters of L. crocea and a new way of thinking to improve the efficiency of measuring these parameters.

    参考文献
    相似文献
    引证文献
引用本文

冯德军,郭笑坤,曲晓玉,桂福坤,杨旭.基于计算机视觉的大黄鱼表型参数测量研究[J].中国水产科学,2024,31(10):1174-1185
FENG Dejun, GUO Xiaokun, QU Xiaoyu, GUI Fukun, YANG Xu. Measurement of phenotypic parameters of Larimichthys crocea based on computer vision[J]. Journal of Fishery Sciences of China,2024,31(10):1174-1185

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-02
  • 出版日期:
文章二维码