南太平洋长鳍金枪鱼栖息地分布影响因素
CSTR:
作者:
作者单位:

1.上海海洋大学海洋生物资源与管理学院, 上海 201306 ; 2.上海海洋大学国家远洋渔业工程技术研究中心, 上海 201306 ;3.上海海洋大学, 农业农村部大洋渔业开发重点实验室, 上海 201306

作者简介:

刘力文(1996-),男,硕士研究生,研究方向为金枪鱼渔业信息化.E-mail:gfdyjava@163.com

通讯作者:

中图分类号:

S931

基金项目:

国家重点研发计划项目(2023YFD2401301, 2023YFD2401305); 农业农村部全球渔业资源调查、监测与评估项目(D-8025-24-5001)


Factors influencing the habitat distribution of albacore tuna in the South Pacific
Author:
Affiliation:

1.College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306 , China ;2.National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306 , China ;3.Key Laboratory of Exploitation of Ocean Fisheries Resources, Ministry of Agriculture and Rural Affairs , Shanghai Ocean University, Shanghai 201306 .China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究基于2020—2022年南太平洋长鳍金枪鱼(Thunnus alalunga)延绳钓渔捞日志数据, 采用地理加权随机森林(geographically weighted random forest, GWRF)模型, 结合Shapley模型可解释(Shapley additive explanations, SHAP)技术, 构建了可解释的长鳍金枪鱼栖息地预测模型, 分析了关键环境因子对其分布的影响, 旨在为南太平洋长鳍金枪鱼栖息地研究及其可持续管理提供科学依据。研究结果表明, 在精度、准确率、召回率及受试者工作特征曲线下面积(area under the curve, AUC)等关键指标上, 地理加权随机森林模型相较于传统随机森林(random forest, RF)模型提高了5%~10%。因子重要性分析SHAP贡献度分析表明, 海表温度、海表溶解氧浓度、50 m深度温度及50 m深度溶解氧浓度是影响长鳍金枪鱼栖息地分布的关键环境因子; SHAP解释性分析进一步揭示了适宜的栖息环境特征, 即海表温度和50 m深度温度处于15~20 ℃, 海表溶解氧浓度及50 m深度溶解氧浓度处于240~260 mmol/m³的环境是最适宜长鳍金枪鱼栖息的。单一样本的SHAP值分解分析进一步验证了适宜的温度及充足的溶解氧是影响长鳍金枪鱼栖息地选择的关键因素。本研究为深入理解其栖息地的空间分布格局及环境驱动机制提供了新的视角。

    Abstract:

    This study is based on logbook data from longline fisheries targeting albacore tuna (Thunnus alalunga) in the South Pacific from 2020 to 2022. A geographically weighted random forest (GWRF) model was applied and Shapley additive explanations (SHAP) were incorporated to develop an interpretable habitat prediction model and analyze the influence of key environmental factors on albacore tuna distribution. The study aims to provide a scientific basis for habitat research and the sustainable management of albacore tuna in the South Pacific. The results indicate that compared to the traditional random forest (RF) model, the GWRF model improves key performance metrics, including precision, accuracy, recall, and the area under the receiver operating characteristic curve (AUC), by 5%–10%. Feature importance and SHAP contribution analyses identified sea surface temperature, sea surface dissolved oxygen concentration, temperature at 50 m depth, and dissolved oxygen concentration at 50 m depth as the key environmental factors influencing albacore tuna habitat distribution. SHAP interpretability analysis further revealed the optimal habitat conditions, indicating that the most suitable habitats were located in areas where sea surface temperature and temperature at 50 m depth ranged from 15 ℃ to 20 ℃ while sea surface dissolved oxygen concentration and dissolved oxygen concentration at 50 m depth ranged from 240 to 260 mmol/m³. Individual prediction SHAP value decomposition further confirmed that suitable temperature and sufficient dissolved oxygen are the key factors influencing albacore tuna habitat selection. These findings provide new insights into the spatial distribution patterns of albacore tuna habitats and the underlying environmental driving mechanisms.

    参考文献
    相似文献
    引证文献
引用本文

刘力文,郑淳文,李娅琳,周想,吴峰,朱江峰,周成.南太平洋长鳍金枪鱼栖息地分布影响因素[J].中国水产科学,2025,32(8):1164-1173
LIU Liwen, ZHENG Chunwen, LI Yalin, ZHOU Xiang, WU Feng, ZHU Jiangfeng, ZHOU Cheng. Factors influencing the habitat distribution of albacore tuna in the South Pacific[J]. Journal of Fishery Sciences of China,2025,32(8):1164-1173

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-17
  • 最后修改日期:2025-05-22
  • 录用日期:
  • 在线发布日期: 2025-11-03
  • 出版日期:
文章二维码