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Fig. 2 The percent of time stayed in different water velocity
(x £SE) , 0.05 intervals (P,) of Carassius auratus under different nutrition status

F1 FREFNATEREAEZREXBIEENEE D LPIHERFRY
Tab. 1 The variance coefficient of staying time percent (P;) of experimental fishes at each water velocity
intervals under different nutrition status

water velocity interval

group
1 2 3 4 5

control group 47.29 18.74 47.63 25.78 57.85

feeding group 49.16 50.95 26.55 33.91 83.16

starvation group 142.41 164.63 135.09 92.36 176.23

K2 FREFNALBEMESSHNRERIFRETR
Tab.2 The morphological parameters and phenotypic variation of water velocity preference of experimental fishes
under different nutrition status

group /g /em | Im 7/ /
body weight body length type 1 type 11 total number

control group 8.17+0.13* 6.9+0.03" 0 12 12

feeding group 8.016+0.15" 6.89+0.03" 0 12 12

starvation group 7.27+0.13° 6.9+0.03* 4 8 12

50% ,
(P<0.05).

Note: The fish which stays mainly in the lowest water velocity interval (P>50%) is considered type I. Otherwise, the fish is considered type
II. Different letters indicate significant difference among different experimental groups within the same column (P<0.05).
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Fig. 3 The percent of time stayed in different water velocity intervals (P,) of Carassius auratus under different nutrition status
Different small letters indicate significant difference among water velocity intervals in a given experimental group (P<0.05); Different capital
letters indicate significant difference among different experimental group within each water velocity interval; 1, 2, 3, 4 and 5 indicate different

water velocity intervals (1: 11.86—15.18 cm/s, 2: 15.18-20.12 cm/s, 3: 20.12-27.91 cm/s, 4: 27.91-41.30 ci/s, 5: 41.30-65.45 cm/s), respectively.
The fish which stays mainly in the lowest water velocity interval (P>50%) is considered type 1. Otherwise, the fish is considered type II.
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Fig. 4 Frequencies in different water velocity intervals (F) of Carassius auratus under different nutrition status
Different small letters indicate significant difference among water velocity intervals in a given experimental group (P<0.05); Different capital
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The fish which stays mainly in the lowest water velocity interval (P>50%) is considered type 1. Otherwise, the fish is considered type II.
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Preferred swimming behavior in the crucian carp (Carassius auratus)
at different nutrition status

WU Qingyi, ZENG Lingqing, FU Shijian

Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing
Normal University, Chongqing 401331, China

Abstract: Fish usually alter their swimming behavior to adapt to changes in food resources in their natural habitats.
In this study, we investigated the effects of nutritional status on the preferred swimming behavior of the juvenile
crucian carp (Carassius auratus). Three experimental treatment groups with different nutritional status were es-
tablished: the control group (fasted for 48 h), the feeding group (fed to satiation), and the starvation group (starved
for 14 days). The experimental fish were videoed individually with a hand-made device for determining the pre-
ferred water velocity: a 1.5 m long conical raceway in which the water speed gradually increased from 11.86 cm/s
to 65.45 cm/s at (25+1)C. The water velocity of the 1st, 2nd, 3rd, 4th and 5th waster velocity intervals were
11.86—15.18 cm/s, 15.18-20.12 cm/s, 20.12-27.91 cm/s, 27.91-41.30 cm/s, 41.30-65.45 cm/s, respectively. The
videos were analyzed with the Ethovision XT9 software, and several parameters were calculated in each water
velocity interval: frequency(F), the average duration of stay(7), and the percentage of time stayed(P,). F' increased
as the water velocity increased for both the control and feeding groups. 7 showed no significant variation across
different water velocity intervals in the fasting group, whereas the feeding group displayed the longest 7 in both
the third and fourth water velocity intervals. P, was significantly higher in the third and fourth water velocity in-
tervals than in the other intervals in both the control and feeding groups, and the preferred swimming speeds of
both the control and feeding groups were 20.12-41.30 cm/s. Two distinctly different preferred swimming behav-
iors were apparent in the starved group, which we arbitrarily designated the type I and type II preferred swimming
behaviors. The type-I fish showed the largest P, and T values in the first water velocity interval, which were sig-
nificantly higher than those in all other intervals. However, the F' of these fish showed extremely low values across
all water velocity intervals, and was much lower than those of the other groups. Therefore, the preferred swim-
ming speed of the type I fish from the starvation group was 11.86—15.18 cm/s. However, P, and F of the type II
fish were similar to those of the control group, i.e., P, of the type II fish was significantly higher in the third and
fourth water velocity intervals than in the other intervals, and F increased as the water velocity increased. In the
type II fish, T was significantly higher in the fourth water velocity interval than in the first, second, or fifth, but
was not higher than that in the third water velocity interval. Consequently, the preferred swimming speed of the
type II fish from the starvation group was 20.12—-41.30 cm/s. This study shows that satiation feeding does not af-
fect the preferred swimming speed of the crucian carp. However, during digestion, the crucian carp showed fewer
traverses across different water speed intervals, but a longer period of stay each time they arrived at a given inter-
val. Starvation may enhance the interindividual variations in energy reserves and hence the maintenance of swim-
ming capacity, resulting in two distinctly different types of preferred swimming behavior in the fasting crucian
carp. The type I fish showed a profoundly reduced preferred swimming speed, whereas the preferred swimming
speed of the type II fish did not differ from that of the normally fed fish.
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