DOI: 10.3724/SP.J.1118.2021.20104

基于声学映像的南海灯光罩网渔业中鲣的时空分布

王腾¹,张鹏¹,李杰¹,张俊¹,谢斌²,晏磊¹,杨炳忠¹

中国水产科学研究院南海水产研究所,农业农村部南海渔业资源开发利用重点实验室,广东 广州 510300;
 厦门大学环境与生态学院,滨海湿地生态系统教育部重点实验室,福建 厦门 361102

摘要:基于灯光罩网和 EY60 科学探鱼仪采集鲣(*Katsuwonus pelamis*)的生物学数据与声学映像,通过分析后向体 积散射强度 *S*_V(dB)、平均目标强度 TS (dB)及单位采样体积的平均鱼类数目(*N*_V)等信息,研究鲣的时空分布与现场 目标强度变化。S13 站位的鲣平均叉长(362.20±35.73) mm, S14 站位的鲣平均叉长(357.66±36.61) mm, A12 站位的鲣 平均叉长(366.70±36.43) mm。10~50 m 深度范围内,3 个站位不同时段的平均 *S*_V 变化模式相似。渔船开灯前 (18:00~19:00), 鲣主要分布于 40~50 m 水深;灯光打开后,鲣逐渐被诱集上浮(*S*_V 分布曲线峰值对应的深度变浅);随着灯诱时间的增长(20:00~21:00), 鲣稳定分布于 10~30 m 深度范围内。10~50 m 深度范围内,3 个站位不同时段 的鲣单体信号数目与平均深度变化模式相似。渔船开灯前(18:00~19:00), 鲣单体信号主要分布于 35 m 以深;且被 检测到的信号数目较少。灯光打开后,鲣逐渐被诱集上浮,表现为鲣单体信号平均深度变浅,信号数目明显增多。本研究 3 个站位均不存在 *N*_V 极限值,所有单元均可用于鲣 TS 的现场计算。S13 站位的鲣现场平均 TS 为 (~51.84±3.84) dB; S14 站位的鲣现场平均 TS 为(~49.87±3.72) dB; A12 站位的鲣现场平均 TS 为(~49.68±2.96) dB。3 个站位的鲣现场 TS 均呈非正态分布(*P*<0.05)。研究结果有助于更好地了解灯光诱集条件下的鲣行为及其声学特性,还可为鲣声学评估奠定技术基础。

鲣(Katsuwonus pelamis)属鲈形目(Perciformes)、 鲭科(Scombrida)、鲣属,广泛分布于太平洋、大 西洋与印度洋的热带和亚热带海域,在中国南海 与中国台湾海域也有分布^[1]。作为金枪鱼中重要 的一个种类,鲣在当前全球金枪鱼渔业中有着举 足轻重的地位,历年产量占金枪鱼类捕捞总产量 的 70%以上^[2]。

南海位于太平洋西部,以热带和亚热带气候为主,是中国近海中面积最大、水深最深的海区。 南海渔业资源丰富,栖息分布有多种金枪鱼类, 其中黄鳍金枪鱼(*Thunnus albacores*)和鲣以其可 观的资源量已成为多种渔业的重要经济种^[3]。南海金枪渔业主要为延绳钓网和灯光罩网,其中灯光罩网是 20 世纪 90 年代初发展起来的一种新型渔具渔法,通过在船上架设一定数量的集鱼灯诱捕莺乌贼(Symplectoteuthis oualaniensis)、鲣、黄鳍金枪鱼等经济种,捕捞效率高,操作简单,已经成为南海外海渔业的主要作业方式^[4-5]。

对目标鱼种资源分布的研究有助于提高渔业 捕捞效率和资源的可持续利用^[6-7]。水声学技术可 以提供高分辨率、大时空尺度的鱼类资源分布观 测数据,已经广泛应用于鱼类的种群评估和生态

收稿日期: 2020-04-16; 修订日期: 2020-06-03.

基金项目:农业农村部财政专项(NFZX2018);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项(2018YB01).

作者简介: 王腾(1989--), 男, 助理研究员, 从事渔业资源声学评估研究. E-mail: twangshanghao@163.com

通信作者:张鹏,副研究员,从事渔具渔法研究. E-mail: trawl@126.com

研究^[8-10]。此外,如果渔获物中单一物种的数量与 质量占绝对比例,还可以使用水声学技术研究该 物种在捕捞作业过程中的时空分布信息及其现场 目标强度(target strength, dB, 下以简称 TS)。Zhang 等[11]基于灯光罩网渔船作业时段的声学映像数据, 用过分析光诱条件下鸢乌贼的单体信号分布深度 与信号平均 Sv, 研究了罩网作业时鸢乌贼的时空 分布变化信息及其现场 TS。而对于罩网作业时段 的其他渔获(如鲣、黄鳍金枪鱼等)的分布信息,尚 未有相关研究, 不利于更高效的渔业生产与鱼类 种群行为研究。基于相同原理,本研究使用 EY60 科学探鱼仪采集罩网作业时段的声学映像数据, 结合鲣生物学采样,获取鲣单体信号的分布深 度、信号平均 S_V 、平均 TS 等参数信息, 研究鲣 在灯光诱集条件下的时空分布变化规律, 计算鲣 的现场 TS 值, 研究结果有助于我们更好地了解 灯光诱集条件下的鲣行为及其声学特性。

1 材料与方法

1.1 采样地点

本研究 3 个站位的声学映像与生物学数据采 集自 2 个年度的渔船声学调查。2012 年的声学调 查时间为 9 月 4 日至 10 月 17 日,调查范围为 5°30'~16°00'N, 109°00'~117°00'E,共进行了 40 个站位的渔业声学调查,其中只有 2 个站位的声 学映像与生物学数据符合需求,分别为 2012 年 9 月 16 日(S13)与 17 日(S14); 2019 年的声学调查时 间为 5 月 4 日至 6 月 1 日,调查范围为 18°00'~ 21°30'N, 114°00'~119°00'E,共进行了 28 个站位 的渔业声学调查,其中只有 1 个站位的数据符合 需求,为 2019 年 5 月 22 日(A12),站点位置详见 图 1。2 次调查租用渔船均为灯光罩网渔船"桂北 渔 80208",渔船总吨位 400 GT,总长 43.6 m,型 宽 7.60 m,型深 4.10 m。

1.2 鲣样品与环境参数采集

本研究使用罩网采集鲣样品(图 2), 罩网沉子 纲长 290 m, 网衣拉直高度 85 m, 网口网目 36 mm, 网囊网目 20 mm, 作业水深约 50 m。开灯时间为 19:00, 放网时间一般为 21:00, 从网具张开到捕 捞结束用时约 40 min。每次起网后将渔获物倒在

图 2 單网作业示意图 Fig. 2 Falling-net fishing operation

甲板上,按一定比例随机取样,测量并记录鲣的 叉长、体重、性别、性腺成熟度与摄食等级等数 据,若鲣数量大于 50 ind,则取样 50 ind;若小于 50 条,则全部取样。本研究使用 T 检验和 Kolmogorov-Smirnov (K-S)检验研究 3 个站位鲣 叉长的差异性,显著性水平为 0.05,当 2 种检验 结果均显著时,认定 3 个站位的鲣叉长存在显著 性差异。调查期间使用 Seabird SBE 37 CTD (Seabird Electronics Inc., USA)采集环境参数。将 CTD 绑在罩网撑杆的一端,随网具下沉采集 0~50 m深 度范围内的海水温度与盐度数据(图 3, 以 S13 站 位为例)。

1.3 声学映像数据采集

使用便携式 Simrad EY60 科学探鱼仪采集罩 网渔船航行与作业时段的声学映像,探鱼仪的换 能器置于导流罩内,通过钢架固定于渔船右舷中 部且不与船体接触,以避免马达振动干扰换能器 正常工作,换能器吃水约 1.5 m。使用国际通用的 "标准球"法校正探鱼仪^[12],校正时间分别为 2012 年 9 月 3 日和 2019 年 9 月 4 日,地点为海南

岛东南海域。EY60 探鱼仪的主要参数详见表1。

表 1 EY60 换能器参数设置 Tab. 1 Main settings of EY60 transducer

参数 parameter	换能着 transduc	器设置 er setting
换能器型号 transducer type	ES70-7C	ES120-7C
波束频率/kHz beam frequency	70	120
脉冲宽度/ms pulse width	0.512	0.512
脉冲间隔/s pulse duration	1	1
功率/W power	800	500
波束等效立体角/dB equivalent beam angle	-21.00	-21.00
换能器增益/dB transducer gain	27	27
吸收系数/(dB/m) absorption coefficient	0.018	0.045

1.4 声学映像数据筛选与预处理

参考相关文献[13-14],选取鲣质量与数量在 总渔获物中占比均超过 85%的调查站位的声学映 像数据进行研究,以尽可能地消除非鲣渔获物的 声信号干扰。选取出的映像数据再使用 Ecoview (v6.1, Echoview Software Pty. Ltd., Australia)软件 进行预处理。根据换能器的吃水深度与罩网作业 深度,本研究使用软件中的"可视线(visual line)" 变量去除海表面 10 m 以上及 50 m 以下的声学映 像;再使用多种过滤模块去除其他声学设备的干 扰噪声^[15]与海洋背景噪声^[16]。预处理后的声学映 像用于提取鲣单体信号。

1.5 鲣单体信号提取

使用软件中的"单体检测(single target detection)"变量提取鲣的单体信号,获取每个信号的后 向体积散射强度 S_V (volume backscattering strength, dB)、TS、深度位置等信息,检测方法为"分裂波束– 方法 2(split beam -method 2)",检测参数详见表 2。

表 2 单体目标检测参数 Tab. 2 Single target detection parameters

参数 parameter	设置 setting
目标强度阈值/dB minimum TS threshold	-62
脉冲宽度确定水平/dB pulse width determination level	6
最小标准脉宽 minimum normalized pulse width	0.75
最大标准脉宽 maximum normalized pulse width	1.5
最大波束补偿/dB max beam compensation	4
最小回波长度 minimum echo length	0.8
最大回波长度 maximum echo length	1.8
最大相位偏差 maximum phase deviation	8

检测完成后再使用"鱼类轨迹追踪(detect fish tracks)"变量筛选单体信号,原理是通过识别呈现相似运动模式的多个单体信号(一般不少于 3 个),以显示一条鱼在水中的运动轨迹,即筛选出属于同一条鱼的多个单体信号。追踪完成后,输出每尾鱼的轨迹信息。

1.6 鲣现场 TS 计算

将每个调查站位轨迹追踪后的声学映像划分为 100 pings×5 m 的分析单元(cell)^[11],提取单元内的鲣单体信号数目、分布深度、信号平均 S_V 、平均 TS 等参数,并计算单元鱼类数目 N_V (mean number of fish per sampled volume, inds),提取时间段为 18:00~21:00。参考 Sawada 等^[17]的方法,以各单元的 N_V 为指标,筛选可用于计算鲣现场 TS 的单元,以筛选出的分析单元的 TS 均值作为调查站位的鲣现场 TS。 N_V 常用于表征声学映像处理

单元内鱼类信号分布的重叠度, 当Nv大于某一值 时,对应单元的平均 TS 突然持续增大,则将该值 定义为极限值,并在计算现场 TS 时, 舍去 Nv 大 于该极限值的所有单元^[18-19]。N_V的计算公式为: $N_{\rm V} = c\tau \psi R^2 \rho_{\rm V}/2^{[11]}$,其中 c 代表声速(m/s), τ 代表脉 冲宽度(ms), ψ代表脉冲的等效波束角(以弧度 rad 表示), R 代表鲣离换能器的距离(m), ρ_v 代表鲣密 度(ind/m³), 根据以下公式计算: $\rho_{\rm v}=s_{\rm v}/\sigma_{\rm bs}$, 其中 $s_{\rm v}$ 为单元的后向体积散射系数(m²/m³), σ_{bs}为后向散 射截面积(m²), 计算公式为 $\sigma_{bs}=10^{(TS/10)}$ 。各单元的 N_V得出后,参考 Zhang 等^[11]的研究,将 N_V 进行 lg转换,以更好地筛选单元。对数转换完成后,通 过绘制单元平均 TS 与 lgNv 之间的散点分布图, 筛选可用于计算鲣现场 TS 的单元。

1.7 鲣时空分布变化

根据 18:00~21:00 之间的声学映像各单元的 平均值 Sv、鲣单体信号的数目、信号分布深度等 参数的变化信息来研究鲣的时空分布特性。将该 时间段的声学映像分为 6 段: (1)18:00~18:30; $(2)18:30 \sim 19:00;$ $(3)19:00 \sim 19:30;$ $(4)19:30 \sim 20:00;$ (5) 20:00~20:30; (6) 20:30~21:00。10~50 m 深度范 围的声学映像分为 8 个深度段: (1)10~15 m; (2)15~ 20 m; (3)20~25 m; (4)25~30 m; (5)30~35 m; (6)35~40 m; (7)40~45 m; (8)45~50 m。通过各单元 的平均 Sv 及鲣单体信号的数目与分布深度随时 间的变化信息来研究鲣的时空分布特性。

1.8 统计分析

本研究使用单样本 K-S 检验研究 3 个站位的 鲣叉长与现场 TS 的分布特征, 显著性水平为 0.05, 当检验结果不显著时(P>0.05),即呈正态分布。使 用 K-S 检验研究 S_V 及 TS 分布的时空差异性, 使 用 ANOVA 检验研究 Sv 及 TS 均值的时空差异性, 显著性水平均设为 0.05、即检验结果 P>0.05 时, 认定组间不存在显著性差异。

2 结果与分析

2.1 鲣生物学特征

3 个站位鲣数量与质量占总渔获的比例均超 过 85% (表 3~5), 且取样数目都为 50 条。S13 站 位的鲣叉长范围 281~431 mm, 平均(362.20± 35.73) mm; S14 站位的鲣叉长范围 290~442 mm,

表 3 S13 站位各种渔获物数量与重量所占比例 Tab. 3 Species composition caught by 3

falling-net a	at	stat	tion	S1
---------------	----	------	------	-----------

种类 species	数量 number	占比/% percentage	重量/g weight	占比/% percentage
鲣	750	87.41	811750	97.22
Katsuwonus pelamis				
鲔	27	3.15	5667	0.68
Euthynnus affinis				
鸢乌贼	31	3.61	4222	0.50
Symplectoteuthis oualaniensis				
长体圆鲹	6	0.70	829	0.10
Decapterus macrosoma				
扁舵鲣 Auxis thazard	46	5.13	12423	1.50

表 4 S14 站位各种渔获物数量与重量所占比例 Tab. 4 Species composition caught by falling-net at station S14

种类 species	数量 number	占比/% percentage	重量/g weight	占比/% percentage
鲣	264	85.44	280704	94.80
Katsuwonus pelamis				
黄鳍金枪鱼	21	6.80	8652	2.92
Thunnus lbacares				
鲔	9	2.91	2550	0.86
Euthynnus affinis				
白舌尾甲鲹	3	0.97	637	0.21
Uraspis helvolus				
扁舵鲣	12	3.88	3573	1.21
Auxis thazard				

表 5 A12 站位各种渔获物数量与重量所占比例 Tab. 5 Species composition caught by falling-net at station A12

种类 species	数量 number	占比/% percentage	重量/g weight	占比/% percentage
鲣 Katsuwonus pelamis	375	87.61	362875	98.37
细鳞圆鲹 Decapterus macarellus	37	8.64	5772	1.57
鸢乌贼 Symplectoteuthis oualaniensis	6	1.40	148	0.04
粒凸箱鲀 Ostracion cubicus	1	0.23	43	0.01
粗鳞灯笼鱼 <i>Myctophum asperum</i>	9	2.12	22	0.01

平均(357.66±36.61) mm; A12 站位的鲣叉长范围 302~448 mm, 平均(366.70±36.43) mm (图 4)。3 个站位的鲣叉长均呈非正态分布(P<0.05), 其中 S13 的叉长偏度为-0.67, 峰度为 0.15; S14 的叉长 偏度为 0.34, 峰度为-0.18; A12 的叉长偏度为 0.34, 峰度为-0.23。3 个站位之间的鲣叉长分布与平均 叉长均无显著性差异(*P*>0.05)。

2.2 鲣单体信号平均 Sv 的分布特性

10~50 m 深度范围内, 3 个站位不同时段的鲣 单体信号平均 S_V变化模式相似(图 5~7)。渔船开 灯前(18:00~19:00), 鲣主要分布于 40~50 m 水深; 灯光打开后, 鲣逐渐被诱集上浮(S_V 分布曲线峰 值 对应的深度变浅);随着灯诱时间的增长 (20:00~21:00), 鲣稳定分布于 10~30 m深度范围内。

10~50 m 深度范围内, 3 个站位不同时段的平 均 S_V 及 S_V 分布的检验统计结果也相似(表 6~8)。 渔船开灯前的 2 个时间段(18:00~18:30, 18:30~ 19:00)之间无显著差异, 但与开灯后的 4 个时间 段(19:00~21:00)之间存在显著差异; 而开灯之后 各时间段之间的平均 S_V 及 S_V 分布的差异变化模 式各异, 开灯半小时之后的 3 个时间段(19:30~ 21:00)之间的平均 S_V 及 S_V 分布无显著性差异。

图 7 A12 站位不同时间段的平均后向体积散射强度(S_V) Fig. 7 Mean volume backscattering strange (S_V) at different time phases for A12 station

			时间段 time phase	-	
时间段 time phase	18:00-18:30	18:30-19:00	19:00-19:30	19:30-20:00	20:00-20:30
18:30-19:00	$P^{\mathrm{a}}, P^{\mathrm{b}}$				
19:00-19:30	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}			
19:30-20:00	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	$P^{\rm a}, P^{\rm b}$		
20:00-20:30	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	$P^{\mathrm{a}}, P^{\mathrm{b}}$	
20:30-21:00	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	$P^{\rm a}, P^{\rm b}$	$P^{\rm a}, P^{\rm b}$

表 6 S13 站位不同时间段平均后向体积散射强度(S_V)及 S_V分布检验统计表 Tab. 6 Test statistics of mean and distribution of S_V among different phases for S13 station

注: a 表示 ANOVA 结果; b 表示 K-S 检验结果; *表示显著差异(P<0.05).

Note: a indicates the ANOVA result; b indicates the K-S test result; * indicates significant difference (P < 0.05).

Tab. 7 Test statistics of mean and distribution of $S_{\rm V}$ among different phases for S14 station					
时间卧 time phase			时间段 time phase		
HI HIE time phase	18:00-18:30	18:30-19:00	19:00-19:30	19:30-20:00	20:00-20:30
18:30-19:00	$P^{\mathrm{a}}, P^{\mathrm{b}}$				
19:00-19:30	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}			
19:30-20:00	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}		
20:00-20:30	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	$P^{\rm a}, P^{\rm b}$	$P^{\mathrm{a}}, P^{\mathrm{b}*}$	
20:30-21:00	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	$P^{\rm a}, P^{\rm b}$	$P^{\rm a}, P^{\rm b}$	$P^{\mathrm{a}}, P^{\mathrm{b}}$

表 7 S14 站位不同时间段平均 S_V 及 S_V 分布检验统计表 Fab. 7 Test statistics of mean and distribution of S_V among different phases for S14 statio

注: a 表示 ANOVA 结果; b 表示 K-S 检验结果; *表示显著差异(P<0.05).

Note: a indicates the ANOVA result; b indicates the K-S test result; * indicates significant difference (P<0.05).

表 8 A12 站位不同时间段平均 S_V 及 S_V 分布检验统计表 Tab. 8 Test statistics of mean and distribution of S_V among different phases for A12 station

时间段 time phase			时间段 time phase		
Fillelty time phase	18:00-18:30	18:30-19:00	19:00-19:30	19:30-20:00	20:00-20:30
18:30-19:00	$P^{\rm a}, P^{\rm b}$				
19:00-19:30	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}			
19:30-20:00	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}		
20:00-20:30	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	P^{a}, P^{b}	
20:30-21:00	P^{a^*}, P^{b^*}	$P^{a^{*}}, P^{b^{*}}$	P^{a^*}, P^{b^*}	$P^{\mathrm{a}}, P^{\mathrm{b}}$	$P^{\rm a}, P^{\rm b}$

注: a 表示 ANOVA 结果; b 表示 K-S 检验结果; *表示显著差异(P<0.05).

Note: a indicates the ANOVA result; b indicates the K-S test result; * indicates significant difference (P<0.05).

2.3 鲣单体信号平均 TS 的分布特性

通过分析鲣单体信号的 TS 分布及参考相关 文献^[20-22],本研究选择 TS 在-60~-43 dB 范围内 的单体信号进行研究,以消除渔获物中其他鱼类 回波的影响。10~50 m 深度范围内,3 个站位不同 时段的鲣单体信号数目与平均深度变化模式相似 (图 8~10)。渔船开灯前(18:00~19:00),鲣单体信号 主要分布于35 m以深;且被检测到的信号数目较 少。灯光打开后,鲣逐渐被诱集上浮,表现为鲣单 体信号平均深度变浅,信号数目明显增多。

3 个站位不同时间段鲣单体信号平均 TS 及 TS 分布的检验统计情况不尽相同,总体来看,开 灯前(18:00~19:00)与开灯1h后(20:00~21:00)的鲣 单体信号的平均 TS 及 TS 分布存在显著性差异 (表 9~11)。开灯之后4个时间段内的差异情况也 变化较大,开灯后 0.5 h (19:00~19:30)与放网前 0.5 h (20:30~21:00)之间的平均 TS 及 TS 分布也有 显著差异。

2.4 鲣现场平均 TS

本研究 3 个站位的 lgNv 与 TS 均无相关性 (P>0.05), lgNv 增大时, TS 没有相应增大,即不存 在极限值,所有单元均可用于鲣 TS 的现场测量 (图 11~13)。S13 站位的鲣 TS 为(-51.84±3.84) dB, 对应的平均叉长为 362.20 mm,偏度 0.11,峰度 -1.14。S14 站位的鲣 TS 为(-49.87±3.72) dB,对 应的平均叉长为 357.66 mm,偏度 0.01,峰度 -0.82;A12 站位的鲣 TS 为(-49.68±2.96) dB,对应 的平均叉长为 366.70 mm,偏度 0.58,峰度-0.64。 3 个站位的鲣现场 TS 均呈非正态分布(P<0.05)。

Tab. 9

wonus pelamis among different phases for A12 station

表 9	S13 站位不同时间段平均 TS 及 TS 分布检验统计表	
Test statistics	of means and distribution of TS among different phases for S13 stati	on

时间码 time phase			时间段 time phase		
HI HIZ time phase	18:00-18:30	18:30-19:00	19:00-19:30	19:30-20:00	20:00-20:30
18:30-19:00	$P^{\rm a}, P^{\rm b}$				
19:00-19:30	$P^{\mathrm{a}}, P^{\mathrm{b}}$	$P^{\rm a}, P^{\rm b}$			
19:30-20:00	$P^{\mathrm{a}}, P^{\mathrm{b}}$	$P^{\rm a}, P^{\rm b}$	$P^{\rm a}, P^{\rm b}$		
20:00-20:30	P^{a^*}, P^{b}	P^{a^*}, P^{b}	$P^{\rm a}, P^{\rm b}$	$P^{\rm a}, P^{\rm b}$	
20:30-21:00	P^{a^*}, P^{b^*}	$P^{a^{*}}, P^{b^{*}}$	$P^{a}, P^{b^{*}}$	$P^{\mathrm{a}}, P^{\mathrm{b}}$	$P^{\mathrm{a}}, P^{\mathrm{b}}$

注: a 表示 ANOVA 结果; b 表示 K-S 检验结果; *表示显著差异(P<0.05).

Note: a indicates the ANOVA result; b indicates the K-S test result; * indicates significant difference (P<0.05).

Tab. 10	Tab. 10 Test statistics of means and distribution of TS among different phases for S14 station					
时间卧 time phase			时间段 time phase			
时间权 time pliase	18:00-18:30	18:30-19:00	19:00-19:30	19:30-20:00	20:00-20:30	
18:30-19:00	$P^{\mathrm{a}}, P^{\mathrm{b}}$					
19:00-19:30	$P^{a}, P^{b^{*}}$	$P^{\mathrm{a}}, P^{\mathrm{b}*}$				
19:30-20:00	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}			
20:00-20:30	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	$P^{\mathrm{a}}, P^{\mathrm{b}*}$	$P^{\rm a}, P^{\rm b}$		
20:30-21:00	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	$P^{\mathrm{a}}, P^{\mathrm{b}*}$	$P^{a^{*}}, P^{b^{*}}$	$P^{\rm a}, P^{\rm b}$	

表 10 S14 站位不同时间段平均 TS 及 TS 分布检验统计表

注: a 表示 ANOVA 结果; b 表示 K-S 检验结果; *表示显著差异(P<0.05).

Note: a indicates the ANOVA result; b indicates the K-S test result; * indicates significant difference (P<0.05).

表 11 A12 站位不同时间段平均 TS 及 TS 分布检验统计表 Tab. 11 Test statistics of means and distribution of TS among different phases for A12 station

时间段 time phase	时间段 time phase				
	18:00-18:30	18:30-19:00	19:00-19:30	19:30-20:00	20:00-20:30
18:30-19:00	$P^{\rm a}, P^{\rm b}$				
19:00-19:30	$P^{\rm a}, P^{\rm b}$	$P^{\rm a}, P^{\rm b}$			
19:30-20:00	$P^{\rm a}, P^{\rm b}$	$P^{\rm a}, P^{\rm b}$	$P^{\rm a}, P^{\rm b}$		
20:00-20:30	P^{a^*}, P^{b}	P^{a^*}, P^{b}	P^{a^*}, P^{b^*}	$P^{\rm a}, P^{\rm b}$	
20:30-21:00	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	P^{a^*}, P^{b^*}	$P^{\rm a}, P^{\rm b}$

注: a 表示 ANOVA 结果; b 表示 K-S 检验结果; *表示显著差异(P<0.05).

Note: a indicates the ANOVA result; b indicates the K-S test result; * indicates significant difference (P<0.05).

Fig. 11 Mean TS as a function of the lgN_V index for S13 station N_V is mean number of fish per sampled volume.

Fig. 12 Mean TS as a function of the lgN_V index for S14 station N_V is mean number of fish per sampled volume.

Fig. 13 Mean TS as a function of the lgN_V index for A12 station N_V is mean number of fish per sampled volume.

3 讨论

3.1 鲣单体信号提取

非目标物种过多时,目标鱼种单体信号的提

取将可能出现偏差,本研究选择鲣数量与质量均 占绝大多数(数量超过 85%,质量超过 90%)的 3 个站位开展研究,可在一定程度上确保单体信号 的提取精度。3 个站位的鲣叉长均呈非正态分布 (图 4),可能是由于样本测量的数目不足所致,在 以后的调查中将测量更多的鲣样品(如 100 只), 以获取准确的叉长信息。

由于渔获物中存在少量的鸢乌贼、长体圆鲹、 黄鳍金枪鱼等生物,这些物种的单体信号也可能 被提取到,需要采取措施去除。Boyra等^[29]根据鲣 的集群特点,使用"集群检测"的方法有效去除了 回波强度小于鲣的小型鱼类信号以及大于鲣的金 枪鱼信号。基于相似原理,本研究去除-60~43 dB 范围以外的单体信号,可有效去除其他渔获物的 干扰回波,提高鲣单体信号的提取精度。

3.2 鲣分布

鲣通常集群于水上层,形成密集的鲣群,做 长距离的索饵洄游,索饵时间的高峰为每日的清 晨和傍晚^[23]。Schaefer 等^[24]发现赤道东太平洋的 鲣 98.6%的时间生活在 44 m以浅水域, Matsumoto 等^[25]发现赤道中太平洋的鲣夜间游泳深度通常 小于 50 m,基于上述文献和罩网作业深度,本研 究分析处理了 10~50 m 深度范围的鲣声学映像, 可在避免船底气泡层干扰的同时,有效研究鲣的 夜间分布情况。

罩网渔船打开集鱼灯后,鲣因捕食受灯光诱 集的小型鱼类、头足类、甲壳类等生物而逐渐上 浮至浅层水域^[26-27]。本研究 3 个站位不同时间段 的单元平均 *S*_V、鲣单体信号的数目、信号分布深 度等参数的变化均揭示了鲣随开灯时间的增长而 逐渐上浮的现象(图 5~10)。单元的平均 *S*_V与其内 部的鱼类丰度相关, *S*_V 值越大,对应的鱼类分布 数量越多^[28]。开灯前(18:00~19:00),单元平均 *S*_V 的峰值位于 40~50 m 水层;开灯之后,*S*_V峰值对 应的深度逐渐变浅,至放网前半个小时(20:30~ 21:00),峰值深度位于 20~30 m 水层,表明鲣群的 主体分布水层已经由 40~50 m 上浮至 20~30 m。 开灯前(18:00~19:00), 10~50 m 深度范围内的鲣单 体信号较少,且主要分布于 40 m 水深;随着开灯 时间的增长,浅水层的鲣单体信号逐渐增多,表 明有大量鲣从 50 m 以深水层被吸引上来。

鲣在夜晚的分布还受到环境因子的影响,
Schaefer 等^[24]发现鲣在夜间主要分布于温跃层以上,温度范围在 18.8~27.2 ℃; Matsumoto 等^[25]发现鲣夜间的分布水层温度为 24~30 ℃,本研究
S13 站位 50 m 以浅水域的温度范围为 24.8~29.2 ℃, S14 站位为 24.4~28.6 ℃, A12 站位为
24.3~28.8 ℃,均在上述研究范围内。

3.3 鲣现场 TS 计算

如果多个鲣的回波被视为单体回波分析处理, 将会高估现场 TS^[17]。以 N_V 为指标,可筛选用于 计算鲣现场 TS 的单元。Zhang 等^[11]在测量鸢乌贼 的现场 TS 时,9 个站位的 N_V 范围为 0.04~0.20, Foote^[29]建议将 N_V =0.04 作为筛选极限值, Simmonds 等^[28]建议不同鱼种选择不同的 N_V 极限值, Ona^[19] 建议 N_V =1 作为筛选极限值。本研究 3 个站位均 不存在极限值,所有单元均可用于鲣 TS 的现场 计算(图 11~13)。

针对鲣现场 TS 的研究较少, Boyra 等^[30]使 用 EK60 探鱼仪, 测量了 3 个站位的鲣现场 TS, 3 个站位的鲣平均叉长分别为 480 mm、520 mm、 490 mm, 得到的 120 kHz 的现场平均 TS 为–37 dB。 本研究 3 个站位的鲣平均叉长分别为 362 mm、 357 mm、366 mm, 计算的 120 kHz 的现场平均 TS 为–50.46 dB, 远小于 Boyra 等^[30]的结果, 可能 的原因如下: (1) 本研究 3 站位的鲣样本平均叉 长小于(图 4), 对应的平均 TS 也会小于 Boyra 等^[30]; (2) Boyra 等的渔获物中, 鲣的数量与质量占比均 超过 95%, 其他渔获为 TS 较大的金枪鱼类; (3) 本 研究的渔获物中, TS 较低的小型鱼类与头足类仍 占有一定比例, 计算的鲣现场 TS 也将低于 Boyra 等^[29]的结果。

S13 站位的鲣平均叉长大于 S14 站位, 而现 场平均 TS 则小于 S14 站位, 原因可能是 S14 站位 的渔获物中有少量平均叉长与鲣相近的黄鳍金枪 鱼存在, 使得计算的 S14 站位的平均 TS 偏高。鲣 和黄鳍金枪鱼都属于金枪鱼科, 不同的是鲣体内 无鱼鳔, 金枪鱼则相反。鱼鳔是鱼类反射声波的 重要器官, 相同尺度下的鲣 TS 也将小于金枪鱼。 Imaizumi 等^[31]发现倾角为 0°时, 相同尺寸的大眼 金枪鱼的 TS 比鲣高 10 dB; Bertrand 等^[32]发现相同尺寸的大眼金枪鱼的 TS 比黄鳍金枪鱼高 5 dB。 基于上述结论,可以推断相同尺寸的黄鳍金枪鱼的 TS 比鲣要高 5 dB,即存在少量黄鳍金枪鱼的 S14 站位的平均 TS 要高于 S13 站位。

本研究通过 3 个站位的声学映像与鲣生物学数据,分析了鲣在灯光罩网渔船开灯前后的时空分布变化特性与现场 TS,研究结果有助于更好地了解灯光诱集条件下的鲣行为及其声学特性。然而本研究的站位较少,且时间跨度较大,不足以像 Zhang 等^[11]的研究那样,得出可靠的目标鱼种的现场 TS-体(叉)长关系式(TS=20log*L*+*b*₂₀,*L* 指叉长,*b*₂₀为目标强度参数),也就无法应用于种群的声学评估研究中,未来还需要采集更多站位的数据来完善本研究,以期提高南海鲣种群的声学评估精度,为鲣资源的开发利用做出贡献。

参考文献:

- [1] Collette B B, Nauen C E. FAO species catalogue. vol. 2: Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos, and related species known to date[R]. FAO Fisheries Synopsis, 1983, 125(2): 42-43.
- [2] Chen Y Y, Chen X J. Reviews on skipjack (Katsuwonus pelamis) fishery in the west-central Pacific Ocean[J]. Journal of Guangdong Ocean University, 2017, 37(5): 34-43. [陈洋 洋,陈新军. 中西太平洋鲣鱼渔业研究进展[J]. 广东海洋 大学学报, 2017, 37(5): 34-43.]
- [3] Xu Y W, Zhang K, Qiu Y S, et al. The current situation and China's countermeasures of tuna in the South China Sea[J] Transactions of Oceanology and Limnology, 2017(6): 108-114. [许友伟, 张魁, 邱永松, 等. 南海金枪鱼开发利用现 状与发展策略[J]. 海洋湖沼通报, 2017(6): 108-114.]
- [4] Zhang P, Zeng X G, Yang L, et al. Analyses on fishing ground and catch composition of large-scale light falling-net fisheries in South China Sea[J]. South China Fisheries Science, 2013, 9(3): 74-79. [张鹏, 曾晓光, 杨吝, 等. 南海区 大型灯光罩网渔场渔期和渔获组成分析[J]. 南方水产科 学, 2013, 9(3): 74-79.]
- [5] Yang Q, Li Y Z, Zhang P, et al. Acoustic survey of the Symplectoteuthis oualaniensis resources in the South China Sea based on light falling-net[J]. Journal of Fisheries of China, 2013, 37(7): 1032-1039. [杨权, 李永振, 张鹏, 等. 基于灯光罩网法的南海鸢乌贼声学评估技术研究[J]. 水产学报, 2013, 37(7): 1032-1039.]
- [6] Matsumoto T, Satoh K, Semba Y, et al. Comparison of the

behavior of skipjack (*Katsuwonus pelamis*), yellowfin (*Thunnus albacares*) and bigeye (*T. obesus*) tuna associated with drifting FADs in the equatorial central Pacific Ocean[J]. Fisheries Oceanography, 2016, 25(6): 565-581.

- [7] Schaefer K M, Fuller D W. Simultaneous behavior of skipjack (*Katsuwonus pelamis*), bigeye (*Thunnus obsesus*), and yellowfin (*T. albacares*) tunas, within large multi-species aggregations associated with drifting fish aggregating devices (FADs) in the equatorial eastern Pacific Ocean[J]. Marine Biology, 2013, 160(11): 3005- 3014.
- [8] Tan X C, Kang M, Tao J P, et al. Hydroacoustic survey of fish density, spatial distribution, and behavior upstream and downstream of the Changzhou Dam on the Pearl River, China[J]. Fisheries Science, 2011, 77(6): 891-901.
- [9] Watkins J L, Reid K, Ramm D, et al. The use of fishing vessels to provide acoustic data on the distribution and abundance of Antarctic krill and other pelagic species[J]. Fisheries Research, 2016, 178: 93-100.
- [10] Bernard K S, Steinberg D K. Krill biomass and aggregation structure in relation to tidal cycle in a penguin foraging region off the Western Antarctic Peninsula[J]. ICES Journal of Marine Science, 2013, 70(4): 834-849.
- [11] Zhang J, Chen Z Z, Chen G B, et al. Hydroacoustic studies on the commercially important squid *Sthenoteuthis oualaniensis* in the South China Sea[J]. Fisheries Research, 2015, 169: 45-51.
- [12] Foote K G, Knudsen H P, Vestnes G, et al. Calibration of acoustic instruments for fish density estimation: A practical guide[R]. ICES Cooperative Research Report, 1987(144): 1-69.
- [13] Boyra G, Moreno G, Sobradillo B, et al. Target strength of skipjack tuna (*Katsuwanus pelamis*) associated with fish aggregating devices (FADs)[J]. ICES Journal of Marine Science, 2018, 75(5): 1790-1802.
- [14] Boyra G, Moreno G, Orue B, et al. In situ target strength of bigeye tuna (*Thunnus obesus*) associated with fish aggregating devices[J]. ICES Journal of Marine Science, 2019, 76(7): 2446-2458.
- [15] Wang X L, Zhao X Y, Tang Y, et al. Removal of the interinstrument acoustic interference and its application in the study of Antarctic krill swarms[J]. Progress in Fishery Sciences, 2014, 35(2): 22-29. [王新良,赵宪勇,汤勇,等. 声 学仪器间干扰信号的消除及其在南极磷虾集群研究中的 应用[J]. 渔业科学进展, 2014, 35(2): 22-29.]
- [16] Tarling G A, Klevjer T, Fielding S, et al. Variability and predictability of Antarctic krill swarm structure[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009,

56(11): 1994-2012.

- [17] Sawada K, Furusawa M, Williamson N J. Conditions for the precise measurement of fish target strength *in situ*[J]. The Journal of the Marine Acoustics Society of Japan, 1993, 20(2): 73-79.
- [18] Simmonds E J, MacLennan D N. Fisheries acoustics: Theory and Practice[M]. Oxford: Blackwell Publishing, 2005: 226-227.
- [19] Ona E. Physiological factors causing natural variations in acoustic target strength of fish[J]. Journal of the Marine Biological Association of the United Kingdom, 1990, 70(1): 107-127.
- [20] Zare P, Kasatkina S M, Shibaev S V, et al. *In situ* acoustic target strength of anchovy kilka (*Clupeonella engrauliformis*) in the Caspian Sea (Iran)[J]. Fisheries Research, 2017, 186: 311-318.
- [21] De Robertis A, Taylor K. In situ target strength measurements of the scyphomedusa *Chrysaora melanaster*[J]. Fisheries Research, 2014, 153: 18-23.
- [22] Chen G B, Li Y Z, Chen P M, et al. Measurement of singlefish target strength in the South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(4): 554-562.
- [23] Wang X F, Xu L X, Zhu G P. Review on the biology of skipjack tuna *Katsuwonus pelamis*[J]. Journal of Biology, 2009, 26(6): 68-71, 79. [王学昉, 许柳雄, 朱国平. 鲣鱼 (*Katsuwonus pelamis*)生物学研究进展[J]. 生物学杂志, 2009, 26(6): 68-71, 79.]
- [24] Schaefer K M, Fuller D W. Simultaneous behavior of skipjack (*Katsuwonus pelamis*), bigeye (*Thunnus obsesus*), and yellowfin (*T. albacares*) tunas, within large multi-species aggregations associated with drifting fish aggregating devices (FADs) in the equatorial eastern Pacific Ocean[J]. Marine Biology, 2013, 160(11): 3005-3014.
- [25] Matsumoto T, Satoh K, Toyonaga M. Behavior of skipjack tuna (*Katsuwonus pelamis*) associated with a drifting FAD monitored with ultrasonic transmitters in the equatorial central Pacific Ocean[J]. Fisheries Research, 2014, 157: 78-85.
- [26] Su L, Chen Z Z, Zhang P, et al. A preliminary analysis on biological characteristics of *Katsuwonus pelamis* in the Nansha Islands sea area in spring[J]. South China Fisheries Science, 2017, 13(4): 34-41. [粟丽, 陈作志, 张鹏,等. 春季 南沙海域鲣渔业生物学特性的初步分析[J]. 南方水产科 学, 2017, 13(4): 34-41.]
- [27] Zhou S F. Impacts of the El Niño Southern Oscillation on skipjack tuna purse-seine fishing grounds in the Western and Central Pacific Ocean[J]. Journal of Fishery Sciences of China, 2005, 12(6): 739-744. [周甦芳. 厄尔尼诺-南方涛动

现象对中西太平洋鲣鱼围网渔场的影响[J]. 中国水产科 学, 2005, 12(6): 739-744.]

- [28] Simmonds J, MacLennan D N. Fisheries Acoustics: Theory and Tractice, second edition[M]. 2nd Ed. Oxford: Blackwell Publishing, 2005: 187-190.
- [29] Foote, K G. Coincidence echo statistics[J]. The Journal of the Acoustical Society of America, 1996, 99(1): 266-271.
- [30] Boyra G, Moreno G, Sobradillo B, et al. Target strength of skipjack tuna (*Katsuwanus pelamis*) associated with fish aggregating devices (FADs)[J]. ICES Journal of Marine Sci-

ence, 2018, 75(5): 1790-1802.

- [31] Imaizumi T, Abe K, Wang Y, et al. Classification of three tuna species in enclosures by using target strength spectra measured by a broadband split-beam system[J]. The Journal of the Acoustical Society of America, 2012, 131(4): 3287.
- [32] Bertrand A, Josse E, Massé J. In situ acoustic target-strength measurement of bigeye (*Thunnus obesus*) and yellowfin tuna (*Thunnus albacares*) by coupling split-beam echosounder observations and sonic tracking[J]. ICES Journal of Marine Science, 1999, 56(1): 51-60.

Distribution of skipjack tuna (*Katsuwonus pelamis*) associated with a light falling-net in the South China Sea

WANG Teng¹, ZHANG Peng¹, LI Jie¹, ZHANG Jun¹, XIE Bin², YAN Lei¹, YANG Bingzhong¹

- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China;
- 2. Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China

Abstract: We investigated the distribution and the in-situ target strength (TS, dB) of the skipjack tuna Katsuwonus *pelamis* associated with light falling-nets in the South China Sea using the Simrad EY60 scientific echosounder. The volume backscattering strength (Sv, dB), TS, and mean number of fish per sampled volume (N_V) were studied. The average fork length of skipjack tuna in the S13, S14, and A12 stations were (362.20±35.73) mm, (357.66± 36.61) mm, and (366.70±36.43) mm, respectively. There was no significant difference in the average fork length among the three stations (P>0.05). Within the depth range of 10–50 m, the mean S_V change pattern of the three stations at different time phases was similar. Before the fishing lights were turned on (18:00–19:00), the K. pelamis was mainly distributed at a water depth of 40-50 m; after the lights turned on, the K. pelamis was gradually attracted and floated, and thus the depth corresponding to the peak of the $S_{\rm V}$ distribution curve became shallower. With the increase of lighting time (20:00-21:00), the K. pelamis was stably distributed at a depth range of 10-30 m. In the depth range of 10–50 m, the number of individual signals at the three stations in different time phases was also similar to the mean depth change pattern. Before the fishing lights were turned on (18:00–19:00), the signals were mainly distributed at a depth of 35 m, and few signals were detected. After the lights were turned on, K. pelamis were gradually attracted and floated, resulting in a shallower mean depth of the signals, and the number of signals increased significantly. There were no $N_{\rm V}$ limit values at the three stations in this study, and all cells can be used for the in-situ TS calculation. The mean in-situ TS was (-51.84 ± 3.84) dB at the S13 station, (-49.87 ± 3.72) dB at the S14 station, and (-49.68 ± 2.96) dB at the A12 station. The in-situ TS of K. pelamis at the three stations were non-normally distributed (P < 0.05). These results help us better understand the fish behavior and acoustic characteristics under the conditions of light trapping and also set up a technical foundation for future acoustic evaluation.

Key words: *Katsuwonus pelamis*; fishery acoustics; in-situ TS; spatiotemporal distribution; light falling-net Corresponding author: ZHANG Peng. E-mail: trawl@126.com