Comparative analyses on the transcriptome among free-living zooxanthellae under different phosphate concentrations
CSTR:
Author:
Clc Number:

S917

  • Article
  • | |
  • Metrics
  • |
  • Reference [39]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Free-living zooxanthellae, much like symbiotic zooxanthellae, contribute to maintaining the health of the coral community. Previous studies have shown that Symbiodinium sp., a free-living zooxanthellae, exhibits different responses to various phosphate concentrations in terms of growth and alkaline phosphatase activity. To understand how Symbiodinium sp. responds to dynamic changes in dissolved inorganic phosphorus (DIP), we carried out comparative analyses on the transcriptome of this dinoflagellate under two different initial phosphate concentrations in 0, 5, and 10 d. Initial phosphate concentrations of 0.15 and 35 μmol/L were designed based on the phosphate concentration of an F/2 medium typically used in laboratory culture and a low average phosphate concentration of the East China Sea in recent years, respectively. The de novo assembly results showed that 231 642201 Transcripts and 80955 Unigenes were obtained; a total of 4407 (5.44%) Unigenes were co-annotated in the NR, gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), evolutionary genealogy of genes: non-supervised orthologous groups (eggNOG), SwissProt, and protein families (Pfam) databases. In addition, 27 236 (33.64%) Unigenes had significant matches in the NR database. All Unigenes annotated in the NR database were selected for annotation in the GO database. As such, a total of 23998 (29.64%) Unigenes were mapped into three categories: molecular function, cellular population, and biological process. Among the annotations in the GO database, there were 13 sub-categories of molecular functions, 16 sub-categories of cellular components, and 19 sub-categories of biological processes. The eggNOG functional analysis results showed that 45387 (56.06%) Unigenes were divided into 25 categories according to their functional characteristics. The largest category was post-translational modification, protein turnover and chaperone (3704, 8.16%), followed by signal transduction mechanism (3272, 7.21%), translation, ribosomal structure and biological development (2091, 4.61%), extracellular structure (168, 0.37%), nuclear structure (78, 0.17%), and cell movement (24, 0.05%). To obtain the differentially expressed genes related to phosphorus utilization, transcriptome data from five experimental groups were compared and analyzed. The results suggest that there were three phospholipase A2 genes, two phospholipase B genes, one phospholipase C gene, three phospholipase D genes, two alkaline phosphatase, genes, four acid phosphatase genes, three inorganic phosphate transporter genes, two sodium-dependent phosphate transporter genes, and three mitochondrial phosphate transporter genes that were differentially expressed. According to the genetic expression profile of the differentially expressed genes, it was hypothesized that the free-living Symbiodinium sp. may continue growing under low phosphorus stress by enhancing its ability to transport inorganic phosphate into cells and utilizing organic phosphorus via phosphatase. This study improves the current understanding on the survival mechanism of zooxanthellae in oligotrophic seas. The findings pave an avenue to uncover the molecular regulation mechanism of Symbiodinium sp. in response to different phosphate concentrations.

    Reference
    [1] LaJeunesse T C,Parkinson J E,Gabrielson P W,et al.Systematic revision of Symbiodiniaceae highlights the antiquityand diversity of coral endosymbionts[J].Current Biology,2018,28(16):2570-2580.
    [2] Shinzato C,Shoguchi E,Kawashima T,et al.Using theAcropora digitifera genome to understand coral responses toenvironmental change[J].Nature,2011,476(7360):320-323.
    [3] Shinzato C,Inoue M,Kusakabe M.A snapshot of a coral“holobiont”:A transcriptome assembly of the scleractiniancoral,Porites,captures a wide variety of genes from both thehost and symbiotic zooxanthellae[J].PLoS ONE,2014,9(1):e85182.
    [4] Davy S K,Allemand D,Weis V M.Cell biology of cnidarian-dinoflagellate symbiosis[J].Microbiology and Molecular Biology Reviews,2012,76(2):229-261.
    [5] LaJeunesse T C,Smith R,Walther M,et al.Host-symbiontrecombination versus natural selection in the response ofcoral-dinoflagellate symbioses to environmental disturbance[J].Proceedings Biological Sciences,2010,277(1696):2925-2934.
    [6] Thornhill D J,Howells E J,Wham D C,et al.Populationgenetics of reef coral endosymbionts(Symbiodinium,Dinophyceae)[J].Molecular Ecology,2017,26(10):2640-2659.
    [7] Zhao Z L,Liu J X,Zhang Y H,et al.Physiological responsesof Symbiodinium voratum to temperature and light intensity[J].Oceanologia et Limnologia Sinica,2019,50(2):316-323.[赵振鲁,刘甲星,张跃环,等.离体培养的虫黄藻(Symbiodinium voratum)对温度和光照的生理响应[J].海洋与湖沼,2019,50(2):316-323.]
    [8] Jeong H J,Yoo Y D,Kang N S,et al.Heterotrophic feedingas a newly identified survival strategy of the dinoflagellateSymbiodinium[J].Proceedings of the National Academy ofSciences of the United States of America,2012,109(31):12604-12609.
    [9] Zhu X,Zhen Y,Yu Z G.Molecular phylogenetic analysis ofa Gymnodinium-like species isolated from the Jiaozhou Bayof Shandong Province,China[J].Acta Oceanologica Sinica,2011,33(1):153-162.[朱霞,甄毓,于志刚.一株分离自胶州湾的裸甲藻形态相似种的分子系统学研究[J].海洋学报(中文版),2011,33(1):153-162.]
    [10] Jeong H J,Lee S Y,Kang N S,et al.Genetics and morphology characterize the dinoflagellate Symbiodinium voratum,n.sp.,(Dinophyceae)as the sole representative of Symbiodinium clade E[J].The Journal of Eukaryotic Microbiology,2014,61(1):75-94.
    [11] Gou W L,Sun J,Li X Q,et al.Phylogenetic analysis of afree-living strain of Symbiodinium isolated from JiaozhouBay,P.R.China[J].Journal of Experimental Marine Biologyand Ecology,2003,296(2):135-144.
    [12] Shao P,Chen Y Q,Zhou H,et al.Genetic variability inGymnodiniaceae ITS regions:Implications for species identification and phylogenetic analysis[J].Marine Biology,2004,144(2):215-224.
    [13] Wilcox T P.Large-subunit ribosomal RNA systematics ofsymbiotic dinoflagellates:Morphology does not recapitulatephylogeny[J].Molecular Phylogenetics and Evolution,1998,10(3):436-448.
    [14] Lajeunesse T C,Trench R K.Biogeography of two speciesof Symbiodinium(Freudenthal)inhabiting the intertidal seaAnemone Anthopleura elegantissima(Brandt)[J].The Biological Bulletin,2000,199(2):126-134.
    [15] Huang Q Y,Wang Z K,Hu F,et al.RNA-seq based transcriptome analysis and the biosynthesis pathway of carotenoid in Desmodesmus sp.[J].Journal of Applied Oceanography,2018,37(1):68-76.[黄琼叶,王昭凯,胡凡,等.栅藻全转录组测序与类胡萝卜素合成途径相关基因分析[J].应用海洋学学报,2018,37(1):68-76.]
    [16] Qi Y X,Liu Y B,Rong W H.RNA-Seq and its applications:A new technology for transcriptomics[J].Hereditas,2011,33(11):1191-1202.[祁云霞,刘永斌,荣威恒.转录组研究新技术:RNA-Seq 及其应用[J].遗传,2011,33(11):1191-1202.]
    [17] Takeda E,Taketani Y,Nashiki K,et al.A novel function ofphosphate-mediated intracellular signal transduction pathways[J].Advances in Enzyme Regulation,2006,46:154-161.
    [18] Yu M J,Yang S J,Lin X Z.De-novo assembly and characterization of Chlorella minutissima UTEX2341 transcriptome by paired-end sequencing and the identification ofgenes related to the biosynthesis of lipids for biodiesel[J].Marine Genomics,2016,25:69-74.
    [19] Tian J H,Zheng M G,Zheng L,et al.Transcriptome analysisof Nannochloropsis gaditana logarithm and stationary growthphases[J].Periodical of Ocean University of China,2013,43(8):54-59.[田金虎,郑明刚,郑立,等.海洋微拟球藻转录组在指数期和平台期的差异分析[J].中国海洋大学学报(自然科学版),2013,43(8):54-59.]
    [20] Marcus Y,Gurevitz M.Activation of cyanobacterial RuBPcarboxylase/oxygenase is facilitated by inorganic phosphatevia two independent mechanisms[J].European Journal ofBiochemistry,2000,267(19):5995-6003.
    [21] Zhang S F.Transcriptomic study on response of typical algalblooms in coastal waters of China to environmental phosphorus changes[D].Xiamen:Xiamen University,2016.[张树峰.中国近海典型藻华种对环境中磷变化响应的转录组学研究[D].厦门:厦门大学,2016.]
    [22] Li M L,Liu H D,Guo Y X,et al.Single symbiotic cell transcriptome sequencing of coral[J].Genomics,2020,112(6):5305-5312.
    [23] Gust K A,Najar F Z,Habib T,et al.Coral-zooxanthellaemeta-transcriptomics reveals integrated response to pollutantstress[J].BMC Genomics,2014,15(1):591.
    [24] Barshis D J,Ladner J T,Oliver T A,et al.Lineage-specifictranscriptional profiles of Symbiodinium spp.unaltered byheat stress in a coral host[J].Molecular Biology and Evolution,2014,31(6):1343-1352.
    [25] Dyhrman S T,Jenkins B D,Rynearson T A,et al.The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response[J].PLoSONE,2012,7(3):e33768.
    [26] Lin X,Zhang H,Huang B Q,et al.Alkaline phosphatasegene sequence characteristics and transcriptional regulationby phosphate limitation in Karenia brevis(Dinophyceae)[J].Harmful Algae,2012,17:14-24.
    [27] Mortazavi A,Williams B A,McCue K,et al.Mapping andquantifying mammalian transcriptomes by RNA-Seq[J].Nature Methods,2008,5(7):621-628.
    [28] Shang T G.Effects of infection with Karenia mikimotoi ongrowth,development and photosynthesis of Sargassum fusiformis(phaeophyta)at different life stages[D].Wenzhou:Wenzhou University,2019.[尚天歌.米氏凯伦藻(Kareniamikimotoi)感染对不同生活史阶段羊栖菜(Sargassum fusiformis)生长、发育及光合作用的影响[D].温州:温州大学,2019.]
    [29] Casado V,Martín D,Torres C,et al.Phospholipases in foodindustry:A review[M]//Lipases and Phospholipases:Methods and Protocols.Humana Press,2012:495-523.
    [30] Pleskot R,Li J J,?ársky V,et al.Regulation of cytoskeletaldynamics by phospholipase D and phosphatidic acid[J].Trends in Plant Science,2013,18(9):496-504.
    [31] Munnik T,Musgrave A.Phospholipid signaling in plants:Holding on to phospholipase D[J].Science Signaling,2001,2001(111):pe42.
    [32] Liu T T,Huang P,Liu J X,et al.Utilization of differentdissolved organic phosphorus sources by Symbiodinium voratumin vitro[J].FEMS Microbiology Ecology,2019,95(11):fiz150.
    [33] Wang Z H,Liang Y,Kang W.Utilization of dissolved organic phosphorus by different groups of phytoplanktontaxa[J].Harmful Algae,2011,12:113-118.
    [34] Lin S J,Litaker R W,Sunda W G.Phosphorus physiologicalecology and molecular mechanisms in marine phytoplankton[J].Journal of Phycology,2016,52(1):10-36.
    [35] Wang H B,Miao Y X,Li X S,et al.Purification and characterization of acid phosphatase in four marine microalgae[J].Fisheries Science,2013,32(3):153-156.[王洪斌,缪雨溪,李信书,等.4 种海洋微藻酸性磷酸酶的分离纯化及其性质的研究[J].水产科学,2013,32(3):153-156.]
    [36] Wang H L,Hong H S,Hung B Q.A preliminary study on thebioactivty of dissolved organic phosphorus in marine environment[J].Journal of Xiamen University(Natural Science),1995,34(3):416-420.[王海黎,洪华生,黄邦钦.海洋环境中溶解有机磷的生物活性初探[J].厦门大学学报(自然科学版),1995,34(3):416-420.]
    [37] Nussaume L,Kanno S,Javot H,et al.Phosphate import inplants:Focus on the PHT1 transporters[J].Frontiers in PlantScience,2011,2:83.
    [38] Pedersen B P,Kumar H,Waight A B,et al.Crystal structure of a eukaryotic phosphate transporter[J].Nature,2013,496(7446):533-536.
    [39] Zhu W,Miao Q,Sun D,et al.The mitochondrial phosphatetransporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana[J].PLoS ONE,2012,7(8):e43530.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李月,王云龙,欧阳珑玲. 不同磷酸盐浓度下浮游虫黄藻的转录组比较分析[J]. Jounal of Fishery Sciences of China, 2022,[volume_no](4):585-595

Copy
Share
Article Metrics
  • Abstract:561
  • PDF: 865
  • HTML: 1026
  • Cited by: 0
History
  • Online: April 22,2022
Article QR Code