Estimation of additive and dominant genetic effects for harvest body weight in advanced generations of Macrobrachium rosenbergii
CSTR:
Author:
Affiliation:

1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
2. The Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture;Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
3. Laboratory for Marine Fisheries Science and Food Production Processes;Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
4. Key Laboratory of Freshwater Aquatic Animal Genetic Breeding of Zhejiang Province;National Genetic Breeding Center for Macrobrachium rosenbergii;Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China;
5. Huzhou University, Huzhou 313000, China

Clc Number:

S917

  • Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The accurate estimation of additive and dominant genetic effects is fundamental to improving the accuracy of selective breeding and accelerating genetic gains. This study harvested 29523 individuals from 343 full-sib families (244 half-sib families) and examined the G7, G8, and G9 generations. The variance components of harvest body weight for four datasets (G7, G8, G9, and G8+G9) were estimated using average information restricted maximum likelihood. Two single-trait animal models were used for the analysis:(1) an additive genetic model comprising additive genetic effects plus common environmental effects (A+C), and (2) an additive-dominant model that includes dominant genetic effects (D) (A+D+C). For the A+C model, heritability estimates of harvest body weight for the four datasets were all low ( ≤ 0.15), ranging from 0.046 to 0.082. For the A+D+C model, heritability ranged 0.063-0.096, and the ratio of dominant genetic variance to phenotypic variance spanned 0.027 to 0.571. Harvest-body-weight heritability decreased in three datasets (G7, G9, and G8+G9), while increasing in G8. Low heritability estimates indicate that wild or improved populations with strong production performance must be introduced and integrated with the nucleus breeding population. Additionally, large between-dataset differences in the ratio of dominant genetic variance to phenotypic variance suggest that the accuracy of dominance variance estimates should be improved with new algorithms including more generations.

    Reference
    [1] Gjedrem T, Baranski M. Selective Breeding in Aquaculture:an Introduction[M]. Springer Science & Business Media, 2010.
    [2] Luan S, Yang G, Wang J, et al. Genetic parameters and response to selection for harvest body weight of the giant freshwater prawn Macrobrachium rosenbergii[J]. Aquaculture, 2012, 362-363:88-96.
    [3] Kitcharoen N, Rungsin W, Koonawootrittriron S, et al. Heritability for growth traits in giant freshwater prawn, Macrobrachium rosenbergii (de Mann 1879) based on best linear unbiased prediction methodology[J]. Aquac Res, 2012, 43(1):19-25.
    [4] Pillai B R, Mahapatra K D, Ponzoni R W, et al. Genetic evaluation of a complete diallel cross involving three populations of freshwater prawn (Macrobrachium rosenbergii) from different geographical regions of India[J]. Aquaculture, 2011, 319(3-4):347-354.
    [5] Sui J, Luan S, Yang G, et al. Impact of pedigree depth and inclusion of historical data in the estimation of variance components and breeding values in Macrobrachium rosenbergii[J]. Aquaculture, 2016, 464:80-86.
    [6] Pante M J R, Gjerde B, McMillan I, et al. Estimation of additive and dominance genetic variances for body weight at harvest in rainbow trout, Oncorhynchus mykiss[J]. Aquaculture, 2002, 204(3-4):383-392.
    [7] Misztal I. Estimation of variance components with largescale dominance models[J]. J Dairy Sci, 1997, 80(5):965-974.
    [8] Gallardo J A, Lhorente J P, Neira R. The consequences of including non-additive effects on the genetic evaluation of harvest body weight in Coho salmon (Oncorhynchus kisutch)[J]. Genet Select Evol, 2010, 42:19.
    [9] Sztepanacz J L, Blows M W. Dominance genetic variance for traits under directional selection in Drosophila serrata[J]. Genetics, 2015, 200(1):371-384.
    [10] Winkelman A M, Peterson R G. Heritabilities, dominance variation, common environmental effects and genotype by environment interactions for weight and length in chinook salmon[J]. Aquaculture, 1994, 125(1-2):17-30.
    [11] Rye M, Mao I L. Nonadditive genetic effects and inbreeding depression for body weight in Atlantic salmon (Salmo salar L.)[J]. Livest Prod Sci, 1998, 57(1):15-22.
    [12] Hu G, Gu W, Sun P, et al. Estimation on dominance effects for body weight and measurement traits at harvest in large-size rainbow trout Oncorhynchus mykiss[J]. Oceanologia Limnologia Sinica, 2015, 46(4):922-927.[户国, 谷伟, 孙鹏, 等. 大规格虹鳟(Oncorhynchus mykiss)收获期主要生长性状显性效应的遗传分析[J]. 海洋与湖沼, 2015, 46(4):922-927.]
    [13] Wang C, Li S. Genetic effects and genotype×environment interactions for growth-related traits in common carp, Cyprinus carpio L.[J]. Aquaculture, 2007, 272(1-4):267-272.
    [14] Wolak M E. NADIV:an R package to create relatedness matrices for estimating non-additive genetic variances in animal models[J]. Methods Ecol Evol, 2012, 3(5):792-796.
    [15] Gilmour A R, Gogel B J, Cullis B R, et al. ASReml User Guide Release 3.0[M]. VSN International Ltd, UK:Hemel Hempstead, 2009.
    [16] Ovaskainen O, Cano J M, Merilä J. A Bayesian framework for comparative quantitative genetics[J]. Proc Royal Soc Lond B, 2008, 275:669-678.
    [17] Smith S P, Mäkitanila A. Genotypic covariance matrices and their inverses for models allowing dominance and inbreeding[J]. Genet Select Evol, 1990, 22(1):65-91.
    [18] De Boer I J M, Van Arendonk J A M. Prediction of additive and dominance effects in selected or unselected populations with inbreeding[J]. Theor Appl Genet, 1992, 84(3-4):451-459.
    [19] Hung D, Nguyen N H, Ponzoni R W, et al. Quantitative genetic parameter estimates for body and carcass traits in a cultured stock of giant freshwater prawn (Macrobrachium rosenbergii) selected for harvest weight in Vietnam[J]. Aquaculture, 2013, 404-405:122-129.
    [20] Gitterle T, Rye M, Salte R, et al. Genetic (co) variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions[J]. Aquaculture, 2005, 243(1-4):83-92.
    [21] Sui J, Luan S, Luo K, et al. Genetic parameters and response to selection for harvest body weight of pacific white shrimp, Litopenaeus vannamei[J]. Aquac Res, 2016, 47(9):2795-2803.
    [22] Sui J, Luan S, Luo K, et al. Genetic parameters and response to selection of harvest body weight of the Chinese shrimp Fenneropenaeus chinensis, after five generations of multitrait selection[J]. Aquaculture, 2016, 452:134-141.
    [23] Krishna G, Gopikrishna G, Gopal C, et al. Genetic parameters for growth and survival in Penaeus monodon cultured in India[J]. Aquaculture, 2011, 318(1-2):74-78.
    [24] Kenway M, Macbeth M, Salmon M, et al. Heritability and genetic correlations of growth and survival in black tiger prawn Penaeus monodon reared in tanks[J]. Aquaculture, 2006, 259(1-4):138-145.
    [25] Hetzel D J S, Crocos P J, Davis G P, et al. Response to selection and heritability for growth in the Kuruma prawn, Penaeus japonicus[J]. Aquaculture, 2000, 181(3-4):215-223.
    [26] Zhong S P, Su Y Q, Wang J, et al. Genetic parameters estimation for growth traits of the G1 Marsupenaeus japonicas[J]. Journal of Xiamen University:Natural Science, 2015, 54(4):469-473.[钟声平, 苏永全, 王军, 等. 日本囊对虾G1群体生长性状遗传参数估计[J]. 厦门大学学报:自然科学版, 2015, 54(4):469-473.]
    [27] Yang X M, Guo Y F, Jiang Q Y, et al. The genetic diversity of COI gene in mitochondrial DNA of three populations of Macrobrachium rosenbergii[J]. Journal of Shanghai Fisheries University, 2006, 15(2):144-149.[杨学明, 郭亚芬, 蒋钦杨, 等. 三个群体罗氏沼虾线粒体COI基因的遗传多样性分析[J]. 上海海洋大学学报, 2006, 15(2):144-149.]
    [28] Zhang H Q, He Z Y, Xu X L, et al. Genetic diversity analysis on Zhejiang cultured and Burma wild populations of Macrobrachium rosenbergii De Man[J]. Journal of Fishery Sciences of China, 2004, 11(6):506-512.[张海琪, 何中央, 徐晓林, 等. 罗氏沼虾缅甸野生群体和浙江养殖群体的遗传多样性比较[J]. 中国水产科学, 2004, 11(6):506-512.]
    [29] Guo J, Wang K H, Qu L, et al. Estimation of maternal and dominant genetic effect for body weight at 40 weeks in Rugao Yellow Chicken using bayesian method[J]. Journal of Northeast Agricultural University, 2015, 46(1):79-85.[郭军, 王克华, 曲亮, 等. 应用贝叶斯算法评估如皋黄鸡40周龄体重母体遗传、显性遗传效应[J]. 东北农业大学学报, 2015, 46(1):79-85.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

强光峰,杨国梁,陈雪峰,孔杰,夏正龙,高强,罗坤,栾生. 罗氏沼虾高世代育种群体收获体重加性和显性遗传效应[J]. Jounal of Fishery Sciences of China, 2017,[volume_no](5):1027-1034

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Online: September 12,2017
Article QR Code