#### DOI: 10.12264/JFSC2021-0264

### 5-HT1A 受体在翘嘴鳜中的表达及 DNA 甲基化分析

庄武元<sup>1,2</sup>, 梁旭方<sup>1,2</sup>, 肖倩倩<sup>1,2</sup>, 张志陆<sup>1,2</sup>, 蔡文静<sup>1,2</sup>

1. 华中农业大学水产学院, 华中农业大学鳜鱼研究中心, 湖北 武汉 430070;

2. 长江经济带大宗水生生物产业绿色发展教育部工程研究中心, 湖北 武汉 430070

摘要:动物可通过学习记忆适应复杂的生存环境,而 5-HT1A 受体在学习记忆中发挥重要作用。为探究 5-HT1A 受体在翘嘴鳜(Siniperca chuatsi)驯化过程中摄食及食性巩固的作用,本研究采用同源序列比对的方式,在翘嘴鳜基因组获取了 htr1a 基因的序列,通过序列比对和进化树分析,发现其有两个亚型,分别命名为 htr1aa 和 htr1ab,其编码的氨基酸序列与斑马鱼(Danio rerio)、青鳉(Oryzias latipes)具有较高的同源性,相似度都大于 70%,进化关系上与狼鲈(Dicentrar chuslabrax)最为相近,表明翘嘴鳜 htr1a 基因在进化中具有较高的保守性。此外,本研究还分析了翘嘴鳜 htr1a 基因的表达和 DNA 甲基化。与经过一次驯化组相比,在二次驯化组中 htr1aa 基因表达显著降低 (P<0.05),同时 DNA 甲基化也显著降低,而 htr1ab 基因在两组中表达没有显著变化(P>0.05)。而与摄食相关的食欲 基因 pomc 的表达,二次驯化比一次驯化组显著降低(P<0.05)。以上结果说明,翘嘴鳜食性驯化过程中,可能通过 htr1aa 基因启动子区域的甲基化状态改变 htr1aa 的转录水平,从而影响学习记忆通路中关键因子抑制食欲因子 pomc 的表达。由此认为 htr1aa 的 DNA 甲基化可能在翘嘴鳜摄食相关基因表达上发挥重要调控作用。

学习记忆是动物为更好适应环境通过群体或 个体之间的学习获得信息的过程。其中最重要的 包括获得新的觅食技能<sup>[1]</sup>和食物偏好<sup>[2-4]</sup>。关于学 习记忆的研究主要集中在哺乳动物上<sup>[5]</sup>,但目前 在鱼类中也发现学习记忆影响着其行为变化<sup>[6]</sup>。 在翘嘴鳜(*Siniperca chuatsi*)<sup>[7]</sup>、孔雀鱼(*Poecilia reticulata*)<sup>[8]</sup>的研究中发现学习记忆对鱼类的摄食 有促进作用。目前在动物上的研究表明,学习记 忆过程与其控制能量平衡的神经以及生理基础之 间存在着非常密切的关系,通过各种内分泌信号 相互作用于脑内的神经元,达到对摄食的控制<sup>[9]</sup>。 但是学习记忆参与摄食调控的机制尚不明确。

动物的摄食受单胺系统、神经肽和激素之间 复杂的相互作用的调节<sup>[10-11]</sup>。在哺乳动物中血清 素(5-HT)被认为是参与控制食物摄入量的单胺神 经递质之一,一般通过激活中央血清素神经元 减少食物摄入量<sup>[10]</sup>。而在鱼类中 5-HT 对摄食的 调控作用也被证实<sup>[12]</sup>。最近的几项研究表明,在 鱼类中 5-HT 可以抑制食物的摄入,例如虹鳟 (*Oncorhynchus mykiss*)<sup>[13]</sup>、翘嘴鳜<sup>[14]</sup>、金鱼 (*Carassius auratus*)<sup>[15]</sup>。5-HT 的作用是由大量相关 受体介导的<sup>[16]</sup>,在哺乳动物中,5HT1B和5-HT2C 受体亚型是参与5-HT 厌食作用 5-HT 受体的主要 类型<sup>[17-18]</sup>,但是有人指出其他亚型的血清素受体, 如 5-HT1A 受体,也可以参与调解食性变化<sup>[19]</sup>。 最近从虹鳟获得的证据表明,5-HT 的厌食作用可 能是通过激活 5-HT1A 和 5-HT2C 类似受体调解 的<sup>[20]</sup>。有研究调查了 5-HT1A 受体在学习和记忆

收稿日期: 2021-06-07; 修订日期: 2021-07-29.

基金项目:国家自然科学基金面上项目(31772822);现代农业产业技术体系专项资金项目(CARS-46).

作者简介: 庄武元(1996-), 男, 硕士研究生, 研究方向为鱼类营养与生理. E-mail: wuyuanzhuang\_@163.com

通信作者:梁旭方,博士,教授,研究方向为鱼类摄食与饲料利用功能基因组学.E-mail: xufang\_liang@hotmail.com

中的作用,体外注射几种 5-HT1A 受体激动剂会 抑制学习性能<sup>[21-24]</sup>,但 5-HT1A 受体拮抗剂则会 促进学习<sup>[25]</sup>,这表明 5-HT1A 受体在控制抑制性 学习中发挥作用。

实验室前期研究表明胃蛋白酶基因(pepsinoge, pep)和生长激素基因(growth hormone, gh)是鳜的 驯化性状关键基因,可能与其摄食相关<sup>[26]</sup>,而 5-HT 作为影响食物摄入的重要神经递质, 这种神 经递质参与了学习记忆中关于摄食的神经元网络, 在金鱼<sup>[27]</sup>和虹鳟<sup>[28]</sup>中都得到证实,但在翘嘴鳜上 没有更多报道关于可能参与影响驯化过程中摄食 的血清素及其受体基因的数据,结合当前有研究 报道从表观遗传的角度证实 DNA 甲基化影响到 鱼类驯化后摄食及食性<sup>[29]</sup>。因此为探究摄食及食 性巩固过程中学习记忆的表观遗传调节,笔者比 较了驯化1次和驯化2次翘嘴鳜 5-HT1A 受体基 因的表达及甲基化水平是否对厌食神经肽(proopiomelanocortin, pomc)和促食神经肽 Y (neuropeptide v, npv)的表达存在调控作用。为进一步探 讨学习记忆对鱼类摄食调控的分子机制,并进一 步完善翘嘴鳜人工饲料驯化技术理论依据。

### 1 材料与方法

### 1.1 实验鱼养殖及样品采集

实验用鳜购自武汉四汇水产科技有限公司 (中国,武汉),饲养在华中农业大学水产基地。鳜 暂养在恒流过滤水的鱼缸中,体积350 L,水温控 制在(22±2) ℃,同时采用空气泵充氧。每缸放置 15 尾翘嘴鳜。每天投喂 2 次(9:00、17:00),定量 饱食投喂 20%鱼体质量的活饵料鱼,适应环境 3 d, 保证翘嘴鳜能够正常摄食,并且状态良好,投喂 结束后及时清除排泄物。

本次实验鱼是根据窦亚琪等<sup>[29]</sup>2018 年驯化 方法驯化,从1次驯食实验组和2次驯食实验组 中各随机选取了7尾鳜。随机选择其中6尾鳜用 于进行基因表达水平分析和 DNA 甲基化水平分 析,每组剩余的1尾鳜作为备用样品。每次驯化 训练结束后,鳜用 MS-222 (雷德蒙德市,华盛顿 州,美国)(200 mg/L)深度麻醉后立即置于冰盘上 解剖取脑组织样品,然后将鳜脑组织样品迅速在 液氮中冷冻并储存在-80 ℃冰箱中用于后续 RNA 和 DNA 的提取分离, 以用于检测基因表达水平 和 DNA 甲基化水平。

鱖脑组织的总 RNA 采用 RNA Trizol Reagent 试剂盒(TaKaRa, Tokyo, Japan)进行提取,按照说 明书的步骤进行提取操作。在 BioTek Synergy 2 luminometer (BioTek, Winooski, VT, USA)仪器上 测定总 RNA 的纯度和含量,确保 RNA 的 A260/ A280 值大于 2.0,并使用 1%的琼脂糖凝胶(Biowest Agarose, Madrid, Spain)进行电泳检测以确保总 RNA 的完整性。根据说明书的步骤,采用 Revert Aid™ Reverse Transcriptase (TaKaRa, Tokyo, Japan)对总 RNA 进行反转录程序,从 1 μg 总 RNA 获得终体积为 20 μL 的 cDNA,反转录 PCR 程序 为 50 ℃, 15 min, 80 ℃, 5 s。

### 1.2 实验方法

1.2.1 翘嘴鳜 htr1aa 和 htr1ab 的基因结构、多重 比对及系统进化树分析 翘嘴鳜 htr1a 序列来自 笔者所在课题组翘嘴鳜基因组数据库,发现有两 个亚型,将得到的 htr1aa 和 htr1ab 序列在 NCBI 上比对,确定其可靠性。根据内含子以 GT 起始并 以 AG 终止的原则,分析获取的翘嘴鳜 htr1aa、 htr1ab 基因 cDNA 序列和基因组序列,确定其编 码序列的碱基组成。并与斑马鱼、青鳉、狼鲈、 虹鳟和三刺鱼(Gasterosteus aculeatus)比较 htr1aa、 htr1ab 的基因结构。

利用 The Sequence Manipulation Suite (http:// www.bio-soft.net/sms/)预测 htr1aa 和 htr1ab CDS 序 列编码的氨基酸序列,并使用在线软件 ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/)与其他 物种进行氨基酸序列多重比对。系统进化树分析 使用了斑马鱼、三刺鱼、狼鲈、虹鳟、青鳉、人(Homo sapiens)、鼠(Mus musculus)、斑点雀鳝(Lepisosteus oculatus)、大西洋鲑(Salmo salar)、爪蟾(Xenopus laevis)、红旗东方鲀(Takifugu rubripes)、花斑剑尾 鱼(Xiphophorus maculatus)、加州鲈(Micropterus salmoides)物种的 htr1aa 或 htr1ab 氨基酸序列,且均 从 Ensembl 或 GenBank 数据库中获得。用 ClustalW2 对与列举的物种的 htr1aa 或 htr1ab 进行氨基酸 序列多重比对后,再用 MEGAX 软件以邻接法 (neighbor-joining, NJ)构建进化树(bootstrap=1000)。 翘嘴鳜相关基因的 mRNA 表达水平分析 1.2.2 利用实时荧光定量 PCR 技术对 htrlaa、htrlab、 npy、pomc 基因的 mRNA 表达水平进行检测, 根 据基因序列设计的引物如表1所示。实时荧光定 量 PCR 在定量热循环仪(MyiQ<sup>™</sup> 2 Two-Color Real-Time PCR Detection System, BIO-RAD, Hercules, CA, USA)上进行检测。 鳜 rpl13a (60S ribosomal protein L13a)基因作为内参基因,可用 以标准化模板量。每个 cDNA 样品进行 3 个技术 重复。按照 AceQ qPCR SYBR Green Master Mix (Vazyme Biotech Co., Piscataway, NJ, USA)的说明 书, 总体积 20 μL 的反应体系如下: 10 μL AceQ qPCR SYBR Green Master Mix, 1 µL cDNA, 上下 游引物(由上海生工合成)各 0.4 µL (10 µmol/L), 和 8.2 μL ddH<sub>2</sub>O。PCR 反应循环参数为: 95 ℃预 变性 3 min; 然后如下程序进行 40 个循环, 即

95 ℃变性 10 s, 58 ℃ (根据不同引物的退火温度) 退火 30 s; 绘制熔解曲线(从 65 ℃以 0.5 ℃/s 速率 逐渐升到 95 ℃, 每隔 6 s 采集 1 次数据信号)。采 用优化的  $2^{-\Delta\Delta Ct}$ 法, 以 *rpl13a* 基因的定量表达水 平为内参进行分析。通过 PCR 产物测序和熔解曲 线确定引物具有较好的特异性。采用 AceQ qPCR SYBR Green Master Mix (Vazyme Biotech Co., Piscataway, NJ, USA)说明书的步骤测定引物扩增 效率,区间在 98%~105%。基因表达水平相对于 内参基因表达水平,使用  $2^{-\Delta\Delta Ct}$  方法计算(Livak and Schmittgen 2001)。每个 cDNA 样本进行了 3 次重复扩增。数据使用 CFX Manager™ software (Version 1.0)进行计算。每个样本的  $\Delta C_t$  值减去校 准值为  $\Delta\Delta C_t$ , 基因表达水平使用 2<sup>-ΔΔCt</sup> 公式计算, 值以相对于设定的对照组值的倍数来表示。基因 表达以相对于校准值的倍数表示,校准值的单位 为1个任意单位。

表 1 实时荧光定量 PCR 的引物序列 Tab. 1 Nucleotide sequences of the primers for real-time PCR

| 基因<br>gene name | 引物<br>primer | 序列(5'-3')<br>sepuence (5'-3') | 退火温度/℃<br>annealing temperature | 产物大小/bp<br>product size |
|-----------------|--------------|-------------------------------|---------------------------------|-------------------------|
| htr1aa          | htr1aa-F     | TCTCCTCCACATCCGTTC            | 55                              | 217                     |
|                 | htr1aa-R     | AACTGCCCTCACTCACA             |                                 |                         |
| htr1ab          | htr1ab-F     | GCTCACGCTGATGCTGGTT           | 58                              | 282                     |
|                 | htr1ab-F     | AGGTTGCCTTTGGAGTTGCT          |                                 |                         |
| rpl13a          | rpl13a-F     | TATCCCCCCACCCTATGACA          | 59                              | 100                     |
|                 | rpl13a-R     | ACGCCCAAGGAGAGCGAACT          |                                 |                         |
| npy             | npy-F        | GTTGAAGGAAAGCACAGACA          | 52                              | 202                     |
|                 | npy-R        | GCTCATAGAGGTAAAAGGGG          |                                 |                         |
| pomc            | pomc-F       | GGCTGAAGATGGTGTGTCTATG        | 56                              | 268                     |
|                 | pomc-R       | ACATGCAGAGGTGAATACAGTC        |                                 |                         |

1.2.3 翘嘴鳜 htr1a 基因 DNA 甲基化水平分析和 亚硫酸氢盐硫化 PCR (BSP) 将从一次驯化实验 组和二次驯化实验组中各随机选取的 6 尾鳜的脑 组织进行下一步分析。采用 TIANamp Genomic DNA Kit (Tiangen, Beijing, China)试剂盒说明书 的标准步骤提取基因组 DNA。采用 EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA) 试剂盒说明书的标准步骤进行基因组 DNA 的亚 硫酸氢盐修饰。原理如下: 基因组 DNA 中甲基化 胞嘧啶碱基不转变,同时,未甲基化胞嘧啶脱氨 基并转变成尿嘧啶, 经亚硫酸氢盐硫化 PCR (Bisulphite Sequencing Polymerase Chain Reaction, BSP)扩增后为胸腺嘧啶,从而区别甲基化/未甲基化的两类胞嘧啶。从实验室翘嘴鳜全基因组中获得 htr1aa 和 htr1ab 的全序列,基因 5'侧翼区的序列,第一外显子区的序列,ATG上游 3000 bp 的序列,提交至在线预测网站 Methprimer (http://www.urogene.org/cgibin/methprimer/methprimer.cg i)进行预测以获得 CpG 岛(CGI)和候选 CpG 位点。 鱼类 CpG 岛无明确定义,选择默认参数并根据情 况进行调整,默认搜索参数如下: CpG 岛片段大 小(Island size)>100 bp, GC 碱基含量(GC Percent)> 50.0%, CpG 岛观察值/预测值(Observed/Expected, Obs/Exp)>0.6。BSP 引物由在线软件 MethPrimer 14.0 推荐, 然后用 Primer 5.0 检测是否合格,比较 后采用特异性高引物用于 BSP 的扩增,扩增引物 序列见表 2。采用 Taq plus DNA Polymerase (Vazyme Biotech, Nanjing, China)在 Biometra Thermo cyclers (Biometra, Göttingen, Germany)仪器上进行 PCR。 PCR 反应循环参数为: 94 ℃预变性 5 min; 然后如 下程序进行 40 个循环,即 94 ℃变性 30 s, 49 ℃ (根据不同引物的退火温度)退火 30 s, 72 ℃延伸 30 s; 之后 72 ℃延伸 7 min,最终 12 ℃降温 10 s 后结束。采用 Gel Purification Kit (Sangon, Shanghai, China)试剂盒纯化 PCR 产物,然后克隆至载体 pMD18-T clone vector (Takara, Tokyo, Japan)中。 每个实验组中,先随机选取 2 个样品进行预扩增 及分析,存在 DNA 甲基化后检测全部 6 个样品。 每个样品随机选取 5 个阳性克隆送至上海生工 (ABI3730 测序仪, Applied Biosystems)进行测序, 每个驯食实验组总共收集成功测序的 30 个阳性克 隆,经测序得到 DNA 序列。采用在线网站 QUMA (QUantification tool for Methylation Analysis)(http:// quma.cdb.riken.jp/)将测序序列与亚硫酸氢盐修饰 前原序列进行比对分析,根据比对结果确定候选 CpG 位点是否发生甲基化以及甲基化水平。

| 表 | 2   | 用于   | 于亚硫    | 酸氢盐    | 上硫化     | PCR(E    | BSP)扩    | 增检测      | DNA   | 甲基化水平       | 平的引物序列     | J |
|---|-----|------|--------|--------|---------|----------|----------|----------|-------|-------------|------------|---|
|   | Tab | . 2  | Nucl   | eotide | sequen  | ces of t | he pri   | ners for | r BSP | (bisulphite | sequencing |   |
|   | n   | olvn | nerace | chain  | reactio | n) amn   | lificati | hne no   | DNA 1 | methylation | analysis   |   |

|                 |               | , I                            | •                               |                         |
|-----------------|---------------|--------------------------------|---------------------------------|-------------------------|
| 基因<br>gene name | 引物<br>primer  | 序列(5'-3')<br>sequence (5'-3')  | 退火温度/℃<br>annealing temperature | 产物大小/bp<br>product size |
| htr1aa          | BSP1 htr1aa F | TGGGGTTTATATTTTGTTTATTGAAGTA   | 52                              | 237                     |
|                 | BSP1 htr1aa R | ACTTTTTCAACTCACCCTCTTTTATAAT   |                                 |                         |
|                 | BSP2 htr1aa F | ATAGTAGTTTTAAATGAAGTTGGTTTAAA  | 56                              | 180                     |
|                 | BSP2 htr1aa R | TTTATTTACATCTCAAAAATATAAATATCA |                                 |                         |
| htr1ab          | BSP htr1ab F  | TTGTAGTTTAAAAATAAAGGAAAATATTAT | 56                              | 205                     |
|                 | BSP htr1ab R  | AAAATTATCAACTCAAACCAAACC       |                                 |                         |

### 1.3 统计分析

采用软件 SPSS 22.0 (IBM, Chicago, IL, USA) 的 Shapiro-Wilk 法标准化数据,进行单因素方差 分析。检查方差齐性之后,通过 Duncan's multiple range test (MRT)法检测均值间差异。实验组组间 候选 CpG 位点甲基化水平的差异使用 2×2 卡方检 验(χ2 test)分析,实验组组间基因表达水平的差异 使用独立样本 T 检验分析, *P*<0.05 判定显著差异, *P*<0.01 判定为极显著差异。所有数据表示为平均 值±标准误(*x*±SE)。

### 2 结果与分析

### 2.1 翘嘴鳜 htr1aa 和 htr1ab 基因的结构、多重 比对及进化树分析

获得的翘嘴鳜 htrlaa 和 htrlab 基因的完整 CDS 长度为 1284 bp 和 1251 bp, 分别编码 428 个

氨基酸和 417 个氨基酸。与虹鳟、斑马鱼、青鳉、 三刺鱼和狼鲈的 htr1a 基因结构相比, 翘嘴鳜、青 鳉、狼鲈、斑马鱼、三刺鱼的 htrlaa、htrlab 基 因都只有一个外显子, 无内含子, 并且内含子的 长度差异不大,只有虹鳟 htrlaa 和斑马鱼 htrlab 有两个外显子和一个内含子, 而翘嘴鳜和斑马鱼 的 htr1ab 基因只有一个外显子, 可以看出翘嘴鳜 的 htr1a 基因在进化上高度保守(图 1)。翘嘴鳜与 青鳉、斑马鱼的 htr1ab 氨基酸序列多重比对一致 性分别为95%、78%,而翘嘴鳜与三刺鱼、青鳉、 斑马鱼、人、鼠的 htr1aa 氨基酸序列多重比对一 致性分别为 76%、74%、78%、67%、68%。翘嘴 鳜的 htrlaa 和 htrlab 与其他物种的氨基酸序列多 重比对发现,只与青鳉的 htr1ab 同源性较高。同 时翘嘴鳜与以上这些物种氨基酸比对发现其中 7 个结构域在各物种相比高度保守(图 2)。



### 图 1 青鳉、虹鳟、三刺鱼、狼鲈、斑马鱼和翘嘴鳜 htrlaa 和 htrlab 基因编码序列的结构 黑线表示内含子,黑色方块表示外显子,方框内数字

表示编码序列长度.

Fig. 1 The gene structures of coding sequence of htr1aa and htr1ab genes in Oryzias latipes, Oncorhynchus mykiss, Gasterosteus aculeatus, Dicentrar chuslabrax, Danio rerio and Siniperca chuatsi
The black lines indicate introns, and the black boxes indicate exons. The number in the box indicates the length of the code sequence.

基于各个物种的htrla序列使用MEGAX软件 以邻接法构建翘嘴鳜与其他物种 htrla 的系统进 化树(图 3),结果显示,整个进化树被分为 2 簇, 哺乳动物和两栖动物的 htrla 为一簇,鱼类的 htrlaa 和 htrlab 为一簇,处于进化树的底端。翘嘴 鳜 htrlaa 与狼鲈直系同源基因聚类关系最为相近, 其次是加州鲈、三刺鱼。另一个亚型 htrlab 却与 加州鲈直系同源基因聚类关系最为相近,其次是 狼鲈、三刺鱼。

### 2.2 翘嘴鳜在不同驯化状态下脑中相关基因的 mRNA 表达水平分析

以鳜 rpl13a 为内参基因,检测经过不同程度 驯化鳜脑组织中 htr1aa 和 htr1ab 基因的表达水 平。研究发现经过二次驯化的鳜脑组织中的 htr1aa 与经过一次驯化的鳜表达量相比都有显著降低, 而 htr1ab 在 2 次驯化过程中没有发生显著变化(图 4)。抑制性食欲相关基因 pomc 在不同程度驯化中 发生了显著性变化,与一次驯化鳜相比,二次驯 化鳜脑中的 pomc mRNA 水平极显著降低(P<0.01), 而促食欲基因 npy 二次驯化翘嘴鳜脑 mRNA 水平 升高,但没有显著性差异(P>0.05)(图 5)。

## 2.3 翘嘴鳜在不同驯化状态下脑中 htrlaa 基因 DNA 甲基化水平分析

笔者分析了 htr1aa 起始密码子(指定为 0)至 上游-3000 bp 处的 CpG 岛。在翘嘴鳜 htr1aa 基因 的这一区域中存在 2个 CpG 岛,第1个为-2629 bp 至-2735 bp,第2个为-344 bp 至-240 bp。第1个 CpG 岛包含 4个 CpG 位点,第2个 CpG 岛包含 5 个 CpG 位点(图 6)。比较驯化 2 次和驯化 1 次鳜 脑组织中候选 CpG 位点 DNA 甲基化水平的变化。 经一次驯化和二次驯化翘嘴鳜脑组织中 htr1aa 基 因的甲基化程度在 CpG1 岛较高(表 3)。然而,在 CpG2 岛上,经一次驯化和二次驯化翘嘴鳜脑组 织中 htr1aa 基因的甲基化程度较低。但是 2 组不 同程度驯化的翘嘴鳜的总体甲基化率有显著差异 (P<0.05)(表 4)。

### 3 讨论

### 3.1 翘嘴鳜 htr1a 基因同源性及进化分析

本研究通过鳜基因组网站发现翘嘴鳜 htrla 基因有两个亚型,分别是 htrlaa 和 htrlab。翘嘴鳜 htrlaa 和 htrlab cDNA 序列全长分别为 1284 bp、 1251 bp,分别编码 427 和 416 个氨基酸,经预测该 多肽的相对分子质量分别是 47.13 kD 和 46.96 kD, 理论等电点为 8.46 和 9.25。翘嘴鳜 htrlaa 与 htrlab 与其他物种比较发现基因结构高度保守,同时氨 基酸序列比对显示 htrla 基因的功能结构域具有 高度的保守性。翘嘴鳜 htrlaa 和 htrlab 与其他鱼 类的 htrlaa 和 htrlab 分别聚为一个小分支,翘嘴 鳜 htrlaa 和 htrlab 与其他鱼类同源性在都大于 70%,与哺乳动物的亲缘关系不是相近,但也达 到了 60%左右,结合以上的分析,进一步证实翘 嘴鳜 htrla 基因在进化中的保守地位。

### 3.2 翘嘴鳜 htr1a 基因及食欲基因的表达分析

在不同驯化程度的翘嘴鳜中, htrlaa 基因的 表达显示出差异, htrlaa 在经二次驯化的 mRNA 表达显著低于经一次驯化的翘嘴鳜, 与此同时抑 制性食欲因子 pomc 的表达在两次驯化组中显著 低于一次驯化的翘嘴鳜。在禁食斑马鱼中, 发现 血清素水平的变化, 会影响其受体基因 htrlaa 的 表达, 与此同时食欲基因的表达也受到影响<sup>[30]</sup>。

|                                                                                                                                                                                                                                                                     | 1                                                                                                                                                              | 10                                                                                                                                                             | 20                                                                                                                                                                         | 30                                                                                                                                                          | 40                                                                                                                                                   | 50                                                                                                       | 60                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 翘嘴鳜 Siniperca chuatsi htrlab<br>青辫 Orzias latipes htrlab<br>斑马鱼 Danio rerio htrlab<br>翘嘴鳜 Siniperca chuatsi htrlaa<br>三刺鱼Gasterosteus aculeatus htrla<br>青辫 Orzias latipes htrla<br>斑马鱼 Danio rerio htrlaa<br>人 Homo sapiens htrla<br>鼠 Mus musculus htrla          | MEGTNNT.<br>MEENNDT.<br>MDFITTSSNDS<br>.LCVMRPG.<br>QTLSELTTFMFS.<br>MESYNNT.<br>MDVLSPG.<br>MDMFSLG.                                                          |                                                                                                                                                                | D.NPSNKTPKPED.<br>VRDIYSVEK.<br>DSDLDHQTDNVTLF<br>DWDEGENGTGSGSI<br>PMDPGKTHSC<br>OFLGRENGTGSGSC<br>.TESQDWSGNATSC<br>PPAPFETGGNTTGI<br>SLEPFGTGGNDTGI                     | EEWKLSYQV<br>EDMKLSYQIS<br>VKWPLSYQIS<br>SSNVKLSYQII<br>PECKLSYQII<br>PECKLSYQII<br>ISDVTVSYQVI<br>SSNVTESYQVI                                              | TSFLLGALILC<br>TSFLLGALILC<br>ITSLLLGALILC<br>TSLLLGALILC<br>TSLLLGALILC<br>CSLFLAALILC<br>TSLLLGALIC<br>TSLLLGTLIFC                                 | AIFGNACV<br>AIFGNACV<br>SIFGNACV<br>SIFGNACV<br>SIFGNACV<br>SIFGNACV<br>AILGNACV<br>AVLGNACV             | VAAIALERS<br>VAAIALERS<br>VAAIALERS<br>VAAIALERS<br>VAAIALERS<br>VAAIALERS<br>VAAIALERS<br>VAAIALERS<br>VAAIALERS<br>VAAIALERS |
|                                                                                                                                                                                                                                                                     | 70                                                                                                                                                             | 80 90                                                                                                                                                          | 100                                                                                                                                                                        | 110                                                                                                                                                         | 120                                                                                                                                                  | 130                                                                                                      | 140                                                                                                                            |
| 翘嘴鳜 Siniperca chuatsi htrl ab<br>青鳉 Oryzias latipes htrl ab<br>斑马鱼 Danio rerio htrl ab<br>翘嘴鳜 Siniperca chuatsi htrl aa<br>三刺鱼Gasterosteus aculeatus htrl a<br>青鳉 Oryzias latipes htrl a<br>黄 Danio rerio htrl aa<br>人 Homo sapiens htrl a<br>鼠 Mus musculus htrl a | LQNVAN YLIGSLA<br>LQNVAN YLIGSLA<br>LQNVAN YLIGSLA<br>LQNVAN YLIGSLA<br>LQNVAN YLIGSLA<br>LQNVAN YLIGSLA<br>LQNVAN YLIGSLA<br>LQNVAN YLIGSLA<br>LQNVAN YLIGSLA | VTDLMVSVLVLPMA<br>VTDLMVSVLVLPMA<br>VTDLMVSVLVLPMA<br>VTDLMVSVLVLPMA<br>VTDLMVSVLVLPMA<br>VTDLMVSVLVLPMA<br>VTDLMVSVLVLPMA<br>VTDLMVSVLVLPMA                   | ALYQVINRWTLGQ<br>ALYQVINSWTLGQ<br>ALYQVINKWTLGQ<br>ALYQVINKWTLGQ<br>ALYQVINKWTLGQ<br>ALYQVINKWTLGQ<br>ALYQVINKWTLGQ<br>ALYQVINKWTLGQ<br>ALYQVINKWTLGQ                      | YPCDIFISLDV<br>YPCDIFISLDV<br>TCDIFISLDV<br>EICDLFISLDV<br>EICDLFISLDV<br>EICDLFISLDV<br>MCDIFISLDV<br>MCDIFISLDV<br>YTCDLFIALDV<br>YTCDLFIALDV             | LCCTSSILHLC<br>LCCTSSILHLC<br>LCCTSSILHLC<br>LCCTSSILHLC<br>LCCTSSILHLC<br>LCCTSSILHLC<br>LCCTSSILHLC<br>LCCTSSILHLC<br>LCCTSSILHLC                  | AIAIDRYW<br>AIAIDRYW<br>AIAIDRYW<br>AIAIDRYW<br>AIAIDRYW<br>AIAIDRYW<br>AIAIDRYW<br>AIAIDRYW<br>AIAIDRYW | AITEPIDYM<br>AITEPIDYM<br>AITDPIDYV<br>AITDPIDYV<br>AITDPIDYV<br>AITDPIDYV<br>AITDPIDYV<br>AITDPIDYV<br>AITDPIDYV<br>AITDPIDYV |
|                                                                                                                                                                                                                                                                     | 150                                                                                                                                                            | 160                                                                                                                                                            | 170 180                                                                                                                                                                    | 190                                                                                                                                                         | 200                                                                                                                                                  | 210                                                                                                      | 220                                                                                                                            |
| 翘嘴鳜 Siniperca chuatsi htrlab<br>青蜂 Oryzias latipes htrlab<br>斑马鱼 Danio rerio htrlab<br>翘嘴鳜 Siniperca chuatsi htrlaa<br>三刺鱼Gasterosteus aculeatus htrla<br>青蜂 Oryzias latipes htrla<br>斑马鱼 Danio rerio htrlaa<br>人 Homo sapiens htrla<br>鼠 Mus musculus htrla        | KRTPRRAVLIS<br>KKRTPRRAVLIS<br>KKRTLKRAALLIS<br>NKRTPRRAAILIS<br>NKRTPRRAILIS<br>NKRTPRRAILIS<br>NKRTPRRAILIS<br>NKRTPRRAALLS<br>NKRTPRRAALIS                  | VTWLVGFSISVPPM<br>VTWLVGFSISVPPM<br>VTWLIGFSISIPPM<br>VTWLIGFSISIPPM<br>ATWLIGFSISIPPM<br>ATWLIGFSISIPPM<br>LTWLIGFSISIPPM<br>LTWLIGFLISIPPM<br>LTWLIGFLISIPPM | IMRSQPSSMAEDF<br>VMRSQPGSMAEDF<br>IMKSQPKSRAEDF<br>GWRSAEDF<br>GWRSAEDF<br>GWRSAEDF<br>GWRTPEDF<br>GWRTPEDF                                                                | RANPKOCKTRC<br>RANPEACMISE<br>RANPDACISE<br>RANPDACISE<br>RANPDACISC<br>RANDDACMISC<br>RANDDACMISC<br>RADDACTISC<br>RADDACTISC<br>RADDACTISC<br>RSDPDACTISC | DPWYTIYSTFG<br>DPWYTIYSTFG<br>DPGYTIYSTFG<br>DPGYTIYSTFG<br>DPGYTIYSTFG<br>DHGYTIYSTFG<br>DHGYTIYSTFG<br>DHGYTIYSTFG<br>DHGYTIYSTFG                  | AFYIPLTL<br>AFYIPLIL<br>AFYIPLIL<br>AFYIPLIL<br>AFYIPLIL<br>AFYIPLIL<br>AFYIPLIL<br>AFYIPLLL<br>AFYIPLLL | MLVLYGRIF<br>MLVLYGRIF<br>MLVLYGRIF<br>MLVLYGRIF<br>MLVLYGRIF<br>MLVLYGRIF<br>MLVLYGRIF<br>MLVLYGRIF                           |
|                                                                                                                                                                                                                                                                     | 230                                                                                                                                                            | 240                                                                                                                                                            | 250 260                                                                                                                                                                    | 270                                                                                                                                                         | 280                                                                                                                                                  | 2                                                                                                        | 90                                                                                                                             |
| 翘嘴鳜 Siniperca chuatsi htrlab<br>青鳉 Oryzias latipes htrlab<br>斑马鱼 Danio rerio htrlab<br>翘嘴鳜 Siniperca chutasi htrlaa<br>三刺鱼Gasterosteus aculeatus htrla<br>青鳉 Oryzias latipes htrla<br>斑马鱼 Danio rerio htrlaa<br>人 Homo sapiens htrla<br>鼠 Mus musculus htrla        | KAARFRIRTVRK<br>KAARFRIRTVRK<br>KAARFRIRKTVRK<br>KAARFRIRKTVKK<br>RAARFRIRKTVKK<br>RAARFRIRKTVKK<br>RAARFRIRKTVKK<br>RAARFRIRKTVKK<br>RAARFRIRKTVKK            | TEKKKVSSSCLALS<br>TEKKKVSSSCLAIS<br>PEKKRVKCLTVS<br>TETKKSSKCLTVS<br>PDKSIGSEKCLTVS<br>IETAKVSSKCLAVS<br>TEKAKIADKCLAVS<br>VEKTGADTRHGASP<br>VEKKGAGTSFGTSS    | PVLFHKKTPGDAQC<br>PSLFHKTPHGDAQC<br>PALFHKKTNGEAGC<br>PALFHKKTNGEAGC<br>PALFHKKTNGEAGC<br>PALFHKKANGQQSC<br>PALFPKKANG<br>PALFPKKSNGCSC<br>APQPKKSVNGESG<br>APPPKKSLNGQPGS | GKSWKRSVEPE<br>GKSWKRSVEPE<br>SKNWKSAVEPE<br>GKGWKRDDESE<br>GKGWKRCDGSE<br>GRGWKRCDGSE<br>GKTWRRSV<br>SRNWRLGVESE<br>SGDCRSAENE                             | RPLPSVNGAV<br>RPLALPSVNGAV<br>(PACVNGAI<br>(P.SSPCVNGAV<br>(P.SSPCVNGAV<br>(P.SSPCVNGAV<br>(P.SSPCNGAV<br>(P.SSPCNGAU<br>(AGGALCANGAV<br>AGGALCANGAV | KHAEDGES<br>KHAEDGES<br>KHAEDGES<br>KHGEEGES<br>KHGEEGES<br>MHGDEGES<br>KNSDDGES<br>RQGDDGAA<br>RQGEDDAI | LEILEVH<br>LEILEVH<br>LEILEVH<br>LEILEVI<br>FEITEV<br>FEITEV<br>LEVHEVHEV                                                      |
|                                                                                                                                                                                                                                                                     | 300                                                                                                                                                            | 310 3                                                                                                                                                          | 20 330                                                                                                                                                                     | 340                                                                                                                                                         | 350                                                                                                                                                  | 360                                                                                                      | 370                                                                                                                            |
| 翘嘴蒙 Siniperca chuatsi htrlab<br>青蜂 Oryzias latipes htrlab<br>斑马鱼 Danio rerio htrlab<br>翘嘴鳜 Siniperca chuatsi htrlaa<br>三刺鱼Gasterosteus aculeatus htrla<br>青蜂 Oryzias latipes htrla<br>斑马鱼 Danio rerio htrlaa<br>人 Homo sapiens htrla<br>鼠 Mus musculus htrla        | SNSKGNLPLPNTP<br>SNSKNLPLPNTP<br>SNSKNLPLPNTP<br>SNSKTHLPLPNTP<br>SNSKTHLPLPNTP<br>SNSKTHLPLPNTP<br>SNSKTHLPLPNTP<br>GNSKEHLPLPSEA<br>GNSKGHLPLPSES            | .SCVPLFESRH<br>.STVPLFESRH<br>NSVPLFERKH<br>QSSSHGYENMN<br>QSSSHGYENMN<br>QSSSHGYENMN<br>QSSGVCFENRN<br>GPTPCAPASFERKN<br>GATSYVPACLERKN                       | EKATEAKRKIALA<br>DKATEAKRKIALA<br>EKNTEAKRKIALA<br>EKNSGAKRKIALA<br>DKNSGAKRKIALA<br>ERNSGAKRKIALS<br>EKNTEAKRKVALA<br>ERNAEAKRKMALA<br>ERTAEAKRKMALA                      | RERKT VKTLG<br>RERKT VKTLG<br>RERKT VKTLG<br>RERKT VKTLG<br>RERKT VKTLG<br>RERKT VKTLG<br>RERKT VKTLG<br>RERKT VKTLG<br>RERKT VKTLG                         | IIMGTFILCWLP<br>IIMGTFILCWLP<br>IIMGTFIFCWLP<br>IIMGTFIFCWLP<br>IIMGTFIFCWLP<br>IIMGTFIFCWLP<br>IIMGTFILCWLP<br>IIMGTFILCWLP                         | FFIVALVA<br>FFIVALVA<br>FFIVALVA<br>FFIVALVA<br>FFIVALVA<br>FFIVALVA<br>FFIVALVA<br>FFIVALVA             | PFCQESCYM<br>PFCQESCYM<br>PFCPT.CYM<br>PFCAESCYM<br>PFCPESCFM<br>PFCPESCFM<br>PFCESSCHM<br>PFCESSCHM                           |
| Lore with these and a second                                                                                                                                                                                                                                        | 380                                                                                                                                                            | 390 4                                                                                                                                                          | 00 410                                                                                                                                                                     |                                                                                                                                                             |                                                                                                                                                      |                                                                                                          |                                                                                                                                |
| 翘嘴獸 Siniperca chuatsi htrlab<br>青婚 Oryzias latipes htrlab<br>斑马鱼 Danio rerio htrlab<br>斑嘴獸 Siniperca chuatsi htrlaa<br>三刺鱼Gasterosteus aculeatus htrla<br>青婚 Oryzias latipes htrla<br>斑马鱼 Danio rerio htrlaa<br>人 Homo sapiens htrla<br>鼠 Mus musculus htrla        | PRWLEDVINWLGY<br>PRWLEDVINWLGY<br>PLWLQDVINWLGY<br>PDWLGAVINWLGY<br>PDWLGAVINWLGY<br>PDWLGAVINWLGY<br>PEWLGAVINWLGY<br>PEWLGAVINWLGY<br>PELLGAIINWLGY          | SNSLLNPIIYAYFNK<br>SNSLLNPIIYAYFNK<br>SNSLLNPIIYAYFNK<br>SNSLLNPIIYAYFNK<br>SNSLLNPIIYAYFNK<br>SNSLLNPIIYAYFNK<br>SNSLLNPVIYAYFNK<br>SNSLLNPVIYAYFNK           | DFOSAFKKIIKCHF<br>DFOSAFKKIIKCHF<br>DFOSAFKKIIKCHF<br>DFOSAFKKIIRCKF<br>DFOSAFKKIIRCKF<br>DFONAFKKIIKCKF<br>DFONAFKKIIKCKF<br>DFONAFKKIIKCKF                               | (CRP<br>(CRP<br>HRP<br>HRP<br>HRP<br>CRQ<br>(CRQ<br>(CR.                                                                                                    |                                                                                                                                                      |                                                                                                          |                                                                                                                                |

图 2 人、鼠、三刺鱼、青鳉、斑马鱼与翘嘴鳜 htr1aa 和 htr1ab 氨基酸多重序列比对 方框内是功能结构域.

Fig. 2 Amino acid sequences alignments of htr1aa and htr1ab between Homo sapiens, Mus musculus, Gasterosteus aculeatus, Oryzias latipes, Danio rerio and Siniperca chuatsi The box indicates function domains.

有研究报道, 在虹鳟中, 激活 5-HT1A 受体会导 致虹鳟食物摄入的抑制<sup>[20]</sup>, 在鹅<sup>[31]</sup>和鸡<sup>[32]</sup>中也 有相同报道。窦亚琪等<sup>[29]</sup>在翘嘴鳜驯化过程中, 表明训练 2 次比训练 1 次的翘嘴鳜更容易、更快 地接受死饵料鱼, 这与笔者的结果相符。这些对 食物摄入量的影响不同于哺乳动物在 5-HT1A 受 体中观察到的影响,这表明了不同类别脊椎动物 大脑 5-HT 系统中存在功能差异。5-HT1A 受体还 与多个细胞信号通路<sup>[33]</sup>耦合,而 MAPK/ERK 一 旦被激活,可以调节许多直接早期基因(IEGs)的 转录活动<sup>[34]</sup>,例如原癌基因(proto-oncogene *c-Fos*)、 早期生长反应因子 1 (early growth response 1,





Fig. 3 Phylogenetic tree derived from the amino acid sequences of in htr1aa and htr1ab mandarin fish and homologous proteins from various species

The numbers in parentheses are the numbers of genes in Ensembl or NCBI database.



- 图 4 经不同程度驯化后翘嘴鳜脑组织 htrlaa 和 htrlab 基因表达水平检测 \*表示两组之间存在显著性差异(P<0.05).
- Fig. 4 Detection of *htr1aa* and *htr1ab* gene expression levels in brain tissue of mandarin fish after different degrees of domestication Significant level is marked with \* (*P*<0.05).

*Egr1*,也被称为 *Zif268*)。翘嘴鳜食性驯化研究中 报道证实转录因子 *c-fos*和 *zif268* 表达水平在一次 驯化和两次驯化中出现显著差异<sup>[29]</sup>。而 Liang 等<sup>[35]</sup> 在翘嘴鳜社会学习研究中通过学习记忆通路抑制





剂鳜脑室注射发现 c-fos 的表达受到抑制而 pomc 的表达激活,从而证实 c-fos-pomc 信号传导途径 参与了学习记忆对翘嘴鳜摄食及食性巩固的调 控。综上结果表明 5-HT1A 受体在翘嘴鳜驯化过 程中,可能通过对学习记忆通路的调控,改变翘



Fig. 6 The distribution and locations of CpG islands of *htr1aa* gene, and DNA methylation levels of *htr1aa* gene in different domestication levels in mandarin fish

The numbers correspond to potential CpG methylation sites, Filled (black) circles correspond to methylated Cs, and unfilled (white) circles correspond to unmethylated Cs.

表 3 htrlaa 的 5'- 侧翼区域中 CpG1 岛中每个 CpG 位点的甲基化概率

Tab. 3 Methylation status of each CpG1 (cytosine-guanine) site in the CpG island in the 5'-flanking region of htr1aa

|                             | • ••  | ,     | -     | 6     | 8        |
|-----------------------------|-------|-------|-------|-------|----------|
| CpG1 位点 CpG1 position       | -2727 | -2678 | -2670 | -2649 | 共计 total |
| 一次驯化/% first domestication  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0    |
| 二次驯化/% Second domestication | 86.7  | 100.0 | 96.7  | 93.3  | 94.2     |
| 显著性 Prominence              | 0.038 | 1.000 | 0.313 | 0.150 | 0.007*   |

注:表中的百分数代表每个 CpG 位点发生甲基化的概率;\*表示显著差异(P<0.05).

Note: The percentages in the table represent the chance of methylation of each CpG site; \* indicates signifificant differences (P<0.05).

表 4 htr1aa 的 5'-侧翼区域中 CpG2 岛中每个 CpG 位点的甲基化概率 Methylation status of each CpG2 (cytosine-guanine) site in the CpG island in the 5'-flanking region of htr1aa

| Tab. 4 Micinylation status of caci | i cpG2 (cytosi | ne-guanne) si | te in the epo i | sianu in the 5 - | -manking regio | 011 01 <i>mi</i> 1 uu |
|------------------------------------|----------------|---------------|-----------------|------------------|----------------|-----------------------|
| CpG2 位点 CpG2 position              | -320           | -302          | -290            | -281             | -278           | 共计 total              |
| 一次驯化/% first domestication         | 0.0            | 0.0           | 0.0             | 3.3              | 0.0            | 0.7                   |
| 二次驯化/% second domestication        | 0.0            | 13.3          | 0.0             | 0.0              | 0.0            | 2.7                   |
| 显著性 prominence                     | 1.000          | 0.038         | 1.000           | 0.313            | 1.000          | 0.176                 |

注:表中的百分数代表每个 CpG 位点发生甲基化的概率.

Note: The percentages in the table represent the chance of methylation of each CpG site.

嘴鳜 pomc、npy 基因的表达从而巩固翘嘴鳜食性。

### 3.3 翘嘴鳜 htr1a 基因的甲基化分析

笔者比较了 htrlaa 基因启动子区在不同驯化 程度的翘嘴鳜脑组织的甲基化程度。结果表明, 经两次驯化的翘嘴鳜甲基化率显著低于一次驯化。DNA 甲基化通常抑制基因的转录,其阻断转录因子与基因作用区域的结合,导致转录激活的抑制是作用机制之一<sup>[36-38]</sup>。而窦亚琪等<sup>[29]</sup>研究证

实在翘嘴鳜食性转变驯化过程中 C/EBPD, zif268 和 c-fos 等转录因子的表达水平显著上调。而转录 因子可以抑制或促进基因的表达,例如有关于人 的研究报道确定了 CEBPB,作为一个转录因子, 显著抑制了 htr1a 表达<sup>[39]</sup>。由此认为, htr1a 的 DNA 甲基化可能在翘嘴鳜摄食相关基因表达中 发挥重要的调控作用。

### 4 总结

本研究通过对翘嘴鳜 htrlaa 基因的结构分析、表达分析及甲基化分析,初步说明 htrla 基因 在翘嘴鳜食性转变驯化中的作用,为进一步研究 翘嘴鳜 5-HT1A 受体信号通路在学习记忆中的作 用提供理论基础,为解决生产中鳜饲料养殖过程 中难驯化及驯化不稳定问题提高理论依据。

#### 参考文献:

- Guillette L M, Morgan K V, Hall Z J, et al. Food preference and copying behaviour in zebra finches, *Taeniopygia guttata*[J]. Behavioural Processes, 2014, 109: 145-150.
- [2] Brown C, Laland K. Social enhancement and social inhibition of foraging behaviour in hatchery-reared Atlantic salmon[J]. Journal of Fish Biology, 2002, 61(4): 987-998.
- [3] Brown C, Laland K N. Social learning in fishes: A review[J]. Fish and Fisheries, 2003, 4(3): 280-288.
- [4] Magnhagen C, Staffan F. Social learning in young-of-the-year perch encountering a novel food type[J]. Journal of Fish Biology, 2003, 63(3): 824-829.
- [5] Huber L, Range F, Voelkl B, et al. The evolution of imitation: What do the capacities of non-human animals tell us about the mechanisms of imitation? [J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2009, 364(1528): 2299-2309.
- [6] Braithwaite V A, Salvanes A G V. Environmental variability in the early rearing environment generates behaviourally flexible cod: Implications for rehabilitating wild populations[J]. Proceedings Biological Sciences, 2005, 272(1568): 1107-1113.
- [7] Peng J, Dou Y Q, Liang H, et al. Social learning of acquiring novel feeding habit in mandarin fish (*Siniperca chuatsi*)[J]. International Journal of Molecular Sciences, 2019, 20(18): 4399.
- [8] Chapman B B, Ward A J W, Krause J. Schooling and learning: Early social environment predicts social learning ability in the guppy, *Poecilia reticulata*[J]. Animal

Behaviour, 2008, 76(3): 923-929.

- [9] Diéguez C, Vazquez M J, Romero A, et al. Hypothalamic control of lipid metabolism: Focus on leptin, ghrelin and melanocortins[J]. Neuroendocrinology, 2011, 94(1): 1-11.
- [10] Valassi E, Scacchi M, Cavagnini F. Neuroendocrine control of food intake[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2008, 18(2): 158-168.
- [11] Feijó F M, Bertoluci M C, Reis C. Serotonin and hypothalamic control of hunger: a review[J]. Revista da Associação Médica Brasileira, 2011, 57(1): 74-77.
- [12] de Pedro N, Pinillos M L, Valenciano A I, et al. Inhibitory effect of serotonin on feeding behavior in goldfish: Involvement of CRF[J]. Peptides, 1998, 19(3): 505-511.
- [13] Ruibal C, Soengas J, Aldegunde M. Brain serotonin and the control of food intake in rainbow trout (*Oncorhynchus mykiss*): Effects of changes in plasma glucose levels[J]. Journal of Comparative Physiology A, 2002, 188(6): 479-484.
- [14] He Y H, Li L, Liang X F, et al. Inhibitory neurotransmitter serotonin and excitatory neurotransmitter dopamine both decrease food intake in Chinese perch (*Siniperca chuatsi*)[J]. Fish Physiology and Biochemistry, 2018, 44(1): 175-183.
- [15] Mennigen J A, Harris E A, Chang J P, et al. Fluoxetine affects weight gain and expression of feeding peptides in the female goldfish brain[J]. Regulatory Peptides, 2009, 155(1-3): 99-104.
- [16] Hoyer D, Martin G. 5-HT receptor classification and nomenclature: towards a harmonization with the human genome[J]. Neuropharmacology, 1997, 36(4-5): 419-428.
- [17] Tecott L H. Serotonin and the orchestration of energy balance[J]. Cell Metabolism, 2007, 6(5): 352-361.
- [18] Kopf B S, Langhans W, Geary N, et al. Serotonin 2C receptor signaling in a diffuse neuronal network is necessary for LPS anorexia[J]. Brain Research, 2010, 1306: 77-84.
- [19] Ebenezer I S, Surujbally A. The effects of 8-hydroxy-2-(din-propylamino)-tetralin (8-OH-DPAT) on food intake in nondeprived C57BL6 mice[J]. European Journal of Pharmacology, 2007, 559(2-3): 184-188.
- [20] Pérez Maceira J J, Mancebo M J, Aldegunde M. The involvement of 5-HT-like receptors in the regulation of food intake in rainbow trout (*Oncorhynchus mykiss*)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2014, 161: 1-6.
- [21] Rowan M J, Cullen W K, Moulton B. Buspirone impairment of performance of passive avoidance and spatial learning tasks in the rat[J]. Psychopharmacology, 1990, 100(3): 393-398.
- [22] Mendelson S D, Quartermain D, Francisco T, et al. 5-HT1A receptor agonists induce anterograde amnesia in mice

through a postsynaptic mechanism[J]. European Journal of Pharmacology, 1993, 236(2): 177-182.

- [23] Misane I, Johansson C, Ove Ögren S. Analysis of the 5-HT1A receptor involvement in passive avoidance in the rat[J]. British Journal of Pharmacology, 1998, 125(3): 499-509.
- [24] Winsauer P J, Rodriguez F H, Cha A E, et al. Full and partial 5-HT1A receptor agonists disrupt learning and performance in rats[J]. The Journal of Pharmacology and Experimental Therapeutics, 1999, 288(1): 335-347.
- [25] Madjid N, Tottie E E, Lüttgen M, et al. 5-Hydroxytryptamine 1A receptor blockade facilitates aversive learning in mice: interactions with cholinergic and glutamatergic mechanisms
   [J]. Journal of Pharmacology and Experimental Therapeutics, 2006, 316(2): 581-591.
- [26] Dou Y Q, Liang X F, Gao J J, et al. Single nucleotide polymorphisms in pepsinogen gene, growth hormone gene and their association with food habit domestication traits in *Siniperca chuatsi*[J]. Journal of Fishery Sciences of China, 2020, 27(5): 485-493. [窦亚琪, 梁旭方, 高俊杰, 等. 鳜 pep 和 gh 基因 SNP 标记与驯食性状的关联分析[J]. 中国 水产科学, 2020, 27(5): 485-493.]
- [27] Mennigen J A, Harris E A, Chang J P, et al. Fluoxetine affects weight gain and expression of feeding peptides in the female goldfish brain[J]. Regulatory peptides, 2009, 155(1-3): 99-104.
- [28] Ruibal C, Soengas J, Aldegunde M. Brain serotonin and the control of food intake in rainbow trout (*Oncorhynchus mykiss*): effects of changes in plasma glucose levels[J]. Journal of Comparative Physiology A, 2002, 188(6): 479-484.
- [29] Dou Y, He S, Liang X F, et al. Memory function in feeding habit transformation of mandarin fish (*Siniperca chuatsi*) [J]. International journal of molecular sciences, 2018, 19(4): 1254.
- [30] Mechaly A S, Richardson E, Rinkwitz S. Activity of etv5a and etv5b genes in the hypothalamus of fasted zebrafish is

influenced by serotonin[J]. General and Comparative Endocrinology, 2017, 246: 233-240.

- [31] Reis L C, Marinho V R. Influence of 5-HT1A agonist on the feeding behavior of *Coturnix japonica* (Galliformes: Aves)[J]. Brazilian Journal of Biology, 2005, 65(4): 675-681.
- [32] Saadoun A, Cabrera M C. Effect of the 5-HT1A receptor agonist 8-OH-DPAT on food and water intake in chickens[J]. Physiology & Behavior, 2002, 75(3): 271-275.
- [33] Raymond J R, Mukhin Y V, Gettys T W, et al. The recombinant 5-HT1A receptor: G protein coupling and signalling pathways[J]. British Journal of Pharmacology, 1999, 127(8): 1751-1764.
- [34] Treisman R. Regulation of transcription by MAP kinase cascades[J]. Current Opinion in Cell Biology, 1996, 8(2): 205-215.
- [35] Liang H, He S, Liang X F, et al. Feeding habit transition induced by social learning through CaMKII signaling in Chinese perch (*Siniperca chuatsi*)[J]. Aquaculture, 2021, 533: 736211.
- [36] Maier H, Colbert J, Fitzsimmons D, et al. Activation of the early B-cell-specific mb-1 (Ig-alpha) gene by Pax-5 is dependent on an unmethylated Ets binding site[J]. Molecular and Cellular Biology, 2003, 23(6): 1946-1960.
- [37] Rose N R, Klose R J. Understanding the relationship between DNA methylation and histone lysine methylation[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2014, 1839(12): 1362-1372.
- [38] Takizawa T, Nakashima K, Namihira M, et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain[J]. Developmental Cell, 2001, 1(6): 749-758.
- [39] Liu Y P, Wu X, Meng J H, et al. Transcription factor CEBPB inhibits the expression of the human HTR1A by binding to 5' regulatory region *in vitro*[J]. Genes, 2019, 10(10): 802.

# Expression of 5-HT1A receptor and DNA methylation analysis in Chinese perch, *Siniperca chuatsi*

ZHUANG Wuyuan<sup>1, 2</sup>, LIANG Xufang<sup>1, 2</sup>, XIAO Qianqian<sup>1, 2</sup>, ZHANG Zhilu<sup>1, 2</sup>, CAI Wenjing<sup>1, 2</sup>

- 1. College of Fisheries, Huazhong Agricultural University; Chinese Perch Research Center of Huazhong Agricultural University, Wuhan 430070, China;
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China

Abstract: To explore the role of the 5-HT1A receptor in feeding and food consolidation during domestication of Chinese perch, Siniperca chuatsi, we obtained the htr1a gene sequence of the Chinese perch genome using homologous sequence alignment and evolutionary tree analysis. Htrla has two isoforms, htrlaa and htrlab, which encode amino acid sequences that have high homology with those of zebrafish (Danio rerio) and medaka (Oryzias latipes), with a similarity of more than 70%. The evolutionary relationship is closest between Chinese perch and wolf perch (*Dicentrar chuslabrax*). The results indicated that the *htr1a* gene of Chinese perch is highly conserved in evolution. The expression and methylation of the *htr1a* gene in mandarin fish were also analyzed. Compared with the first domestication group, the expression of the htrlaa gene and DNA methylation were significantly decreased in the second domestication group (P < 0.05), while *htr1ab* gene expression was not significantly different between the two groups (P>0.05). The expression of *pomc* was related to food intake, which was obviously lower than that of a domesticated animal (P < 0.05). The above results indicated that methylation of the promoter region of the htr1aa gene may change its transcription level during food domestication of Chinese perch, thus affecting the expression of key factors in the learning and memory pathways, inhibiting appetite factor *pomc*. Therefore, DNA methylation of *htr1aa* may play an important role in regulating the expression level of feeding related genes in Chinese perch. The results of this study further elucidate the mechanism of learning and memory in the transformation of feeding habits in fish and provide a theoretical solution to the difficult and unstable domestication of Chinese perch.

Key words: *Siniperca chuatsi*; 5-HT1A receptor; DNA methylation; *pomc*; *npy* Corresponding author: LIANG Xufang. E-mail: xufang\_liang@hotmail.com