LIU Jia
Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, ChinaZHANG Xiumei
Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, ChinaKANG Letian
Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, ChinaLIN Xiaosong
Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, ChinaPANG Jinyan
Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, ChinaKey Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
S949
ExperimentswerecarriedouttoinvestigatethebehavioralandmetabolicresponsesoftheNorthPacificseastar)todifferentconcentrationsoffoodsignals(fivesingleaminoacidandthreebivalvetissuehomogenate).Togaingreaterknowledgeintotheforagingbehaviorof,itsbehaviorwasdividedintofourcomponents.Stimulusconcentrationincreaseelicitedariseinboththepercentageofreactinganimalsandinthereactionintensityattheaminoacidconcentration-exceptfortyrosine.Atalowstimulusconcentration,thereactionofconsistedoftubefootwaving,andonlyhighconcentrationsinitiatedacomplicatedsequenceofseveraltypesofbehavior.However,frightreactionswereobservedathighconcentrations(mol·)ofaminoacidexceptforglutamicacid.DifferenceswerefoundamongthebehaviorresponsebyRuditapesphilippinarumantforthestudiedseastars.Fortheeighttestedstimuli,adependencybetweenstimulusconcentrationandtheoxygenconsumptionrate(OCR)wasobserved,withtheincreaseinstimulusstrengthcausingtheincreaseinthemetabolicrate.Forthetissuehomogenatesgroups,theOCRwassignificantlyhigherthanthatinthecontrol.However,statisticallysignificantdifferencesfromthecontrolwereonlyfoundinseastarsexposedtohighconcentrationsofglycine,glutamicacidandasparticacid.Nosignificantdifferenceswereobservedamongdifferentconcentrationsof
[1] McClintock J B, Lawrence J M. Characteristics of foraging in the soft-bottom benthic starfish Luidia clathrata (Echinodermata: Asteroidea): prey selectivity, switching behavior, functional responses and movement patterns [J]. ecologia, 1985, 66(2): 291-298.
[2] Oh J W, Dunham D W. Chemical detection of conspecifics in the crayfish Procambarus clarkii: role of antennules [J]. J Chem Ecol, 1991, 17(1): 161-165.
[3] Rittschof D, Tsai D W, Massey P G, et al. Chemical mediation of behavior in hermit crabs: alarm and aggregation cues [J]. J Chem Ecol, 1992, 18(7): 959-984.
[4] Rittschof D. Chemosensation in the daily life of crabs [J]. Amer Zool, 1992, 32(3): 363-369.
[5] Hazlett B A. Crayfish feeding responses to zebra mussels depend on microorganisms and learning [J]. J Chem Ecol, 1994, 20(10): 2623-2630.
[6] Chivers D P, Brown G E, Smith R J F. The evolution of chemical alarm signals: attracting predators benefits alarm signal senders [J]. Amer Nat, 1996, 148(4): 649-659.
[7] Hughes M. The function of concurrent signals: visual and chemical communication in snapping shrimp [J]. Anim Behav, 1996, 52(2): 247-257.
[8] Van Duren L A, Videler J J. The trade-off between feeding, mate seeking and predator avoidance in copepods: behavioural responses to chemical cues [J]. J Plankton Res, 1996, 18(5): 805-818.
[9] Tamburri M N, Finelli C M, Wethey D S, et al. Chemical induction of larval settlement behavior in flow [J]. Biol Bull, 1996, 191(3): 367-373.
[10] Moore P A, Lepper D M E. Role of chemical signals in the orientation behavior of the sea star Asterias forbesi [J]. Biol Bull, 1997, 192(3): 410-417.
[11] McClintock J B, Baker B J, Amsler C D, et al. Chemotactic tube-foot responses of the spongivorous sea star Perknaster fuscus to organic extracts of sponges from McMurdo Sound, Antarctica [J]. Antarct Sci, 2000, 12(1): 41-46.
[12] Zimmer-Faust R K. The relationship between chemoreception and foraging behaviour in crustaceans [J]. Limnol Oceanogr, 1989, 34(7): 1367-1374.
[13] Steele C W, Scarfe A D, Owens D W. Effects of group size on the responsiveness of zebrafish, Brachydanio rerio (Hamilton Buchanan), to alanine, a chemical attractant [J]. J Fish Biol, 1991, 38(4): 553-564.
[14] Lombardo F, Maramaldo R, Fratello B, et al. Amino acids and derivatives as food-finding signals in the freshwater snail Planorbarius corneus (L) [J]. Comp Biochem Physiol, 1992, 101(2): 389-398.
[15] Carr W E S, Netherton J C, Gleeson R A, et al. Stimulants of feeding behavior in fish: analysis of tissues of diverse marine organisms [J]. Biol Bull, 1996, 190(2): 149-160.
[16] Mackie A M, Shelton R G J. A whole-animal bioassay for the determination of the food attractants of the lobster Homarus gammarus [J]. Mar Biol, 1972, 14(3): 217-221.
[17] Smith K L, Baldwin R J. Scavenging deep-sea amphipods: effects of food odor on oxygen consumption and proposed metabolic strategy [J]. Mar Biol, 1982, 68(3): 287-298.
[18] Sainte-Marie B, Hargrave B T. Estimation of scavenger abundance and distance of attraction to bait [J]. Mar Biol, 1987, 94(3): 431-443.
[19] Theisen B, Zeiske E, Silver W L, et al. Morphological and physiological studies on the olfactory organ of the striped eel catfish, Plotosus lineatus [J]. Mar Biol, 1991, 110(1): 127- 135.
[20] Ishida Y, Kobayashi H. Stimulatory effectiveness of amino acids on the olfactory response in an algivorous marine teleost, the rabbitfish Siganus fuscescens [J]. J Fish Biol, 1992, 41(5): 737-748.
[21] Pearson W H, Olla B L. Chemoreception in the blue crab Callinectes sapidus [J]. Biol Bull, 1977, 153(2): 346-354.
[22] Pearson W H, Miller S E, Olla B L. Chemoreception in the food-searching and feeding behavior of the red hake Urophycis chuss (Walbaum) [J]. J Exp Mar Biol Ecol, 1980, 48(2): 139-150.
[23] Steele C W, Skinner C, Steele C, et al. Organization of chemically activated food search behavior in Procambarus clarkii Girard and Orconectes rusticus Girard crayfishes [J]. Biol Bull, 1999, 196(3): 295-302.
[24] Zimmer-Faust R K, Case J F. A proposed dual role of odor in foraging by the California spiny lobster, Panulirus interruptus (Randall) [J]. Biol Bull, 1983, 164(2): 341-353.
[25] McClintock J B, Klinger T S, Lawrence J M. Chemoreception in Luidia clathrata (Echinodermata: Asteroida): qualitative and quantitative aspects of chemotactic responses to low molecular weight compounds [J]. Mar Biol, 1984, 84(1): 47-52.
[26] Rebach S, French D P, von Staden F C, et al. Antennular sensitivity of the rock crab Cancer irroratus to food substances [J]. J Crust Biol, 1990, 10(2): 213-217.
[27] Anna K. Behavioural and metabolic response of the Antarctic sea star Odontaster validus to food stimuli of different concentration [J]. Polar Biol, 2005a, 28(6): 449-455.
[28] Anna K. The role of amino acids in phagostimulation in the shallow-water omnivorous Antarctic sea star Odontaster validus [J]. Polar Biol, 2005b, 28(2): 147-155.
[29] 杨德渐, 孙世春. 海洋无脊椎动物学[M]. 青岛: 青岛海洋大学出版社, 1999, 486.
[30] O'Hara T. Northern Pacific seastar [J]. Vic Nat, 1995, 112: 261.
[31] Byrne M, Morrice M G, Wolf B. Introduction of the northern Pacific asteroid Asterias amurensis to Tasmania reproduction and current distribution [J]. Mar Bio, 1997, 127(4): 673-685.
[32] Minchin D. Decapod predation and the sowing of the scallop, Pecten maximus Linnaeus. In: Shumway, S E, Sandifer, P A. (Eds. [M]). An International Compendium of Scallop Biology and Culture. World Aquaculture Workshops No. 1, World Aquaculture Society, LA, USA, 1991: 191-197.
[33] Spencer B E. Predators and methods of control in molluscan shellfish cultivation in north European waters. In: De Pauw, N., Joyce, J. (Eds. [M]). Aquaculture and the Environment. European Aquaculture Society Special Publication No. 16, Gent Belgium, 1992: 309-337.
[34] 陈楠生. 中国对虾摄食行为的化学感觉生理学研究: I. 中国对虾寻食过程中的化学感觉 [J]. 海洋科学, 1995(6): 32-37.
[35] Teruya T, Suenaga K, Koyama T, et al. Arachidonic acid and α-linolenic acid, feeding attractants for the crown-of-thorns sea star Acanthaster planci, from the sea urchin Toxopneustes pileolus [J]. J Exp Mar Bio Eco, 2001, 266: 123-134.
[36] Pearson W H, Olla B L. Chemoreception in the blue crab, Callinectes sapidus [J]. Biol Bull, 1977, 153(2): 346-354.
[37] Zimmer-Faust R K. Crustacean chemical perception: towards a theory on optimal chemoreception [J]. Biol Bull, 1987, 172(1): 10-29.
[38] Løkeborg S, Olla B L, Pearson W H, et al. Behavioural responses of sablefish, Anoplopoma fimbria, to bait odour [J]. J Fish Biol, 1995, 46(1): 142-155.
[39] Mackie A M. The chemical basis of food detection in the lobster Homarus gammarus [J]. Mar Biol, 1973, 21(2): 103- 108.
[40] Zimmer R K, Butman C A. Chemical signaling processes in the marine environment [J]. Biol Bull, 2000, 198(2): 168- 187.
[41] Lapointe V, Sainte-Marie B. Currents, predators and the aggregations of the gastropod Buccinum undatum around bait [J]. Mar Ecol Prog Ser, 1992, 85(3): 245-257.
[42] Atema J. Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors [J]. Biol Bull, 1996, 191(1): 129-138.
[43] Vickers N J. Mechanisms of animal navigation in odor plumes [J]. Biol Bull, 2000, 198(2): 203-212.
[44] 宋天复, 李亚晨, 史群. 氨基酸对金鱼摄食活动的影响 [J]. 动物学杂志, 1989, 24(3): 19-23.
[45] Valentinčič T. Food finding and stimuli to feeding in the sea star Marthasterias glacialis [J]. Neth J Sea Res, 1973, 7: 191-199.
[46] Castilla J C. Avoidance behaviour of Asterias rubens to extracts of Mytilus edulis, solutions of bacteriological peptone, and selected amino acids [J]. Mar Biol, 1972, 15(3): 236-245.
[47] Levandowsky, M, Hodson E S. Amino acid and amine receptors of lobsters [J]. Comp Biochem Physiol, 1965, 16(1): 59-161.
[48] 伍一军, 包华驹, 吴文胜, 等. 氨基酸对鲫鱼、泥鳅的诱食活性[J]. 水产学报, 1993, 17(4): 337-339.
[49] Laverack, M S. Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea)—I. Hair-peg organs as water current receptors [J]. Comp Biochem Physiol, 1962, 5(4): 319-322.
[50] Laverack M S. The antennular sense organs of Panulirus argus [J]. Comp Biochem Physiol, 1964, 13(4): 301-312.
[51] Carefoot T H. Phagostimulatory properties of various chemical compounds to sea hares (Aplysia kurodai and A Dactylomela) [J]. Mar Biol, 1982, 68(2): 207-215.
[52] Fabiano M, Povero P, Danovaro R. Distribution and composition of particulate organic matter in the Ross Sea (Antarctica) [J]. Polar Biol, 1993, 13(8): 525-533.
[53] 周洪琪. 鱼类摄食行为的化学感觉调节 [J]. 海洋渔业, 1988, 6: 263-265.
[54] 荻野珍吉, 戴宏宗译. 鱼类的营养与饲料 [J]. 养鱼世界, 1984(1): 17-22.
[55] Carr W E S, Derby C D. Chemically stimulated feeding behaviour in marine animals: Importance of chemical mixtures and involvment of mixture interactions [J]. J Chem Ecol, 1986, 12(5): 989-1011.
[56] Saglio P, Fauconneau B, Blanc J M. Orientation of carp, Cyprinus carpio L., to free amino acids from Tubifex extract in an olfactometer [J]. J Fish Biol, 1990, 37(6): 887-898.
[57] Derby C D, Hutson M, Livermore B A, et al. Generalization among related complex odorant mixtures and their components: Analysis of olfactory perception in the spiny lobster [J]. Physiol Behav, 1996, 60(1): 87-95.
[58] Harada K. Feeding attraction activities in the combinations of amino acids and other compounds for abalone, oriental weatherfish and yellowtail [J]. Nippon Suisan Gakkaishi, 1987, 53(8): 1483-1489.
[59]
刘佳,张秀梅,康乐天,林晓嵩,逄锦艳. 不同浓度化学刺激物对多棘海盘车摄食行为及呼吸代谢的影响[J]. Jounal of Fishery Sciences of China, 2012,[volume_no](6):978-988
Copy