DOI: 10.3724/SP.J.1118.2021.20129

基于 LIM-MCMC 模型研究海州湾食物网能量流动特征

徐从军^{1,2}, 隋昊志^{1,2}, 徐宾铎^{1,2}, 张崇良^{1,2}, 纪毓鹏^{1,2}, 任一平^{1,2,3}, 薛莹^{1,2}

1. 中国海洋大学水产学院,山东 青岛 266003;

2. 海州湾渔业生态系统教育部野外科学观测研究站, 山东 青岛 266003;

3. 青岛海洋科学与技术试点国家实验室, 海洋渔业科学与食物产出过程功能实验室, 山东 青岛 266237

摘要:基于 2018 年春季和秋季在海州湾及邻近海域开展的渔业资源底拖网调查数据,构建了海州湾及其邻近海域的 LIM-MCMC (linear inverse models using a Monte Carlo method coupled with Markov Chain)模型,对其生态系统能量流动和生态系统特征进行了研究,旨在为深入研究海州湾生态系统以及实施基于生态系统的渔业管理提供理论依据。研究表明,在包含 18 个功能群的海州湾生态系统中,共形成 196 条能量流动路径,可将其划分为 4 个能量等级,即 0.00~1.00 t/(km²·a), 1.00~10.00 t/(km²·a), 190~10.00 t/(km²·a)和>100.00 t/(km²·a)。在 0.00~1.00 t/(km²·a) 区间内主要为高营养层次功能群,共包括 155 条能量流动路径,表明食物网中弱能量流动路径占总路径数的绝大部分比例,在维持生态系统稳定性方面具有重要作用。1.00~10.00 t/(km²·a)区间内包含 21 条能量流动路径,在将能量由低营养级传递到高营养级过程中起到重要枢纽作用。在 10.00~100.00 t/(km²·a)和>100.00 t/(km²·a)区间内分别包括 12 条和 8 条能量流动路径,均为低营养层次功能群,为生态系统提供基本的营养来源。在海州湾生态系统中,低营养层次功能群的呼吸消耗量与流入碎屑量远高于高营养级。整体能流分布为低营养级值大,越往顶级越小,呈典型的金字塔型能量流动。根据生态系统成熟度理论,海州湾生态系统属于成熟的生态系统,能够在较大程度上抵御外界扰动带来的影响。本研究可为海州湾食物网营养动力学的深入研究以及海州湾渔业资源的科学管理提供科学依据。

关键词: 海州湾; LIM-MCMC 模型; 能量流动; 功能群; 食物网 中图分类号: \$931 _____文献标志码: A ______文章编号: 1005-8737-(2021)01-0066-13

海州湾濒临黄海,具有明显的季风性气候特征,是中国重要渔场之一^[1]。海州湾渔业资源丰富, 是多种渔业生物的产卵场、育幼场和索饵场。然 而,近年来由于过度捕捞、栖息地破坏、环境污 染等因素,导致海州湾生态环境恶化,生物多样 性降低,渔业资源日益衰退,群落结构发生明显 变化^[2-3]。因此,加强海州湾生态系统的保护有助 于未来实施基于生态系统的渔业管理。

对食物网结构与功能的研究对于量化物种间 相互作用及生态系统稳定性具有重要意义,是生 态学领域的研究热点之一。逆线性模型(linear inverse model, LIM)是根据物种之间的质量平衡 关系,依托营养动力学原理构建的生态系统能量 流动模型^[4]。逆线性问题最早出现在地球物理科 学中,直到20世纪80年代末,才应用于食物网能 量流动分析^[5]。Klepper等^[6]首次提出解决食物网 能量流动不确定性的方法,之后 Vézina 等^[4]通过 组合质量平衡方程和质量不平衡方程构建模型, 运用能量流动最小平方和算法(MN)对模型求解, 并逐渐发展成为量化生态系统能量流动的重要方

收稿日期: 2020-05-10; 修订日期: 2020-06-07.

基金项目:国家重点研发计划项目(2018YFD0900904);国家自然科学基金项目(31772852);山东省支持青岛海洋科学与技术 试点国家实验室重大科技专项(2018SDKJ0501-2).

作者简介: 徐从军(1995--), 男, 硕士研究生, 主要从事鱼类摄食生态学研究. E-mail: 1007264411@qq.com 通信作者: 薛莹, 教授, 主要从事渔业资源生物学、渔业生态学等领域的研究. E-mail: xueying@ouc.edu.cn

法。Van den Meersche 等^[7]在 LIM 模型运行结果 基础之上,应用蒙特卡洛马尔科夫链算法(Monte Carlo method coupled with Markov Chain, MCMC) 代替 MN 算法,对结果进行充分取样而不是产生 一个特定的简约解,在很大程度上考虑了数据及 模型的不确定性。目前,基于蒙特卡洛马尔科夫 链算法的逆线性模型,即 LIM-MCMC (linear inverse models using a Monte Carlo method coupled with Markov Chain)模型,已成功应用于全球多个 水域的食物网研究^[8-10],该模型弥补了食物网功 能分析中数据不足的缺陷,为食物网营养动力学 研究提供了一种有效的方法。

本研究基于 2018 年春季和秋季在海州湾及 邻近海域开展的渔业资源底拖网调查数据,通过 构建 LIM-MCMC 模型,分析了海州湾生态系统 中的能量流动特征,旨在为海州湾食物网营养动 力学的深入研究以及实施基于生态系统的渔业管 理提供理论依据。

1 材料与方法

1.1 样品采集

样品采自2018年春季(4月)和秋季(9月)在海 州湾及其邻近海域进行的渔业资源底拖网调查, 每个航次选取18个调查站位,调查范围为119°20'~ 121°10′E, 34°20′~35°40′N。调查按照水深与经纬 度等进行分层随机采样, 以每 10′经度、10′纬度为 1 个采样网格, 共设置 76 个网格。其后根据水深、 纬度方向等因素将调查海域分为 5 个典型区域, 在每个区域内按比例随机设置调查站位(图 1)。采 用单拖网渔船进行调查, 拖速为 2~3 kn, 每站位 作业时间为 1 h 左右^[11]。

1.2 LIM-MCMC 模型建模

1.2.1 模型原理 LIM-MCMC 模型是在逆线性 模型的基础上,依据MCMC算法对物种之间能量 流动取样求解,依据物种之间的相关性,将物种 分为一系列生态关联的功能群,确保所有功能群 能够基本包含生态系统能量流动的全部过程。该 模型中假设生态系统内部处于稳定状态,没有迁 移等因素带来的生物量变化,每个功能群的能量 输入与输出保持平衡^[12],能量平衡遵循:生产量 (*O*)=产出(*P*)+排泄(*U*)+呼吸(*R*)。由于实际生态系 统中存在很多难以通过实验进行量化或无法测定 的能量流动,导致低估了生态系统功能,而该模 型由质量平衡方程和约束能量流动值的不平衡方 程组合而成,可以通过参数限制计算出通过实验 无法得出的能量输入与输出[13]。其中质量平衡方 程的表达形式为:

$$E \cdot x = F$$

(1)

Fig. 1 Survey areas in Haizhou Bay and adjacent waters in the present study

式中, *E*(*m*×*n*)表示能量流动路径系数矩阵, 在 *E* 矩阵中, *n* 为能量流动路径数量(*x*₁, *x*₂, …, *x_n*), *m* 代表每个功能群的质量平衡以及通过实验测得的已知能量流动路径数据, 或其他过程速率(例如呼吸消耗率)。*r* 表示物种之间能量流动路径矩阵(*n*×1), *F* 表示等式值的矩阵(*m*×1)。LIM-MCMC 模型的线性不等式为:

$$G \cdot x \ge h \tag{2}$$

在质量平衡方程中增加了阈值约束,将未知 能量流动限制在定义的最小值和最大值之间,即 在每条未知能量流动路径中加以阈值限制。其中 *G*(*c*×*n*)表示能量流动路径系数矩阵,矩阵 *G* 是由添加到模型中的不等式数量(*c*)以及能量流动路径系数(*n*)构成,*h*表示不等式的值(*c*×1)。

1.2.2 功能群划分及模型参数确定 本研究依据 物种之间食物组成的相似性,将物种分为18个功 能群(表 1),除碎屑功能群外,每个功能群都包 含摄食、呼吸、排泄和被捕食4条能量流动途径, 此外,对于浮游动物食性鱼类、虾食性鱼类、虾 /鱼食性鱼类以及三疣梭子蟹还包括渔业捕捞输 出,这些功能群基本覆盖海州湾能量流动的整 个过程。

	表 1	海州湾及其邻近海域生态系统 LIM-MCMC 模型中的功能群
Tab. 1	Function	al groups based on LIM-MCMC model in Haizhou Bay and adjacent waters

				• •	
序号 no.	功能群 functional group	生物量/(t·km ²) biomass	序号 no.	功能群 functional group	生物量/(t·km ²) biomass
1	浮游动物食性鱼类 zooplankivores fish	0.190	10	其他蟹类 other crabs	0.039
2	虾食性鱼类 shrimp predators	0.306	11	头足类 cephalopod	0.088
3	虾/鱼食性鱼类 shrimp or fish predators	0.185	12	软体动物 mollusk	5.200
4	鱼食性鱼类 piscivores fish	0.094	13	多毛类 polychaetes	3.080
5	方氏云鳚 Pholis fangi	0.096	14	棘皮动物 echinoderm	3.080
6	口虾蛄 Oratosquilla oratoria	0.085	15	其他底栖动物 other zoobenthos	34.000
7	底栖动物食性鱼类 benthivores	0.057	16	浮游动物 zooplankton	2.271
8	虾类 shrimp	0.126	17	浮游植物 phytoplankton	20.673
9	三疣梭子蟹 Portunus trituberculatus	0.876	18	碎屑 detritus	43.000

在本研究中,能量在生态系统中的传递可量 化为生物湿重[t/(km²·a)],生物量数据来源于渔业 资源调查数据以及相同海域或生态类型相似海域 的文献数据^[14-16]。在公式(2)中,限制能量流动的 参数主要依据历史文献中每个功能群的 P/B、Q/B、 U/B、R/B、P/Q 等范围对每条能量流动路径加以限 制^[17-28],例如浮游动物的 P/B 范围在 25~40 之间, 则 40×2.271≥P≥25×2.271,以此使结果具有可靠 性。在本研究中,生物量及模型参数主要参考黄海、 东海、渤海等邻近海域,选取不同研究中每个功能 群参数的最大值与最小值作为限制能量流动的范围。 **1.2.3 模型运行**通过 R 软件中的"LIM"以及

"limSolve"包对模型文件进行读取^[29-30],生成包含 质量平衡方程与不平衡方程的摄食矩阵,由于在 该模型中存在多条能量流动路径难以被量化(*m*< *n*),并且在数据输入中包含固有的不确定性,因 此,在存在至少一组解的情况下,模型被认为是 平衡的^[31]。之后使用 MCMC 算法对所有的结果 取样求解,所有解的平均值即为每条能量流动路 径的能量值^[13]。

2 结果与分析

2.1 能量流动分析

在本研究中共包含 196 条能量流动路径(附 表),依据能量流动由小到大将其分为 4 组,即 0.00~1.00 t/(km²·a)、1.00~10.00 t/(km²·a)、10.00~ 100.00 t/(km²·a)和>100.00 t/(km²·a)。能量流动随 着营养层次的升高而逐渐减少,在<1.00 t/(km²·a) (图 2a)区间内大部分能量流动主要发生在高营养 层次功能群之间,共包括 155 条能量流动,占总 数的 79.09%,在整个生态系统中具有重要地位。 在 1.00~10.00 t/(km²·a)范围内(图 2b),共包含 21

条能量流动路径,占总数量的 10.71%。其中浮游 动物→其他底栖动物,浮游动物→软体动物,浮 游动物→浮游动物,浮游动物→多毛类在此区间 内具有较高的能量流动,分别为 8.70 t/(km²·a)、 8.13 t/(km²·a)、7.87 t/(km²·a)和 7.46 t/(km²·a)。

由图 2c 可见, 10.00~100.00 t/(km²·a)区间主要 由低营养级功能群组成, 能量由初级消费者向高 营养级传递, 同时浮游动物食性鱼类等高营养级 功能群在能量传递中通过呼吸排出较多的能量。 从图 2c 中可以看出, 在此区间内, 共包含 12 条能 量流动路径, 占总数的 6.12%。能量流动较大的为 其他底栖动物→碎屑, 其他底栖动物→其他底栖 动物, 浮游植物→软体动物, 软体动物→呼吸消 耗, 分别为 74.74 t/(km²·a), 71.89 t/(km²·a), 66.80 t/(km²·a)和 60.89 t/(km²·a)。此区间仅涉及软体动 物、多毛类、其他底栖动物、浮游动物和浮游植 物营养层次较低的功能群, 以及由物种新陈代谢 产生的碎屑功能群。碎屑作为浮游植物的补充, 为其他功能群提供营养流动。从图中可以看出, 低营养级在能量传递中具有较高能流水平,这与 已知的能量传递效率是一致的。

由图 2d 可见,在海州湾生态系统中能量流动 超过 100.00 t/(km²·a)的路径为 8 条,占总路径的 4.08%。其中在各功能群之间其他底栖动物呼吸消 耗能量最高,为1226.18 t/(km²·a);其次浮游植物 →其他底栖动物的能量流动也较高,达到 1075.14 t/(km²·a),在生态系统能量传递中具有重 要作用。从图 2 可以看出,在海州湾食物网中,能 量流动最高的路径主要分布在营养层次较低的功 能群,为各功能群的正常生命活动及生长发育提 供了重要的食物保障。

在海州湾生态系统能量流动中,有17个功能 群具有呼吸能量消耗(图 3a),其中其他底栖动物 在所有功能群中具有最高的呼吸消耗,为 1226.18 t/(km²·a),占总呼吸量的68.47%。此外, 浮游动物、浮游植物等低营养级功能群也具有较

高的呼吸消耗。对高营养层次功能群而言,所有 功能群通过呼吸排出生态系统的能量均较低,例 如方氏云鳚、鱼食性鱼类功能群的呼吸量仅为 0.20 t/(km²·a)和 0.22 t/(km²·a),在整个生态系统 流动中占有极小比例。在本研究中,共有 17 个功 能群的能量流入碎屑功能群(图 3b),其中浮游植物 流入碎屑功能群的能量最高,为 143.08 t/(km²·a)。 对于其他营养层次较低的功能群,例如其他底栖 动物、软体动物、浮游动物等功能群也具有较高 的能量流入碎屑。此外,相对于低营养层次功能 群而言,高营养层次功能群均具有较低的排泄量 流入碎屑功能群。

2.2 生态系统特征

在 LIM-MCMC 模型中,通过系统参数表示 生态系统稳定性及成熟度,对评价生态系统功能 具有重要作用。从表 2 中可以看出,海州湾生态 系统总流量为 4945.85 t/(km²·a),总呼吸量为 1790.80 t/(km²·a),流入碎屑量为 349.90 t/(km²·a), 分别占总流量的 36.21%和 7.07%,二者之和接近 总能量的一半,这表明功能群对能量利用效率较 高,较少能量转入系统再循环。在本研究中,生态 系统总初级生产量/总呼吸(TPP/TR)为 1.09,总初 级 生产量为 1952.79 t/(km²·a),总生物量为 31.16 t/(km²·a),总初级生产量/总生物量(TPP/B) 为 62.67(表 2)。

表 2 海州湾及邻近海域生态系统特征参数 Tab. 2 Characteristic parameters of the Haizhou Bay and adjacent waters ecosystem

参数 parameter	数值 value
总呼吸量/[t/(km ² ·a)] total respiration	1790.80
流入碎屑总量/[t/(km ² ·a)] sum of all flows into detritus	349.90
系统总流量/[t/(km ² ·a)] total system throughput	4945.85
总初级生产量/[t/(km ² ·a)] total primary production	1952.79
总初级生产量/总呼吸量 total primary production/total respiration (TPP/TR)	1.09
总初级生产量/总生物量 total primary production/total biomass (TPP/B)	62.67
总生物量(不计碎屑)/(t/km ²) total biomass (excluding detritus)	31.16

3 讨论

本研究基于 LIM-MCMC 模型,分析了海州 湾及其邻近海域的能量流动特征,研究发现在该 生态系统中,整体能流分布由低营养层次向高营 养层次逐渐减少,呈典型的金字塔型能量流动^[32]。 能量流动较高的路径发生在浮游植物、浮游动物、 其他底栖生物、软体动物和多毛类等低营养层次 功能群中。在本研究中,通过历史文献确定海鞘 是其他底栖生物功能群的主要组成物种,由于海 鞘摄食较多的浮游生物,所以导致较多能量流入 该功能群。此外,杨德渐等^[33]研究表明,在多毛 类的食物组成中,浮游生物是其重要饵料成分,

所以有较多的能量通过该功能群传递至高营养层 次物种。浮游植物作为主要初级生产者,为生态 系统稳定提供主要能量供应,碎屑作为浮游植物 的补充能量来源,在生态系统中形成碎屑食物 链。浮游动物、其他底栖动物等功能群作为关键 初级消费者,在将能量由低营养级传递到高营养 级的过程中起到关键枢纽作用,在生态系统中具 有重要的上行效应^[34]。在该生态系统中,能量流 动低于 1.00 t/(km²·a)的能量流动路径占总路径的 79.09%, 在食物网中表现为弱相互作用, 这些弱 相互作用使生态系统在应对外界干扰时具有较高 缓冲能力,这对维持生态系统稳定性具有重要作 用^[35]。Chaalali 等^[9]和 Tecchio 等^[12]应用 LIM-MCMC 模型分别对比斯开湾与塞纳河口生态系 统能量流动进行了研究,研究结果表明,浮游动 物和浮游植物等功能群均具有较高的呼吸消耗, 碎屑功能群作为重要的能量来源为其他物种提供 能量、日浮游动物在功能群之间的能量流动中起 到重要传递作用,这与本研究结果相一致。

根据生态系统成熟度理论^[36], TPP/TR 比值越 接近 1.00, 表明越少的能量转入系统再循环, 在 海州湾及其邻近海域生态系统中, 初级生产量/总 呼吸(TPP/TR)比值为 1.09, 呼吸消耗量约为流入 碎屑量的 5 倍, 说明在该生态系统中呼吸消耗已 达最大值, 净生产量降至最低值, 海州湾生态系 统已发展成熟^[19]。目前海州湾生态系统内部结构 复杂, 食物网为复杂的网状结构, 能够在较大程 度上抵御自然因素或者人为因素干扰带来的影响。

LIM-MCMC 模型作为量化生态系统结构与 功能的新型工具,通过定义每条能量流动最大和 最小值,将数据不确定性纳入模型中,充分考虑 数据的多变性,在此基础上可以充分运用邻近海 域或相同特征海域的数据对目标海域进行建模^[31]。 该模型在食物网研究中具有较为广泛的应用^[37-39], 能够很好地量化浮游动物、细菌等功能群的排泄、 呼吸等能量流动过程。此外,将微生物纳入该模 型,构建从微生物到顶级捕食者的完整食物网, 对于深入理解生态系统结构与功能具有重要意义, 同时也是目前食物网研究的重要发展方向之一^[40]。 LIM-MCMC 模型为完整食物网的构建提供了重要的研究方法。

在本研究中,功能群之间的摄食关系主要由 胃含物分析法构建而成,由于方法本身的局限性, 物种之间的摄食关系与实际生态系统可能存在一 定差异^[41],随着科学技术的发展,同位素、脂肪 酸、特定化合物分析等方法已经逐渐成为食物网 分析的重要手段^[42-44]。在未来研究中,将其他分 析方法纳入 LIM-MCMC 模型中,将有助于提高 该模型的准确性,在一定程度上解决参数不足等 局限性,构建从微生物到顶级捕食者的完整食物 网,进而为实施基于生态系统的渔业管理提供理 论依据。

参考文献:

- Tang F H, Shen X Q, Wang Y L. Dynamics of fisheries resources near Haizhou Bay waters[J]. Fisheries Science, 2011, 30(6): 335-341. [唐峰华, 沈新强, 王云龙. 海州湾附近海域渔业资源的动态分析[J]. 水产科学, 2011, 30(6): 335-341.]
- [2] Lin Q, Wang J, Yuan W, et al. Effects of fishing and environmental change on the ecosystem of the Bohai Sea[J]. Journal of Fishery Sciences of China, 2016, 23(3): 619-629.
 [林群, 王俊, 袁伟, 等. 捕捞和环境变化对渤海生态系统的影响[J]. 中国水产科学, 2016, 23(3): 619-629.]
- [3] Ren X M, Xu B D, Zhang C L, et al. The composition of and variations in the trophic guilds of fish assemblages in Haizhou Bay and adjacent waters[J]. Journal of Fishery Sciences of China, 2019, 26(1): 141-150. [任晓明, 徐宾铎, 张崇良, 等. 海州湾及邻近海域鱼类群落的营养功能群及其动态 变化[J]. 中国水产科学, 2019, 26(1): 141-150.]
- [4] Vézina A F, Piatt T. Food web dynamics in the ocean. I. Best-estimates of flow networks using inverse methods[J]. Marine Ecology Progress Series, 1988, 42: 269-287.
- [5] Niquil N, Saint-Béat B, Johnson G A, et al. Inverse modeling in modern ecology and application to coastal ecosystems[J]. Treatise on Estuarine and Coastal Science, 2011, 9: 115-133.
- [6] Klepper O, van de Kamer J P G. The use of mass balances to test and improve the estimates of carbon fluxes in an ecosystem[J]. Mathematical Biosciences, 1987, 85(1): 37-49.
- [7] Van den Meersche K, Soetaert K, Van Oevelen D. Xsample(): An R function for sampling linear inverse problems[J]. Journal of Statistical Software, 2009, 30(1): 1-15.
- [8] de Savenkoff C, Castonguay M, Chabot D, et al. Changes in the northern Gulf of St. Lawrence ecosystem estimated by

inverse modelling: Evidence of a fishery-induced regime shift?[J]. Estuarine, Coastal and Shelf Science, 2007, 73(3-4): 711-724.

- [9] Chaalali A, Saint-Béat B, Lassalle G, et al. A new modeling approach to define marine ecosystems food-web status with uncertainty assessment[J]. Progress in Oceanography, 2015, 135: 37-47.
- [10] Savenkoff C, Castonguay M, Vézina A F, et al. Inverse modelling of trophic flows through an entire ecosystem: The northern Gulf of St. Lawrence in the mid-1980s[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61(11): 2194-2214.
- Xu B D, Zhang C L, Xue Y, et al. Optimization of sampling effort for a fishery-independent survey with multiple goals[J]. Environmental Monitoring and Assessment, 2015, 187(5): 252.
- [12] Tecchio S, Chaalali A, Raoux A, et al. Evaluating ecosystem-level anthropogenic impacts in a stressed transitional environment: The case of the Seine estuary[J]. Ecological Indicators, 2016, 61: 833-845.
- [13] Kones J K, Soetaert K, van Oevelen D, et al. Gaining insight into food webs reconstructed by the inverse method[J]. Journal of Marine Systems, 2006, 60(1-2): 153-166.
- [14] Han D Y, Xue Y, Zhang C L, et al. A mass balanced model of trophic structure and energy flows of a semi-closed marine ecosystem[J]. Acta Oceanologica Sinica, 2017, 36(10): 60-69.
- [15] Yuan J M, Zhang H, Ben C K, et al. Macrobenthic community composition and it's secondary productivity in the Haizhou Bay[J]. Marine Fisheries, 2018, 40(1): 19-26. [袁健 美,张虎,贲成恺,等. 海洲湾大型底栖动物群落组成及 次级生产力[J]. 海洋渔业, 2018, 40(1): 19-26.]
- [16] Tong L, Tang Q S, Pauly D. A preliminary approach on mass-balance ecopath model of the Bohai Sea[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 435-440. [仝龄, 唐启升, Daniel Pauly. 渤海生态通道模型初探[J]. 应用生 态学报, 2000, 11(3): 435-440.]
- [17] Li R, Han Z, Cheng H Q, et al. A preliminary study on biological resources energy flows based on the Ecopath model in the East China Sea[J]. Resources Science, 2010, 32(4): 600-605. [李睿, 韩震, 程和琴, 等. 基于 Ecopath 模型的东海区生物资源能量流动规律的初步研究[J]. 资源科学, 2010, 32(4): 600-605.]
- [18] Xu C, Wang S K, Zhao F, et al. Trophic structure and energy flow of the Yangtze Estuary ecosystem based on the analysis with Ecopath model[J]. Marine Fisheries, 2018, 40(3): 309-318. [徐超, 王思凯, 赵峰, 等. 基于 Ecopath 模型的

长江口生态系统营养结构和能量流动研究[J]. 海洋渔业, 2018, 40(3): 309-318.]

- [19] Wang T, Zhang H, Zhang H, et al. Ecological carrying capacity of Chinese shrimp stock enhancement in Haizhou Bay of East China based on Ecopath model[J]. Journal of Fishery Sciences of China, 2016, 23(4): 965-975. [王腾,张贺,张虎,等. 基于营养通道模型的海州湾中国明对虾生态容纳量[J]. 中国水产科学, 2016, 23(4): 965-975.]
- [20] Lin Q, Jin X S, Guo X W, et al. Study on the structure and energy flow of the Yangtze River estuary and adjacent waters ecosystem based on Ecopath model[J]. Journal of Hydroecology, 2009, 30(2): 28-36. [林群,金显仕,郭学武,等. 基于 Ecopath 模型的长江口及毗邻水域生态系统结构和能 量流动研究[J]. 水生态学杂志, 2009, 30(2): 28-36.]
- [21] Wang W, Wang J J, Zuo P, et al. Analysis of structure and energy flow in southwestern Yellow Sea ecosystem based on Ecopath model[J]. Journal of Applied Oceanography, 2019, 38(4): 528-539. [王玮, 王俊杰, 左平, 等. 基于 Ecopath 模 型的西南黄海生态系统结构和能量流动分析[J]. 应用海 洋学学报, 2019, 38(4): 528-539.]
- [22] Liu H Y, Yang C J, Zhang P D, et al. An Ecopath evaluation of system structure and function for the Laoshan Bay artificial reef zone ecosystem[J]. Acta Ecologica Sinica, 2019, 39(11): 3926-3936. [刘鸿雁,杨超杰,张沛东,等. 基于 Ecopath 模型的崂山湾人工鱼礁区生态系统结构和功能研 究[J]. 生态学报, 2019, 39(11): 3926-3936.]
- [23] Lin Q, Jin X S, Zhang B, et al. Comparative study on the changes of the Bohai Sea ecosystem structure based on Ecopath model between ten years[J]. Acta Ecologica Sinica, 2009, 29(7): 3613-3620. [林群, 金显仕, 张波, 等. 基于营 养通道模型的渤海生态系统结构十年变化比较[J]. 生态 学报, 2009, 29(7): 3613-3620.]
- [24] Lin Q, Wang J, Li Z Y, et al. Ecological carrying capacity of shellfish in the Yellow River estuary and its adjacent waters[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 3131-3138. [林群, 王俊, 李忠义, 等. 黄河口邻近水域贝 类生态容量[J]. 应用生态学报, 2018, 29(9): 3131-3138.]
- [25] Zhang M L, Leng Y S, Lv Z B, et al. Estimating the ecological carrying capacity of *Portunus trituberculatus* in Laizhou Bay[J]. Marine Fisheries, 2013, 35(3): 303-308. [张明亮, 冷 悦山, 吕振波, 等. 莱州湾三疣核子蟹生态容量估算[J]. 海洋渔业, 2013, 35(3): 303-308.]
- [26] Feng J F, Zhu L, Wang H L. Study on characters of coastal ecosystem in Bohai Bay with EwE[J]. Marine Environmental Science, 2010, 29(6): 781-784, 803. [冯剑丰,朱琳,王洪礼. 基于 EwE 的渤海湾近岸海洋生态系统特性研究[J]. 海洋环境科学, 2010, 29(6): 781-784, 803.]

- [27] Zhang S, Wang T, Fu X M, et al. A primary study on the energy flow in the ecosystem of fishery ecological restoration area in Haizhou Bay, Lianyungang[J]. Marine Environmental Science, 2015, 34(1): 42-47. [张硕, 王腾, 符小明, 等. 连云港海州湾渔业生态修复水域生态系统能量流动 模型初探[J]. 海洋环境科学, 2015, 34(1): 42-47.]
- [28] Wang Y C, Liang C, Xian W W, et al. Ecopath based dynamic analyses of energy flows of Yangtze estuary and its adjacent waters[J]. Marine Sciences, 2018, 42(5): 54-67. [王 远超,梁翠,线薇微,等. 基于生态通道模型的长江口及 邻近海域生态系统能流动态分析[J]. 海洋科学, 2018, 42(5): 54-67.]
- [29] Soetaert K, van Oevelen D. LIM: Linear Inverse Model examples and solution methods[EB/OL]. http://lib.stat.cmu. edu/R/CRAN/web/packages/LIM/index.html.
- [30] Soetaert K, Van den Meersche K, Van Oevelen D. limSolve: Solving linear inverse models[EB/OL]. http://lib.stat.cmu. edu/R/CRAN/web/packages/limSolve/index.html.
- [31] Saint-Béat B, Vézina A F, Asmus R, et al. The mean function provides robustness to linear inverse modelling flow estimation in food webs: A comparison of functions derived from statistics and ecological theories[J]. Ecological Modelling, 2013, 258: 53-64.
- [32] Yang T, Shan X J, Jin X S, et al. Keystone species of fish community in the Laizhou Bay[J]. Journal of Fisheries of China, 2016, 40(10): 1613-1623. [杨涛, 单秀娟, 金显仕, 等. 莱州湾鱼类群落的关键种[J]. 水产学报, 2016, 40(10): 1613-1623.]
- [33] Yang D J, Sun S C. Marine Invertebrate[M]. Qingdao: China Ocean University Press, 1999: 294-308. [杨德渐, 孙世春. 海洋无脊椎动物学[M]. 青岛: 青岛海洋大学出版社, 1999: 294-308.]
- [34] Xu C J, Xu B D, Zhang C L, et al. Identification of keystone prey species in Haizhou Bay food web based on SURF index[J]. Acta Ecologica Sinica, 2019, 39(24): 9373-9378. [徐 从军,徐宾铎,张崇良,等. 基于 SURF 指数识别海州湾 食物网的关键饵料生物[J]. 生态学报, 2019, 39(24): 9373-9378.]
- [35] Navia A F, Maciel-Zapata S R, González-Acosta A F, et al. Importance of weak trophic interactions in the structure of

the food web in La Paz Bay, southern Gulf of California: A topological approach[J]. Bulletin of Marine Science, 2019, 95(2): 199-215.

- [36] Odum E P. The strategy of ecosystem development[J]. Science, 1969, 164(3877): 262-270.
- [37] Varela M. Phytoplankton ecology in the Bay of Biscay[J]. Scientia Marina, 1996, 60: 45-53.
- [38] Marquis E, Niquil N, Delmas D, et al. Inverse analysis of the planktonic food web dynamics related to phytoplankton bloom development on the continental shelf of the Bay of Biscay, French Coast[J]. Estuarine, Coastal and Shelf Science, 2007, 73(1-2): 223-235.
- [39] Donali E, Olli K, Heiskanen A S, et al. Carbon flow patterns in the planktonic food web of the Gulf of Riga, the Baltic Sea: A reconstruction by the inverse method[J]. Journal of Marine Systems, 1999, 23(1-3): 251-268.
- [40] Davidson K. Modelling microbial food webs[J]. Marine Ecology Progress Series, 1996, 145: 279-296.
- [41] Yan Y R, Lu H S, Jin X S. Marine fish feeding ecology and food web: Progress and perspectives[J]. Journal of Fisheries of China, 2011, 35(1): 145-153. [颜云榕, 卢伙胜, 金显仕. 海洋鱼类摄食生态与食物网研究进展[J]. 水产学报, 2011, 35(1): 145-153.]
- [42] Zhang S, Gao S K, Yu W W, et al. Research progress of stable carbon and nitrogen isotopes in the construction of marine food web and ecosystem community structure[J]. Journal of Aquaculture, 2019, 40(7): 6-10. [张硕, 高世科, 于雯雯, 等. 碳、氮稳定同位素在构建海洋食物网及生态 系统群落结构中的研究进展[J]. 水产养殖, 2019, 40(7): 6-10.]
- [43] Li L. A primary study on the structure of key food web in Haizhou Bay[D]. Shanghai: Shanghai Ocean University, 2018: 1-74. [李莉. 海州湾关键食物网结构的初步研究[D]. 上海: 上海海洋大学, 2018: 1-74.]
- [44] Yu H, Wu Y, Zhang J. Application of compound-specific isotope analysis in marine food web studies[J]. Journal of Chinese Mass Spectrometry Society, 2006, 27(2): 122-128.
 [于灏, 吴莹, 张经. 特定化合物同位素分析技术在海洋 食物网研究中的应用[J]. 质谱学报, 2006, 27(2): 122-128.]

Energy flows in the Haizhou Bay food web based on the LIM-MCMC model

XU Congjun^{1, 2}, SUI Haozhi^{1, 2}, XU Binduo^{1, 2}, ZHANG Chongliang^{1, 2}, JI Yupeng^{1, 2}, REN Yiping^{1, 2, 3}, XUE Ying^{1, 2}

- 1. Fisheries College, Ocean University of China, Qingdao 266003, China;
- 2. Field Observation and Research Station of Haizhou Bay Fishery Ecosystem, Ministry of Education, Qingdao 266003, China;
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China

Abstract: The LIM-MCMC model of the Haizhou Bay ecosystem was built to examine the energy flows and characteristics of the ecosystem based on survey data obtained from bottom trawl surveys in Haizhou Bay and adjacent waters in the spring and autumn of 2018. This study will provide an important theoretical basis for the in-depth understanding of the Haizhou Bay ecosystem. Our results showed that the Haizhou Bay ecosystem contained 18 functional groups and 196 energy flow paths. These energy flow paths can be divided into four energy levels $[0.00-1.00 \text{ t/(km^2 \cdot a)}, 1.00-10.00 \text{ t/(km^2 \cdot a)}, 10.00-100.00 \text{ t/(km^2 \cdot a)}, \text{and } >100.00 \text{ t/(km^2 \cdot a)}]$. In the range of 0.00-1.00 t/(km²·a), they were mainly composed of high-trophic level functional groups, including 155 weak energy flow paths, and they played important roles in maintaining the stability of the ecosystem. There were 21 energy flow paths in the range of $1.00-10.00 \text{ t/(km^2 \cdot a)}$ that played important roles in the transfer of energy from low to high-trophic levels. There were 12 and 8 energy flow paths in the ranges of $10.00-100.00 \text{ t/(km^2 \cdot a)}$ and $>100.00 \text{ t/(km}^2 \cdot a)$, respectively, all of which were low-trophic level groups. In the Haizhou Bay ecosystem, the respiratory consumption and inflow to detritus of low-trophic level functional groups were much higher than that of the high-trophic level functional groups. The overall energy flow distribution showed a typical pyramidal energy flow, with low-trophic level functional groups having higher energy. According to the theory of ecosystem maturity, the Haizhou Bay ecosystem matured and can now resist external disturbances to some extent. In future research, incorporating other analytical methods into the LIM-MCMC model will help improve the accuracy of the model, solve the limitations of parameters to a certain extent, and build a complete food web from microorganisms to top predators. This study will provide an important basis for the in-depth understanding of the Haizhou Bay food web and contribute to ecosystem-based fishery management (EBFM) in Haizhou Bay.

Key words: Haizhou Bay; LIM-MCMC model; energy flows; functional group; food web **Corresponding author:** XUE Ying. E-mail: xueying@ouc.edu.cn

			11		-			n	
序号 no.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths
x1	浮游动物食性鱼 类 zooplankivores fish → 浮游动物 食性鱼类 zoop- lankivores fish	x11	虾食性鱼类 shrimp predators→ 鱼食性鱼类 pisci- vores fish	x21	虾/鱼食性鱼类 shrimp or fish predators→口虾 蛄 Oratosquilla oratoria	x31	方氏云鳚 Pholis fangi→ 浮游动物 食性鱼类 zooplan- kivores fish	x41	底栖动物食性鱼 类 benthivores →碎屑 detritus
x2	浮游动物食性鱼 类 zooplankivores fish → 虾食性鱼 类 shrimp preda- tors	x12	虾食性鱼类 shrimp predators→ 底栖动物食性鱼类 benthivores	x22	虾/鱼食性鱼类 shrimp or fish predators→头足 类 cephalopod	x32	方氏云鳚 <i>Pholis</i> <i>fangi</i> → 虾食性鱼 类 shrimp predators	x42	口虾蛄 Oratos- quilla oratoria→ 虾食性鱼类 shrimp predators
x3	浮游动物食性鱼 类 zooplankivores fish→ 虾/鱼食性 鱼类 shrimp or fish predators	x13	虾食性鱼类 shrimp predators→ 口虾蛄 Oratos- quilla oratoria	x23	虾/鱼食性鱼类 shrimp or fish predators→碎屑 detritus	x33	方氏云鳚 <i>Pholis</i> <i>fangi</i> →虾/鱼食性鱼 类 shrimp or fish predators	x43	口虾蛄 Oratos- quilla oratoria→ 虾/鱼食性鱼类 shrimp or fish predators
x4	浮游动物食性鱼 类 zooplankivores fish → 鱼食性鱼 类 piscivores fish	x14	虾食性鱼类 shrimp predators→ 头足类 cephalopod	x24	鱼食性鱼类 pis- civores fish→ 浮 游动物食性鱼类 zooplankivores fish	x34	方氏云鳚 Pholis fangi→口虾蛄 Oratosquilla orato- ria	x44	口虾蛄 Oratos- quilla oratoria→ 鱼食性鱼类 piscivores fish
x5	浮游动物食性鱼 类 zooplankivores fish → 口虾蛄 Oratosquilla ora- toria	x15	虾食性鱼类 shrimp predators→ 碎屑 detritus	x25	鱼食性鱼类 pis- civores fish→ 虾 食性鱼类 shrimp predators	x35	方氏云鳚 <i>Pholis</i> fangi→头足类 cephalopod	x45	口虾蛄 Oratos- quilla oratoria→ 底栖动物食性鱼 类 benthivores
x6	浮游动物食性鱼 类 zooplankivores fish→ 头足类 cephalopod	x16	虾/鱼食性鱼类 shrimp or fish pre- dators→ 浮游动物 食性鱼类 zoop- lankivores fish	x26	鱼食性鱼类 pis- civores fish→虾/ 鱼食性鱼类 shrimp or fish predators	x36	方氏云鳚 Pholis fangi→碎屑 detri- tus	x46	口虾蛄 Oratos- quilla oratoria→ 口虾蛄 Oratos- quilla oratoria
x7	浮游动物食性鱼 类 zooplankivores fish→ 碎屑 de- tritus	x17	虾/鱼食性鱼类 shrimp or fish pre- dators→ 虾食性鱼 类 shrimp preda- tors	x27	鱼食性鱼类 pis- civores fish→鱼食 性鱼类 piscivores fish	x37	底栖动物食性鱼类 benthivores→ 浮游 动物食性鱼类 zooplankivores fish	x47	口虾蛄 Oratos- quilla oratoria→ 头足类 cepha- lopod
x8	虾食性鱼类 shrimp predators→ 浮游动物食性鱼 类 zooplankivores fish	x18	虾/鱼食性鱼类 shrimp or fish pre- dators→虾/鱼食性 鱼类 shrimp or fish predators	x28	鱼食性鱼类 pis- civores fish→口虾 蛄 Oratosquilla oratoria	x38	底栖动物食性鱼类 benthivores→ 虾食 性鱼类 shrimp predators	x48	口虾蛄 Oratos- quilla oratoria→ 碎屑 detritus
x9	虾食性鱼类 shrimp predators→ 虾食性鱼类 shrimp predators	x19	虾/鱼食性鱼类 shrimp or fish pre- dators→鱼食性鱼 类 piscivores fish	x29	鱼食性鱼类 pis- civores fish→头足 类 cephalopod	x39	底栖动物食性鱼类 benthivores→虾/鱼 食性鱼类 shrimp or fish predators	x49	虾类 shrimp→ 浮游动物食性鱼 类 zooplanki- vores fish
x10	虾食性鱼类 shrimp predators→ 虾/鱼食性鱼类 shrimp or fish predators	x20	虾/鱼食性鱼类 shrimp or fish pre- dators→底栖动物 食性鱼类 benthi- vores	x30	鱼食性鱼类 pis- civores fish→碎屑 detritus	x40	底栖动物食性鱼类 benthivores→鱼食 性鱼类 piscivores fish	x50	虾类 shrimp→ 虾食性鱼类 shrimp predators

附表 海州湾食物网能量流动路径表 Appendix Energy flow paths in Haizhou Bay food web

(待续 to be continued)

(续附表 Appendix continued)

	能量流动路径				能量流动路径		能量流动路径		能量流动路径
序号 no.	energy flow paths	序号 No.	能量流动路径 energy flow paths	序号 No.	energy flow paths	序号 No.	energy flow paths	序号 No.	energy flow paths
x51	虾类 shrimp→虾/ 鱼食性鱼类 shrimp or fish predators	x63	三疣梭子蟹 Por- tunus tritubercula- tus→底栖动物食性 鱼类 benthivores	x75	其他蟹类 other crabs→虾类 shrimp	x87	头足类 cephalopod →碎屑 detritus	x99	软体动物 mol- lusk→棘皮动物 echinoderm
x52	虾类 shrimp→ 鱼食性鱼类 piscivores fish	x64	三疣梭子蟹 Por- tunus tritubercula- tus→口虾蛄 Ora- tosquilla oratoria	x76	其他蟹类 other crabs→其他蟹类 other crabs	x88	 软体动物 mollusk → 浮游动物食性 鱼类 zooplanki-vores fish 	x100	软体动物 mollusk→碎屑 detritus
x53	虾类 shrimp→ 方氏云鳚 Pholis fangi	x65	三疣梭子蟹 Por- tunus tritubercula- tus→虾类 shrimp	x77	其他蟹类 other crabs→头足类 cephalopod	x89	软体动物 mollusk → 虾食性鱼类 shrimp predators	x101	多毛类 poly- chaetes→ 浮游 动物食性鱼类 zooplankivores fish
x54	虾类 shrimp→ 底栖动物食性鱼 类 benthivores	x66	三疣梭子蟹 Por- tunus tritubercula- tus→三疣梭子蟹 Portunus trituber- culatus	x78	其他蟹类 other crabs→碎屑 detritus	x90	软体动物 mollusk →虾/鱼食性鱼类 shrimp or fish pre- dators	x102	多毛类 poly- chaetes→ 虾食 性鱼类 shrimp predators
x55	虾类 shrimp→ 口虾蛄 Oratos- quilla oratoria	x67	三疣梭子蟹 Por- tunus tritubercula- tus→头足类 ce- phalopod	x79	头足类 cephalo- pod→ 浮游动物 食性鱼类 zoop- lankivores fish	x91	软体动物 mollusk →鱼食性鱼类 piscivores fish	x103	多毛类 poly- chaetes→虾/鱼 食性鱼类 shrimp or fish predators
x56	虾类 shrimp→ 三疣梭子蟹 Por- tunus tritubercu- latus	x68	三疣梭子蟹 Por- tunus tritubercula- tus→碎屑 detritus	x80	头足类 cephalo- pod→ 虾食性鱼 类 shrimp preda- tors	x92	软体动物 mollusk →方氏云鳚 Pholis fangi	x104	多毛类 poly- chaetes→鱼食性 鱼类 piscivores fish
x57	虾类 shrimp→ 头足类 cephalo- pod	x69	其他蟹类 other crabs→ 浮游动物 食性鱼类 zoop- lankivores fish	x81	头足类 cephalo- pod→虾/鱼食性 鱼类 shrimp or fish predators	x93	软体动物 mollusk →底栖动物食性鱼 类 benthivores	x105	多毛类 poly- chaetes→方氏云 鳚 Pholis fangi
x58	虾类 shrimp→ 碎屑 detritus	x70	其他蟹类 other crabs→ 虾食性鱼 类 shrimp preda- tors	x82	头足类 cephalo- pod→鱼食性鱼类 piscivores fish	x94	软体动物 mollusk →口虾蛄 Oratos- quilla oratoria	x106	多毛类 poly- chaetes→底栖 动物食性鱼类 benthivores
x59	三疣梭子蟹 Por- tunus tritubercu- latus→ 浮游动物 食性鱼类 zoop- lankivores fish	x71	其他蟹类 other crabs→虾/鱼食性 鱼类 shrimp or fish predators	x83	头足类 cephalo- pod→底栖动物食 性鱼类 benthi- vores	x95	软体动物 mollusk →虾类 shrimp	x107	多毛类 poly- chaetes→口虾蛄 Oratosquilla oratoria
x60	三疣梭子蟹 Por- tunus tritubercula- tus→ 虾食性鱼类 shrimp predators	x72	其他蟹类 other crabs→鱼食性鱼类 piscivores fish	x84	头足类 cephalo- pod→口虾蛄 Oratosquilla ora- toria	x96	软体动物 mollusk →三疣梭子蟹 Portunus trituber- culatus	x108	多毛类 poly- chaetes→虾类 shrimp
x61	三疣梭子蟹 Por- tunus tritubercu- latus→虾/鱼食性 鱼类 shrimp or fish predators	x73	其他蟹类 other crabs→底栖动物食 性鱼类 benthi- vores	x85	头足类 cephalo- pod→虾类 shrimp	x97	软体动物 mollusk →其他蟹类 other crabs	x109	多毛类 poly- chaetes→三疣梭 子蟹 Portunus trituberculatus
x62	三疣梭子蟹 Por- tunus tritubercu- latus→鱼食性鱼 类 piscivores fish	x74	其他蟹类 other crabs→口虾蛄 Oratosquilla orato- ria	x86	头足类 cephalo- pod→头足类 cephalopod	x98	软体动物 mollusk →头足类 cephalo- pod	x110	多毛类 polycha- etes→其他蟹类 other crabs

(待续 to be continued)

(续附表 Appendix continued)

序号 no.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths
x111	多毛类 polycha- etes→头足类 cephalopod	x124	棘皮动物 echino- derm→头足类 cephalopod	x137	其他底栖动物 other zoobenthos →其他底栖动物 other zoobenthos	x150	浮游动物 zoop- lankton→ 软体动 物 mollusk	x163	浮游植物 phy- toplankton→其 他底栖动物 other zoobenthos
x112	多毛类 polycha- etes→棘皮动物 echinoderm	x125	棘皮动物 echino- derm→棘皮动物 echinoderm	x138	其他底栖动物 other zoobenthos →碎屑 detritus	x151	浮游动物 zoop- lankton→ 多毛类 polychaetes	x164	浮游植物 phy- toplankton→浮 游动物 zoop- lankton
x113	多毛类 polycha- etes→碎屑 detri- tus	x126	棘皮动物 echino- derm→碎屑 detri- tus	x139	浮游动物 zoopl- ankton→ 浮游动 物食性鱼类 zooplankivores fish	x152	浮游动物 zoop- lankton→棘皮动物 echinoderm	x165	浮游植物 phy- toplankton→碎 屑 detritus
x114	棘皮动物 echi- noderm→ 浮游动 物食性鱼类 zooplankivores fish	x127	其他底栖动物 other zoobenthos→ 浮游动物食性鱼类 zooplankivores fish	x140	浮游动物 zoop- lankton→ 虾食性 鱼类 shrimp pre- dators	x153	浮游动物 zoop- lankton→其他底栖 动物 other zooben- thos	x166	虾/鱼食性鱼类 shrimp or fish predators→捕捞 harvest
x115	棘皮动物 echino- derm→ 虾食性鱼 类 shrimp preda- tors	x128	其他底栖动物 other zoobenthos→ 虾食性鱼类 shrimp predators	x141	浮游动物 zoop- lankton→虾/鱼食 性鱼类 shrimp or fish predators	x154	浮游动物 zoop- lankton→浮游动物 zooplankton	x167	碎屑 detritus→ 虾/鱼食性鱼类 shrimp or fish predators
x116	棘皮动物 echino- derm→虾/鱼食性 鱼类 shrimp or fish predators	x129	其他底栖动物 other zoobenthos→ 虾/鱼食性鱼类 shrimp or fish pre- dators	x142	浮游动物 zoop- lankton→鱼食性 鱼类 piscivores fish	x155	浮游动物 zoop- lankton→碎屑 detritus	x168	碎屑 detritus→ 口虾蛄 Oratos- quilla oratoria
x117	棘皮动物 echino- derm→鱼食性鱼 类 piscivores fish	x130	其他底栖动物 other zoobenthos→ 鱼食性鱼类 pisci- vores fish	x143	浮游动物 zoop- lankton→方氏云 鳚 Pholis fangi	x156	虾食性鱼类 shrimp predators→捕捞 harvest	x169	碎屑 detritus→ 虾类 shrimp
x118	棘皮动物 echi- noderm→方氏云 鳚 <i>Pholis fangi</i>	x131	其他底栖动物 other zoobenthos→ 方氏云鳚 <i>Pholis</i> fangi	x144	浮游动物 zoop- lankton→底栖动 物食性鱼类 ben- thiyores	x157	浮游植物 phytop- lankton→虾/鱼食性 鱼类 shrimp or fish predators	x170	碎屑 detritus→ 三疣梭子蟹 Portunus tritu- berculatus
x119	棘皮动物 echino- derm→底栖动物 食性鱼类 benthi- vores	x132	其他底栖动物 other zoobenthos→ 底栖动物食性鱼类 benthivores	x145	浮游动物 zoop- lankton→口虾蛄 Oratosquilla ora- toria	x158	浮游植物 phytop- lankton→底栖动物 食性鱼类 benthi- vores	x171	碎屑 detritus→ 其他蟹类 other crabs
x120	棘皮动物 echino- derm→口虾蛄 Oratosquilla ora- toria	x133	其他底栖动物 other zoobenthos→ 口虾蛄 Oratos- auilla oratoria	x146	浮游动物 zoop- lankton→虾类 shrimp	x159	浮游植物 phytop- lankton→虾类 shrimp	x172	碎屑 detritus→ 软体动物 mol- lusk
x121	棘皮动物 echino- derm→虾类 shrimp	x134	其他底栖动物 other zoobenthos→ 虾类 shrimp	x147	浮游动物 zoop- lankton→三疣梭 子蟹 Portunus trituberculatus	x160	浮游植物 phytop- lankton→ 软体动 物 mollusk	x173	碎屑 detritus→ 多毛类 poly- chaetes
x122	棘皮动物 echino- derm→三疣梭子 蟹 Portunus tri- tuberculatus	x135	其他底栖动物 other zoobenthos→ 其他蟹类 other crabs	x148	浮游动物 zoop- lankton→其他蟹 类 other crabs	x161	浮游植物 phytop- lankton→ 多毛类 polychaetes	x174	碎屑 detritus→ 棘皮动物 echi- noderm
x123	棘皮动物 echino- derm→其他蟹类 other crabs	x136	其他底栖动物 other zoobenthos→ 头足类 cephalopod	x149	浮游动物 zoop- lankton→头足类 cephalopod	x162	浮游植物 phytop- lankton→棘皮动物 echinoderm	x175	碎屑 detritus→ 底栖动物

(待续 to be continued)

(续附表 Appendix continued)

序号 no.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths	序号 No.	能量流动路径 energy flow paths
x176	碎屑 detritus→浮 游动物 zooplank- ton	x181	鱼食性鱼类 pisci- vores fish→呼吸 respiration	x185	虾类 shrimp→呼 吸 respiration	x189	软体动物 mollusk →呼吸 respiration	x193	浮游动物 zoop- lankton→呼吸 respiration
x177	三疣梭子蟹 Por- tunus tritubercu- latus→捕捞 harvest	x182	方氏云鳚 Pholis fangi→呼吸 res- piration	x186	三疣梭子蟹 Por- tunus tritubercu- latus→呼吸 res- piration	x190	多毛类 polychaetes →呼吸 respiration	x194	浮游植物 phy- toplankton→呼 吸 respiration
x178	浮游动物食性鱼 类 zooplankivores fish→呼吸 respi- ration	x183	底栖动物食性鱼类 benthivores→呼吸 respiration	x187	其他蟹类 other crabs→呼吸 respiration	x191	棘皮动物 echino- derm→呼吸 respi- ration	x195	CO2→浮游植物 phytoplankton
x179	虾食性鱼类 shrimp predators→ 呼吸 respiration	x184	口虾蛄 Oratosqui- lla oratoria→呼吸 respiration	x188	头足类 cephalo- pod→呼吸 respi- ration	x192	其他底栖动物 other zoobenthos→ 呼吸 respiration	x196	浮游动物食性鱼 类 zooplankivo- res fish→捕捞 harvest
x180	虾/鱼食性鱼类 shrimp or fish predators→呼吸 respiration								