Growth comparison and selective breeding of a fifth-generation selected line of Sinonovacula constricta
CSTR:
Author:
Affiliation:

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of Ministry of Education, Shanghai Ocean University, Shanghai 201306, China

Clc Number:

S917

  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    The razor clam is wildly distributed in China, Japan, and Korea. The razor clam has high nutritive and economic value and is one of four marine bivalves produced in China. Artificial breeding and frequent inbreeding have decreased the genetic diversity of razor clams, and the germplasm resources are degraded. As a result, massive razor clam mortalities occur occasionally. Cultured clams are generally small and have poor disease resistance, and no superior commercial razor clam varieties have been bred for the commercial market. Therefore, improving genetic traits and breeding outstanding varieties of razor clams via artificial selection are primary goals of razor clam culture. In this study, six natural populations of (Zhejiang Xiangshang and Leqing populations, Fujian Xiapu and Changle populations, Jiangsu Sheyang and Shanghai Chongming populations) were selected as the F0 material structure foundation populations, and continuous multiple-generational breeding (selection intensity:2.063) was carried out using the mass selection method. The growth difference between the F5 breeding strain and a control population was compared. The selection response, realized heritability, and F5 heredity acquisition were evaluated. The results showed no differences in egg diameter or fertilization rate between the F5 generation (>0.05) and the control group. However, the metamorphosis rate, survival rate, and late growth in shell length of the F5 generation were significantly superior to those of the control group (<0.05). Variations in the selection response of shell length, realized heritability, and heredity acquisition of F5 during days 7-360 were 0.30-0.78, 0.14-0.37, and 4.83%-42.18%, respectively, and the means were (0.49±0.06), (0.23±0.08), and (26.49±11.73)%, respectively. These results suggest that continuous multiple-generational breeding of razor clams was effective, as it significantly improved survivability and the major economically important traits. Continuous selection of five generations of razor clams was effective, making further breeding to identify new razor clam varieties with desirable traits possible. The genetic gain in shell length was generally low, probably because of genetics and environmental factors. Razor clams are a mudflat bivalve that hide in silt, and their long body reduces adaptability to the environment. Hence, breeding should focus on weight selection to obtain more practical results.

    Reference
    [1] Xu F S, Zhang S P. Chinese Marine Bivalve Annals[M]. Beijing:Science Press, 2008:211-213.[徐凤山, 张素萍. 中国海产双壳类图志[M]. 北京:科学出版社, 2008:211-213.]
    [2] Wang X Q, Cao M, Yan B L. Analysis of diseases cause and prevention measures infarming of Sinonovacula constricta (Lamarck)[J]. Modern Fisheries Information, 2006, 21(5):13-16.[王兴强, 曹梅, 阎斌伦. 缢蛏(Sinonovacula constricta Lamarck)养殖期间发病原因及防治对策[J]. 现代渔业信息, 2006, 21(5):13-16.]
    [3] Wang A M, Shi Y H, Yan B. Effects of selection on larval growths for second generation of different selected pearl oysters, Pinctada martensii[J]. High Technology Letters, 2004(8):94-97.[王爱民, 石耀华, 阎冰. 选择对不同系列马氏珠母贝第二代幼虫生长的影响[J]. 高技术通讯, 2004(8):94-97.]
    [4] Guan Y Y, Liu W G, He M X. Genetic variation during four generations of selective breeding in the pearl oyster Pinctada fucata[J]. Journal of Fishery Sciences of China, 2013, 20(4):764-770.[管云雁, 刘文广, 何毛贤. 马氏珠母贝选育群体4个世代的遗传变异[J]. 中国水产科学, 2013, 20(4):764-770.]
    [5] Wang Q H, Zhang S F, Du X D, et al. A comparative analysis of digestive enzyme activities of first generation yellow shell color and cultivated stocks of Pinctada martensii at suitable growth temperatures[J]. Journal of Fishery Sciences of China, 2010, 17(2):252-257.[王庆恒, 张善发, 杜晓东, 等. 生长适温下马氏珠母贝黄壳色选系F1与养殖群体消化酶活力的比较[J]. 中国水产科学, 2010, 17(2):252-257.]
    [6] Wu L M, Bai Z Y, Liu X J, et al. Evaluation of shell color and growth traits for F5 of the freshwater pearl mussel[J]. Journal of Fishery Sciences of China, 2016, 23(3):547-554.[吴雷明, 白志毅, 刘晓军, 等. 三角帆蚌F5壳色及生长性状选育效果评价[J]. 中国水产科学, 2016, 23(3):547-554.]
    [7] Zheng H P, Zhang G F, Liu X, et al. Sustained response to selection in an introduced population of the hermaphroditic bay scallop Argopecten irradians irradians Lamarck (1819)[J]. Aquaculture, 2006, 255(1-4):579-585.
    [8] Davis C V. Estimation of narrow-sense heritability for larval and juvenile growth traits in selected and unselected sub-lines of eastern oysters, Crassostrea viginico[J]. J Shellfish Res, 2000, 19(1):613.
    [9] Wang Q Z, Li Q, Kong L F, et al. Third generation evaluation of the Pacific oyster (Crassostrea gigas) breeding lines selected for fast growth[J]. Journal of Fisheries of China, 2013, 37(10):1487-1494.[王庆志, 李琪, 孔令锋, 等. 长牡蛎第三代选育群体生长性状的选择效应[J]. 水产学报, 2013, 37(10):1487-1494.]
    [10] Liu X, Zhang G F, Zhao H E. "Red China" Breeding Lines of Haliotis discus hannai[J]. Chinese Journal of Zoology, 2003, 38(4):27.[刘晓, 张国范, 赵洪恩. 皱纹盘鲍"中国红"品系的选育[J]. 动物学杂志, 2003, 38(4):27.]
    [11] Wang X H, Chai X L, Liu B Z. Estimation of genetic param-eters for growthtraits in cultured clam Meretrix meretrix (Bivalvia:Veneridae) using the Bayesian method based on Gibbs sampling[J]. Aquac Res, 2011, 42(2):240-247.
    [12] Liu G F, Shen H D, Chen H, et al. Effects of different microalgae on ingestion and growth of juvenile razor clam Sinonovacula constricta[J]. Journal of Shanghai Ocean Uni-versity, 2009, 18(6):708-714.[刘广丰, 沈和定, 陈慧, 等. 不同微藻对缢蛏稚贝摄食和生长的影响[J]. 上海海洋大学学报, 2009, 18(6):708-714.]
    [13] Ma B, Zhou H B, Xu J L, et al. Screening of high-quality feed microalgae in cultivation of juvenile intertidal shellfish, Sinonovacula constricta[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2011, 24(4):5-9.[马斌, 周海波, 徐继林, 等. 缢蛏稚贝优质微藻饵料的筛选[J]. 宁波大学学报(理工版), 2011, 24(4):5-9.]
    [14] Liu G F, Chen H, Li J L, et al. Artificial propagation of razor clam Sinonovacula constricta by alga Chlorella sp.[J]. Fisheries Science, 2009, 28(4):192-195.[刘广丰, 陈慧, 李家乐, 等. 用小球藻进行缢蛏人工繁育技术试验[J]. 水产科学, 2009, 28(4):192-195.]
    [15] Li D, Du W J, Niu D H, et al. Comparison of early growth performance among families of Sinonovacula constricta[J]. Periodical of Ocean University of China, 2015, 45(10):36-41.[李多, 杜文俊, 牛东红, 等. 缢蛏家系早期生长表现比较[J]. 中国海洋大学学报(自然科学版), 2015, 45(10):36-41.]
    [16] Liu H M, Dong Y H, Huo L H, et al. Acute toxicity of Cu2+ and its effects on antioxidant enzymes in Sinonovacula constricta juveniles[J]. Journal of Fishery Sciences of China, 2012, 19(1):182-187.[刘浩明, 董迎辉, 霍礼辉, 等. Cu2+对缢蛏稚贝的急性毒性及对抗氧化酶活力和丙二醛含量的影响[J]. 中国水产科学, 2012, 19(1):182-187.]
    [17] Zhang C J, Liu J, Chen J H, et al. Effects of starvation and refeeding on digestive enzyme activity and antioxidative ca-pacity of razor clam (Sinonovacula constricta)[J]. Journal of Fisheries of China, 2010, 34(7):1106-1112.[章承军, 刘健, 陈锦辉, 等. 饥饿再投喂对缢蛏消化酶活力和抗氧化能力的影响[J]. 水产学报, 2010, 34(7):1106-1112.]
    [18] Lu H X, Xu Y J. Effects of cadmium on antioxidant enzyme activity and DNA damage in Sinonovacula constricta[J]. Marine Environmental Science, 2011, 30(1):96-101.[陆慧贤, 徐永健. 镉胁迫下缢蛏(Sinonovacula constricta)抗氧化酶活性及DNA损伤的研究[J]. 海洋环境科学, 2011, 30(1):96-101.]
    [19] Niu D H, Xie S M, Bai Z Y, et al. Identification, expression, and responses to bacterial challenge of the cathepsin C gene from the razor clam Sinonovacula constricta[J]. Dev Comp Immunol, 2014, 46(2):241-245.
    [20] Astorga M P. Genetic considerations for mollusk production in aquaculture:current state of knowledge[J]. Front Genet, 2014, 5:435.
    [21] Niu D H, Feng B B, Liu D B, et al. Microsatellites and mi-tochondrial CO I analysis of population genetic structure of Sinonovacula constricta along the coast of Zhejiang and Fu-jian Provinces[J]. Journal of Fisheries of China, 2011, 35(12):1805-1813.[牛东红, 冯冰冰, 刘达博, 等. 浙闽沿海缢蛏群体遗传结构的微卫星和线粒体CO I序列分析[J]. 水产学报, 2011, 35(12):1805-1813.]
    [22] Liu B, Shao Y Q, Teng S S, et al. Characterization, devel-opment and utilization of EST-derived microsatellites in Si-nonovacula constricta[J]. Oceanologia et Limnologia Sinica, 2012, 43(1):132-137.[刘博, 邵艳卿, 滕爽爽, 等. 缢蛏(Sinonovacula constricta)EST-SSR分布特征及引物开发利用[J]. 海洋与湖沼, 2012, 43(1):132-137.]
    [23] Xie S M, Niu D H, Ruan H D, et al. Molecular characterization of IGFBP and association analysis with growth traits in the razor clam Sinonovacula constricta[J]. Journal of Fisheries of China, 2015, 39(6):799-809.[谢淑媚, 牛东红, 阮海灯, 等. 缢蛏IGFBP基因结构及生长性状相关SNP筛选[J]. 水产学报, 2015, 39(6):799-809.]
    [24] Jiang X, Liu J Y, Lai Z F. Selective responses and realized heritability estimation for a cultured Haliotis diversicolor aquatili population[J]. South China Fisheries Science, 2013, 9(2):9-13.[蒋湘, 刘建勇, 赖志服. 九孔鲍选择群体F1的选择反应与现实遗传力估计[J]. 南方水产科学, 2013, 9(2):9-13.]
    [25] Lin B S, Wu T M. The Effects of temperature and salinity on the larvae of Sinonovacula constricta (Lamarck)[J]. Acta Ecologica Sinica, 1984, 4(4):385-392.[林笔水, 吴天明. 温度和盐度对缢蛏浮游幼虫发育的影响[J]. 生态学报, 1984, 4(4):385-392.]
    [26] Zheng H P, Zhang G F, Liu X, et al. Sustained response to selection in an introduced population of the hermaphroditic bay scallop Argopecten irradians irradians Lamarck (1819)[J]. Aquaculture, 2006, 255(1-4):579-585.
    [27] Niu D H, Li J L, Feng B B, et al. ISSR analysis on genetic structure of six Sinonovacula constricta populations[J]. Chinese Journal of Applied & Environmental Biology, 2009, 15(3):332-336.[牛东红, 李家乐, 冯冰冰, 等. 缢蛏6个群体遗传结构的ISSR分析[J]. 应用与环境生物学报, 2009, 15(3):332-336.]
    [28] Li C H, Li T W, Song L S, et al. Genetic variations among four populations of Sinonovacula constricta by using random amplified polymorphic DNA[J]. Fisheries Science, 2004, 23(12):26-28.[李成华, 李太武, 宋林生, 等. 4个缢蛏群体遗传结构的RAPD分析[J]. 水产科学, 2004, 23(12):26-28.]
    [29] Hamrick J L, Godt M J W. Conservation genetics of endemic plant species[M]//Avise J C, Hamrick J L. Conservation Genetics:Case Histories from Nature. New York:Chapman and Hall, 1996:281-304.
    [30] Haskin L E, Ford S E. Development of resistance to Minchinia nelsoni (MSX) mortality in laboratory reared and native oyster stocks in Delaware Bay[J]. Mar Fish Rev, 1979, 41(1-2):54-59.
    [31] Luo M F. Population genetic theory of inertia and limit selection[J]. Journal of Yellow Cattle Science, 1993, 19(1):6-9.[雒鸣峰. 群体遗传惯性理论与选择极限[J]. 黄牛杂志, 1993, 19(1):6-9.]
    [32] Bolivar R B, Newkirk G F. Response to within family selection for body weight in Nile tilapia (Oreochromis niloticus) using a single-trait animal model[J]. Aquaculture, 2002, 204(3-4):371-381.
    [33] Ma A J, Wang X A, Huang Z H, et al. Response to selection and realized heritability for early growth in the se-cond-generation breeded line of turbot (Scophthalmus max-imus L.)[J]. Oceanologia et Limnologia Sinica, 2012, 43(1):57-61.[马爱军, 王新安, 黄智慧, 等. 大菱鲆(Scophthalmus maximus)家系选育F2早期选择反应和现实遗传力估计[J]. 海洋与湖沼, 2012, 43(1):57-61.]
    [34] Zhu X W, Liu Z G, Wang H, et al. Growth and genetic di-versity for four shell color lines (F5) of the pearl oyster Pinctada martensii[J]. Oceanologia et Limnologia Sinica, 2012, 43(1):160-165.[朱晓闻, 刘志刚, 王辉, 等. 马氏珠母贝(Pinctada martensii)四种壳色选育系F5的生长及遗传多样性分析[J]. 海洋与湖沼, 2012, 43(1):160-165.]
    [35] Gjedrem T. Genetic improvement of cold-water fish spe-cies[J]. Aquac Res, 2000, 31(1):25-33.
    [36] Chen J, Liu Z G, Wu S R, et al. Growth and microsatellite analysis of F5 selected line of Argopecten irradians concen-tricus[J]. Oceanologia et Limnologia Sinica, 2012, 43(4):783-788.[陈静, 刘志刚, 邬思荣, 等. 海湾扇贝南部亚种(Argopecten irradians concentricus)选育系F5的生长及SSR分析[J]. 海洋与湖沼, 2012, 43(4):783-788.]
    [37] Falconer D S. Introduction to Quantitative Genetics[M]. 3rd ed. London:Longman, 1981:65.
    Related
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李炼星,李浩,杜文俊,牛东红,李家乐,沈和定. 缢蛏选育系F5的生长优势比较及育种效应分析[J]. Jounal of Fishery Sciences of China, 2017,[volume_no](1):50-56

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Online: January 12,2017
Article QR Code