Molecular cloning and expression analysis of mitochondrial fission related genes in Macrobrachium nipponensein response to carbonate alkalinity stress
Author:
Affiliation:

College of Fisheries and Life Sciences,Key Laboratory of Freshwater Aquatic Genetic Resources,Ministry of Agriculture and Rural Affairs

  • Article
  • | |
  • Metrics
  • |
  • Reference [56]
  • | |
  • Cited by [0]
  • | |
  • Comments
    Reference
    [1] Zhang X H, Li J T, Wang J J, et al. Effects of long-term saline-alkaline stress on growth and ovary development of Exopalaemon carinicauda[J]. Journal of Fisheries of China, 2024, 48(04): 257-267. [张秀红, 李吉涛, 王佳佳, 等. 长期碳酸盐碱度胁迫对脊尾白虾生长及卵巢发育的影响[J]. 水产学报, 2024, 48(04): 257-267.]
    [2] Shi N B, Zhang C F, Guo J T, et al. Analysis and countermeasures of the development status and existing problems of freshwater aquaculture[J]. Henan Fisheries, 2023, (02): 4-6. [史楠冰,张超峰,郭江涛等. 渔业淡水养殖发展现状及存在问题分析与对策[J]. 河南水产, 2023, (02): 4-6.]
    [3] Wang Z P, Li Z K, Cai L, et al. Trial on high-efficiency culture of Penaeus vannamei in saline-alkaline water in Heilonggang watershed, Hebei province[J]. Hebei Fisheries, 2018, (12): 25-28+59. [王泽璞, 李中科, 蔡灵, 等. 河北省黑龙港流域盐碱水水域南美白对虾高效养殖试验[J]. 河北渔业, 2018, (12): 25-28+59.]
    [4] Wang Y Q, Cui W Q, Zhang T, et al. Large scale Penaeus monodon culture technology in inland alkali soil in mid latitude area[J]. Hebei Fisheries, 2023, (05): 10-12+17. [王玉清, 崔玮琪, 张涛, 等. 中纬度地区内陆盐碱地大规格斑节对虾养殖技术[J]. 河北渔业, 2023, (05): 10-12+17.]
    [5] Zhang H D, Chen S A, Ge J M, et al. Technology of Oreochromis niloticus saline-alkali aquaculture in elevation pool[J]. Technical Advisor for Animal Husbandry, 2023, (03): 45-47. [张浩钿, 陈生熬, 葛建民, 等. 尼罗罗非鱼高位池盐碱水养殖技术[J]. 现代畜牧科技, 2023, (03): 45-47.]
    [6] Wang H, Fang W H, Lai Q F. Toxicity of carbonate-alkalinity and pH to larval Penaeus chinensis. Journal of Fishery Sciences of China, 2000, 7(1): 82-86. [王慧, 房文红, 来琦芳. 水环境中Ca2+、Mg2+对中国对虾生存及生长的影响[J]. 中国水产科学, 2000, 7(1): 82-86.]
    [7] Shi Y L. Studies on water quality characteristics and change regulations of culture ponds with heavy saline-alkaline soil[D]. Shanghai: Shanghai Ocean University, 2009. [石玉龙.重盐碱地养殖池塘水质特征及变化规律的研究[D]. 上海: 上海海洋大学, 2009.]
    [8] Liu Y, Yao M, Li S, et al. Integrated application of multi-omics approach and biochemical assays provides insights into physiological responses to saline-alkaline stress in the gills of crucian carp (Carassius auratus) [J]. Science of the Total Environment, 2022, 822.
    [9] Shang X, Geng L, Yang J, et al. Transcriptome analysis reveals the mechanism of alkalinity exposure on spleen oxidative stress, inflammation and immune function of Luciobarbus capito[J]. Ecotoxicology and Environmental Safety, 2021, 225: 112748.
    [10] Fan Z, Wu D, Zhang Y, et al. Carbonate alkalinity and dietary protein levels affected growth performance, intestinal immune responses and intestinal microflora in Songpu mirror carp (Cyprinus carpio Songpu) [J]. Aquaculture, 2021, 545.
    [11] Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis[J]. Cell. 2015; 163(3): 560–569.
    [12] Suski JM, Lebiedzinska M, Bonora M, et al. Relation between mitochondrial membrane potential and ROS formation[J]. Methods in Molecular Biology. 2012; 810: 183–205.
    [13] Liu J, Zhang F, Yan Z, et al. Effects of prolonged NaHCO3 exposure on the serum immune function, antioxidant capacity, intestinal tight junctions, microbiota, mitochondria, and autophagy in crucian carp (Carassius auratus)[J]. Ecotoxicology and Environmental Safety, 2025, 290: 117571.
    [14] Shang X, Geng L, Wei H, et al. Analysis revealed the molecular mechanism of oxidative stress-autophagy-induced liver injury caused by high alkalinity: integrated whole hepatic transcriptome and metabolome[J]. Frontiers in Immunology, 2024, 15: 1431224.
    [15] Li W, Wang J, Li J, et al. The effect of astaxanthin on the alkalinity stress resistance of Exopalaemon carinicauda[J]. Science of The Total Environment, 2024, 917: 170415.
    [16] Su L, Zhang J, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury[J]. Autophagy, 2023, 19(2): 401-414.
    [17] Losón O C, Song Z, Chen H, et al. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission[J]. Molecular biology of the cell, 2013, 24(5): 659-667.
    [18] Shen Q, Yamano K, Head B P, et al. Mutations in Fis1 disrupt orderly disposal of defective mitochondria[J]. Molecular biology of the cell, 2014, 25(1): 145-159.
    [19] Panigrahi D P, Patra S, Behera B P, et al. MTP18 inhibition triggers mitochondrial hyperfusion to induce apoptosis through ROS-mediated lysosomal membrane permeabilization-dependent pathway in oral cancer[J]. Free Radical Biology and Medicine, 2022, 190: 307-319.
    [20] Tábara L C, Burr S P, Frison M, et al. MTFP1 controls mitochondrial fusion to regulate inner membrane quality control and maintain mtDNA levels[J]. Cell, 2024, 187(14): 3619-3637.
    [21] Bess A S, Leung M C K, Ryde I T, et al. Effects of mutations in mitochondrial dynamics-related genes on the mitochondrial response to ultraviolet C radiation in developing Caenorhabditis elegans[J]. Worm, 2013, 2(1): e23763.
    [22] Campbell D, Zuryn S. The mechanisms and roles of mitochondrial dynamics in C. elegans[C]Seminars in Cell & Developmental Biology, 2024, 156: 266-275.
    [23] Fan W J, Lu G H, Zhu J P. Path analysis for morphological traits and body weight among hybrid populations F3 and their parental populations of oriental river prawn(Macrobrachium nipponense) [J]. Journal of Fishery Sciences of China, 2023, 30(07): 852-862. [范武江,陆根海,朱俊鹏.日本沼虾杂交选育群体F3和亲本群体的形态性状对体重影响的通径分析[J].中国水产科学,2023,30(07):852-862.]
    [24] Fishery Administration Bureau of the Ministry of Agriculture and Rural Affairs. China Fishery Statistical Yearbook 2024 [M]. Beijing: China Agriculture Press, 2024:24 [农业农村部渔业渔政管理局. 2024中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2024: 24]
    [25] Ren S S, Sun B, Luo L, et al. Tolerance of freshwater shrimp(Macrobrachium nipponense)to alkalinity and low temperature in northeast China[J]. Chinese Journal of Fisheries, 2020, 33(2): 24-28. [任帅帅, 孙博, 罗亮, 等. 青虾Macrobrachium nipponense对碱度及低温的耐受力[J]. 水产学杂志, 2020, 33(2): 24-28.]
    [26] Jin S B, Zhou R, Gao X, et al. Identification of the effects of alkalinity exposure on the gills of oriental river prawns, Macrobrachium nipponense[J]. BMC genomics, 2024, 25(1): 765.
    [27] Jin S B, Xu M, Gao X, et al. Effects of alkalinity exposure on antioxidant status, metabolic function, and immune response in the hepatopancreas of Macrobrachium nipponense[J]. Antioxidants, 2024, 13(1): 129.
    [28] Sun X C. Cloning of mitochondrial fusion-fission-related genes in Macrobrachium nipponense and its role under hypoxia stress[D]. Shanghai: Shanghai, 2024. [孙西超.日本沼虾线粒体融合-分裂相关基因的克隆及其在低氧胁迫下的作用研究[D]. 上海: 上海海洋大学, 2024.]
    [29] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. methods, 2001, 25(4): 402-408.
    [30] Sun S M, Fu H T, Xuan F J, et al. Molecular cloning, prokaryotic expression and localization analysis of C-type lectin 3 (MnLec3) cDNA from Macrobrachium nipponense[J]. Journal of Fisheries of China, 2019, 43(11): 2317-2326. [孙盛明,傅洪拓,宣富君,等.日本沼虾C型凝集素结构域家族3的cDNA克隆、原核表达和定位分析[J]. 水产学报, 2019, 43(11): 2317-2326.]
    [31] Sun S, Bian C, Zhou N, et al. Dietary Astragalus polysaccharides improve the growth and innate immune response of giant freshwater prawn Macrobrachium rosenbergii: Insights from the brain-gut axis[J]. International Journal of Biological Macromolecules, 2023, 243: 125158.
    [32] Tondera D, Santel A, Schwarzer R, et al. Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis[J]. Journal of Biological Chemistry, 2004, 279(30): 31544-31555.
    [33] Tondera D, Czauderna F, Paulick K, et al. The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells[J]. Journal of cell science, 2005, 118(14): 3049-3059.
    [34] Suzuki M, Neutzner A, Tjandra N, et al. Novel structure of the N terminus in yeast Fis1 correlates with a specialized function in mitochondrial fission[J]. Journal of Biological Chemistry, 2005, 280(22): 21444-21452.
    [35] Nolden K A, Harwig M C, Hill R B. Human Fis1 directly interacts with Drp1 in an evolutionarily conserved manner to promote mitochondrial fission[J]. Journal of Biological Chemistry, 2023, 299(12).
    [36] Jofuku A, Ishihara N, Mihara K. Analysis of functional domains of rat mitochondrial Fis1, the mitochondrial fission-stimulating protein[J]. Biochemical and biophysical research communications, 2005, 333(2): 650-659.
    [37] Zhang Q S, Ma B F, Zheng G, et al. Prokaryotic expression of argemouth bass birnavirus VP2 protein and preparation of polyclonal antibody[J]. Journal of Northwest A & F University(Natural Science Edition), 2025, (07):1-8. [张秋爽, 马宝福, 郑果, 等. 大口黑鲈双RNA病毒VP2蛋白原核表达及多克隆抗体制备[J]. 西北农林科技大学学报(自然科学版), 2025, (07): 1-8.]
    [38] Sun L M, Zheng Y Z, Li H, et al. Exogenous expression of IscR from Aeromonas veronii regulates the oxidative stress tolerance of escherichia coli [J]. Molecular Plant Breeding, 2024, 22(11): 3654-3660. [孙灵敏, 郑渊哲, 李宏, 等. 维氏气单胞菌IscR异源表达调控大肠杆菌氧化应激耐受[J]. 分子植物育种, 2024, 22(11): 3654-3660.]
    [39] Wu B. Study on high-density fermentation process and SIP protein extraction method of Tilapia Streptococcus Agalactiae SIP-pET32a[J]. China Fisheries, 2022, (11): 73-78. [吴斌.罗非鱼无乳链球菌SIP-pET32a基因工程菌高密度发酵工艺及SIP蛋白提取方及SIP蛋白提取方法研究[J]. 中国水产, 2022, (11): 73-78. ]
    [40] Zhao Q Q, Sun X C, Zheng C, et al. Cloning of Bax gene in Macrobrachium nipponense and its role in hypoxia stress [J]. Journal of Fisheries of China, 2024, 48(08): 67-80. [赵倩倩, 孙西超, 郑诚, 等. 日本沼虾Bax基因克隆及其在低氧胁迫过程中的作用[J]. 水产学报, 2024, 48(08): 67-80.]
    [41] Zheng C, Xue C, Zhao Q Q, et al. Molecular cloning and expression analysis of StAR gene from oriental river pawn(Macrobrachium nipponense) in response to hypoxia [J]. Journal of Fisheries of China, 2024, 48(08): 67-80. [郑诚, 薛程, 赵倩倩, 等.日本沼虾StAR基因克隆及其低氧胁迫下表达分析[J]. 水产学报, 2024, 48(03): 66-77.]
    [42] Chen Z W, Jiang O, Tang W J, et al. Preparation and application of polyclonal antibody against largemouth bass NLRP3 protein [J]. Journal of Fishery Sciences of China, 2024, 31(07): 754-765. [陈振威, 江藕, 唐伟俊, 等. 大口黑鲈NLRP3蛋白多克隆抗体的制备及初步应用[J]. 中国水产科学, 2024, 31(07): 754-765.]
    [43] Henry R P, Lucu ?, Onken H, et al. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals[J]. Frontiers in physiology, 2012, 3: 431.
    [44] Racotta I S, Hernández-Herrera R. Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2000, 125(4): 437-443.
    [45] Ge Q, Wang J, Li J, et al. Effect of high alkalinity on shrimp gills: Histopathological alternations and cell specific responses[J]. Ecotoxicology and Environmental Safety, 2023, 256: 114902.
    [46] Duan Y F, Xing Y F, Zhu X Y, et al. Integration of transcriptomic and metabolomic reveals carbonate alkalinity stress responses in the hepatopancreas of Litopenaeus vannamei[J]. Aquatic Toxicology, 2023, 260: 106569.
    [47] Wu L, Kang Z, Qiao N, et al. Cu-induced mitochondrial dysfunction is mediated by abnormal mitochondrial fission through oxidative stress in primary chicken embryo hepatocytes[J]. Journal of Trace Elements in Medicine and Biology, 2021, 65: 126721.
    [48] Zou H, Song J, Luo X, et al. Cadmium and polyvinyl chloride microplastics induce mitochondrial damage and apoptosis under oxidative stress in duck kidney[J]. Poultry Science, 2025, 104(1): 104490.
    [49] Morita M, Prudent J, Basu K, et al. mTOR controls mitochondrial dynamics and cell survival via MTFP1[J]. Molecular cell, 2017, 67(6): 922-935.
    [50] Xu H, Song X, Zhang X, et al. SIRT1 regulates mitochondrial fission to alleviate high altitude hypoxia inducedcardiac dysfunction in rats via the PGC-1α-DRP1/FIS1/MFF pathway[J]. Apoptosis, 2024, 29(9): 1663-1678.
    [51] Huang X, Yang Y, Bai Y, et al. Foodborne iron overload induces oxidative stress and causes mitochondrial damage in the liver of grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2025, 595: 741690.
    [52] Guo X, Shen M, Jiang S, et al. Novel insights into copper-induced Chinese mitten crab hepatopancreas mitochondrial toxicity: oxidative stress, apoptosis and BNIP3L-mediated mitophagy[J]. Aquatic Toxicology, 2025: 107335.
    [53] Xu K. Effects of carbonate alkalinity stress on physiological and biochemical indices, expression of related enzyme genes and intestinal health of Macrobrachium nipponense[D]. Shanghai: Shanghai Ocean University, 2024. [徐康. 碳酸盐碱度胁迫对日本沼虾生理生化指标、相关酶基因表达和肠道健康的影响[D]. 上海: 上海海洋大学, 2024.]
    [54] Spurlock B M, Xie Y F, Song Y R, et al. Mitochondrial fusion and cristae reorganization facilitate acquisition of cardiomyocyte identity during reprogramming of murine fibroblasts[J]. Cell Reports, 2025, 44(3).
    [55] Meyer J N, Leuthner T C, Luz A L. Mitochondrial fusion, fission, and mitochondrial toxicity[J]. Toxicology, 2017, 391: 42-53.
    [56] Chang X R, Niu S Y, Shang M T, et al. ROS-Drp1-mediated mitochondria fission contributes to hippocampal HT22 cell apoptosis induced by silver nanoparticles[J]. Redox biology, 2023, 63: 102739.
    Related
    Cited by
    您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 21,2025
  • Revised:May 29,2025
  • Adopted:June 04,2025
Article QR Code