基于微卫星标记和线粒体 D-loop 序列的 5 个大口黑鲈群体遗传变 异分析

张帝¹, 强俊^{1,2}, 傅建军², 徐钢春², 周国勤³, 董在杰², 陶易凡², 路思琪², 陆健³, 徐跑^{1,2}

1. 南京农业大学无锡渔业学院, 江苏 无锡 214081;

2. 中国水产科学研究院淡水渔业研究中心, 农业农村部淡水渔业与种质资源利用重点实验室, 江苏 无锡 214081;

3. 南京市水产科学研究所, 江苏 南京 210017

摘要:为探讨当前国内大口黑鲈(*Micropterus salmoides*)群体遗传多样性和变异情况,采用14个微卫星(简单重复序列,SSR)标记和线粒体 D-loop 序列,对国内3个养殖群体("优鲈1号"YL1、"优鲈3号"YL3和中国台湾群体 CTW)、1个引进群体(北方亚种US)和1个杂交群体("优鲈3号"♀×北方亚种♂,HYB)共计5个群体175尾个体进行群体遗传变异分析。结果显示,14个 SSR 位点中有5个位点(*LMB24、LMB28、LMB38、LMB39*和*LMB42*)表现出高度多态性[(多态信息含量(PIC)>0.5)]。其中,北方亚种群体多态性水平最高(PIC=0.514),其他4个群体多态性普遍较低(0.278<PIC<0.359)。在D-loop 序列中共检测到23个变异位点,27个单倍型。其中北方亚种群体单倍型数量较多(12个),而在其他4个群体中存在明显的优势单倍型,单倍型H01在群体内占比为76.7%~85.7%,5个群体的单倍型多样性介于0.218~0.882。基于微卫星标记和D-loop 部分序列的遗传变异分析显示,北方亚种群体和"优鲈3号"群体间的Nei's遗传距离和K2P遗传距离最远(0.300和0.012),明显大于与其他群体间的遗传距离(0.016~0.297和0.000~0.012);分子方差分析显示,5个大口黑鲈群体的遗传分化极显著(*P*<0.01)。群体间遗传结构和单倍型网络分析显示,北方亚种群体的遗传多样性,并与国内养殖群体间存在极显著遗传分化,基于北方亚种群体开展群体选育或与其他群体开展杂交育种具有较好的应用前景。

关键词:大口黑鲈; 微卫星标记; D-loop 序列; 遗传多样性 **中图分类号:** S917 **文献标志码:** A **文章编号:** 1005-8737-(2022)09-1277-13

大口黑鲈(Micropterus salmoides)又名加州鲈, 广泛分布于美国、加拿大等淡水水域,是一种生 长快、易捕捞、适温较广和抗病能力较强的肉食 性鱼类^[1]。1983 年,我国内地从台湾地区引进加 州鲈,受到广大消费者的欢迎,其养殖规模不断 扩大,目前全国淡水鲈年产量已超过 4.7×10⁶ t^[2], 成为国内重要的淡水养殖品种之一。然而,大口 黑鲈作为外来引进的养殖品种,在开展遗传改良 和利用的过程中,需要对其群体开展准确的资源 调查及种质评价,进而减少后期选育与种内杂交 引起的遗传多样性降低及种质衰退等现象。

目前,常用于分析大口黑鲈群体遗传多样性的技术主要有:线粒体 DNA 标记^[3]、随机扩增多态性 DNA(random amplification polymorphic DNA, RAPD)^[4-5]、扩增片段长度多态性标记(amplified fragment length polymorphism, AFLP)^[6]和微卫星

收稿日期: 2021-12-02; 修订日期: 2022-02-14.

基金项目: 江苏省种业振兴"揭榜挂帅"项目(JBGS〔2021〕130); 苏州市科技计划项目(SNG2021009).

作者简介:张帝(1995-),男,硕士研究生,研究方向为水产生物技术.E-mail: 2542728420@qq.com

通信作者:强俊,副研究员,研究方向为水产生物技术, E-mail: qiangj@ffrc.cn; 徐跑,研究员,研究方向为水产动物遗传育种, E-mail: xup@ffrc.cn

(简单重复序列, simple sequence repeat, SSR)标 记^[7-12]等。其中, 基于 SSR 标记和线粒体 D-loop 序列对大口黑鲈的遗传变异分析的研究较多。孙 成飞等^[7]和梁素娴等^[12]利用 SSR 标记对国内的大 口黑鲈养殖群体进行了遗传多样性和种质资源现 状的研究, 均发现国内大口黑鲈养殖群体的遗传 多样性已显著下降、种资退化严重。樊佳佳等^[9] 和苏胜彦等^[11]基于 SSR 标记对大口黑鲈国外引 进群体和国内养殖群体的遗传多样性对比分析, 均得出国外引进群体遗传多样性水平远远高于国 内养殖群体的结论; 李胜杰等^[3]利用 D-loop 区序 列的研究也发现国外群体遗传多样性水平远高于 国内养殖群体。王佩佩等^[8]对大口黑鲈北方亚种 与佛罗里达亚种及"优鲈3号"的杂交F1进行微卫 星的遗传多样性分析得到"优鲈 3 号♀×佛罗里达 亚种♂"的杂交群体组合较优。蔡磊等^[13]则是对大 口黑鲈北方亚种和佛罗里达亚种及其作为亲本进 行正交反交得到的2种杂交子代共4个群体进行 微卫星遗传分析,并发现其反交组合(佛罗里达亚 种♀×北方亚种♂)的子代更具有育种潜力;李镕 等[10]采用微卫星标记技术分析不同世代大口黑 鲈选育群体的遗传结构时发现, 群体的遗传基础 逐步趋向纯化。这些研究为大口黑鲈种质资源的 保护、开发、利用和选育提供了丰富的遗传参考 数据和背景知识。考虑到诸多大口黑鲈的遗传变 异研究所用分子标记和群体各有不同, 尤其是大 口黑鲈作为外来引种物种,缺乏自然种质资源, 且国内选育群体和养殖群体数量有限,因此,在 开展遗传改良和利用过程中,有必要对现有种质 材料遗传多样性开展研究。

2021年国家启动了第一次全国水产养殖种质 资源调查,针对国内主要养殖与选育的大口黑鲈 群体展开系统与深入的种质资源调查具有重要的 现实意义。本研究中所选台湾群体作为早期中国 台湾地区的选育种群,奠定了中国大口黑鲈养殖 业的基础;"优鲈1号"于2010年通过国家水产新 品种审定成为国内第一个大口黑鲈选育新品种^[14] 在全国各地广泛养殖;而"优鲈3号"则是以"优鲈 1号"和北方亚种为基础育种,连续4代选育而来, 相比于前者其生长优势更为显著^[15];本研究中选 用的北方亚种是课题组于 2020 年从美国引进的 原种群体,而北方亚种群体基因的纯合度要高于 佛罗里达亚种,作为选育群体其后代基因型检出 率会更高^[13];杂交群体为课题组以"优鲈 3 号"为 母本,北方亚种为父本进行群繁得到的杂交选育 种。本研究共选用 5 种大口黑鲈群体作为实验对 象,通过线粒体 D-loop 部分序列和 14 个 SSR 标 记对其进行遗传变异分析,旨在筛选出优质种质 材料,进一步补充和完善我国大口黑鲈群体的种 质资源信息,为大口黑鲈养殖群体种质改良和新 品种培育提供基础数据。

1 材料与方法

1.1 实验材料与 DNA 提取

实验所用的5个大口黑鲈群体(表1)收集于广 州与江苏等地的大口黑鲈良种繁育场,分别为: 从中国台湾地区引进的台湾养殖群体(台湾群体, CTW)、从美国引进的大口黑鲈北方亚种US、由 珠江水产研究所选育的养殖品种("优鲈 1 号"YL1、"优鲈3号"YL3)和本课题组自行培育的 杂交品种("优鲈3号"YL3)和本课题组自行培育的 杂交品种("优鲈3号"♀×北方亚种♂,HBY)。分别 在以上5个群体中随机选取35尾大口黑鲈,共 175尾,剪取尾鳍,放置于预先备好的装有90%乙 醇的2mL离心管中,于-20℃冰箱保存。样本基 因组DNA参照苯酚-氯仿法提取,再通过1%琼脂 糖凝胶电泳检测其完整性,经由 NanoDrop 分光光 度仪检测其纯度和浓度,最后保存于-20℃备用。

表 1 大口黑鲈样本信息

Tab. 1 Samp	oring information of	of micropierus s	aimolaes
群体 population	编号 serial number	采样地 location	样本数 no
优鲈1号	YL1	江苏	35
优鲈3号	YL3	江苏	35
台湾群体	CTW	广东	35
北方亚种	US	江苏	35
杂交群体	HBY	江苏	35

1.2 分子标记扩增及检测

1.2.1 微卫星标记 PCR 扩增及检测 基于 GenBank 上大口黑鲈的 SSR 序列信息,通过 PrimePremier 6.0 软件设计引物(表 2)。正向引物的 5′端用 FAM

或HEX荧光基团标记,委托翼和应用生物技术有限公司(江苏无锡)合成。

聚合酶链式反应(polymerase chain reaction, PCR)扩增体系为 10 μL, 具体包括 10×Buffer 1 μL, DNA 模板 1.5 μL, dNTP 0.8 μL, ddH₂O 5.4 μL, 正、反向引物各 0.5 μL, *Taq* 酶 0.3 μL。PCR 扩增 程序为: 95 ℃预变性 2 min 后进入 40 个循环, 94 ℃, 30 s; 退火温度见表 2, 90 s; 72 ℃, 1 min, 循 环结束后 72 ℃再延伸 10 min。SSR 基因分型检 测委托翼和应用生物技术有限公司完成。

	10012 11111			
位点	NCBI 收录号	引物序列(5'-3')	片段大小/bp	退火温度/℃
locus	access number	primer sequence $(5'-3')$	fragment size	annealing temperature
LMB03	EF590092.1	F: AGTATGTGTGGTCCTGTCT R: CCTCAGTCACCAGTTCATC	129	54
LMB07	EU152089.1	F: ACGGTGAGATGTGTAGCA R: CAGGAATGGAGAGTGATGAC	154	54
LMB10	EF590095.1	F: AGTCACAGTCTGCCATCA R: CCCACACCTTCTTAAACATC	157	56
LMB15	EF590094.1	F: GAGGTCCACCAGAGACAA R: CCAGAGAACGAATGAGGTTA	172	60
LMB16	EU152090.1	F: GTGTCCCTGACTGTATGG R: TCAAGAAGGAACCACTCATT	174	56
LMB22	EF055995.1	F: GGTAGCAGCGGTTAGGAT R: AACACGGACTCACGACAT	198	56
LMB24	EF055997.1	F: CGTGTAACTATGGTGATGTG R: GAAGCGAGAGTCAGAGTG	203	60
LMB28	EU180174.1	F: TGGTGAACACAGCAGAAC R: GGACAGCCTCAATACATCTT	236	60
LMB30	EF590064.1	F: TTATGCTTGTTCCTCTGTCT R: TTCTCTGCCTGGTCATTAG	241	56
LMB37	DQ211538.1	F: AAGCGTGTGGTTAGGATG R: GCAGATAAGTGGCAGTGT	292	56
LMB38	EF590089.1	F: TAGTGTATTGCTCTGAAGGT R: AACATACTGCTGATGGAGAA	302	56
LMB39	EF055993.1	F: GAAGGACACCATACAACACT R: CCTCTCCATCCTCCTCATC	327	56
LMB40	EF590105.1	F: CCTCTTCCATTCCAACATT R: ACACAATCACACCTGGTAT	331	60
LMB42	EF055994.1	F: GCAGAGCAGAAGAATGACT R: TGAACACAACGACACCAC	336	56

表 2 大口黑鲈 14 个微卫星标记的引物信息 Tab. 2 Primer information of 14 microsatellite markers for *Micropterus salmoides*

1.2.2 线粒体 D-loop 部分序列扩增及检测 根据 GenBank 上大口黑鲈线粒体基因组序列 (DQ536425.1)设计该实验中的引物,上下游引物 序列分别为 DF1: 5'-AGGCTGGCTGGAGAACAA-3', DF2: 5'-ACGGGTGTGCGGATACTT-3'。引物由苏州金唯智生物科技有限公司合成。

PCR 扩增体系为 30 μL,包括 15 μL PCR Master MIX [成分: 10 mmol/L Tris-HCl (pH 8.3)、50 mmol/L KCl、1.5 mmol/L MgCl₂、20 μmol/L dNTP each、 *Taq* DNA 聚合酶 0.05 U/μL、ddH₂O、其他稳定剂 和增强剂]、上下游引物(10 μmol/L)各 1 μL、DNA 模板(50 ng/μL) 2 μL, 11 μL ddH₂O。所用 PCR 试 剂购自南京诺唯赞生物科技股份有限公司。PCR 扩增程序为:94 ℃预变性3 min;94 ℃变性40 s, 58 ℃复性55 s,72 ℃延伸1 min, 扩增36个循环; 72 ℃延伸10 min,4 ℃保存。PCR 扩增产物经1% 琼脂糖凝胶电泳检测, 然后送至无锡亦欣生物科 技有限公司,通过 ABI3730 测序仪进行双向测序。

1.3 数据分析

1.3.1 微卫星标记分析使用 Popgene1.32 软件^[16] 分析单个 SSR 位点在样本整体的等位基数(*N*_a)、 有效等位基数(*N*_e)、观测杂合度(*H*_o)、期望杂合度 (*H*_e)、Shannon's 多样性指数(*I*)、群体间遗传距离 (*D*_a)、遗传相似度(*S*)、各位点近交系数(*F*_{IS})和遗 传分化系数(*F*_{ST})。应用 Powermarker 3.0 软件^[17] 计算各位点的多态性信息含量(PIC),并基于等位 基因频率的 Nei's 遗传距离利用 MEGA5.0^[18]构建 群体间的 UPGMA 聚类树。使用 Genalex 6.41 软 件^[19]分析每个群体的群体内近交系数(*F*)、特有等 位基因(private allele)、分子遗传变异方差分析 (AMOVA)、遗传分化指数(*F*_{ST})和主坐标分析 (PCoA)。最后再利用 STRUCTURE2.0 软件^[20]进行 绘制遗传结构图。

1.3.2 D-loop 部分序列分析使用 BioEdit7.0 软件^[21]和 Clustal X 1.8 软件分别进行序列编辑和比对。通过 DnaSP 5.0 软件^[22]计算多态性位点数(*S*)、单倍型数(*H*)、单倍型多样性(*H*_d)、核苷酸多样性(*π*)、平均核苷酸差异数(*K*)和 Tajima's D 等遗传多样性参数。利用 Arlequin3.5 软件^[23]开展核苷酸组成分析、遗传分化指数(*F*_{ST})计算和分子遗传变异方差分析(AMOVA)等。基于群体间的 Kimura 双参数模型(Kimura 2 parameter, K2P)遗传距离通过MEGA5.0^[18]软件构建邻接(Neighbor-Joining, NJ)进化树。基于单倍型位点变异和在群体间的分布

情况,通过 Network 4.6 软件^[24]构建单倍型的简 约中介(Reduce-Median MJ)网络图。

2 结果与分析

2.1 遗传变异特征及群体动态分析

本实验选用 14 对 SSR 引物扩增 5 个大口黑 鲈群体, 共得到 166 个个体的有效扩增和分型。 结果表明, 14 对引物在 5 个群体中均能扩增到目 的条带, 并体现出不同程度的多态性(表 3)。其中 等位基因数(N_a)为 3~19 个; 有效等位基因数(N_e) 为 1.01~4.24; Shannon's 多样性指数(I)为 0.041~ 1.892; 观测杂合度(H_a)为 0.012~0.599; 期望杂合 度 (H_e)为 0.012~0.767; 多态信息含量(PIC)为 0.012~0.741, 其中 5 个位点($LMB24 \ LMB28 \ LMB38 \ LMB39 \ LMB42$)属于高度多态水平(PIC> 0.5)。参考结合 F 统计量分析发现: F_{IS} 共有 2 个 位点出现负值, LMB24的值最大; F_{IT} 只有 1 个位 点 出现负值, LMB10和LMB24位点的值超过0.5; 群体间的 F_{ST} 均低于 0.5, 群体间的基因流(N_m)值 在 1.253~13.854 之间。

			i I		11	i				
位点 locus	等位 基因数 <i>N</i> a	有效等位 基因数 N _e	Shannon's 指数 I	观测 杂合度 H。	期望 杂合度 H _e	多态信息 含量 PIC	$F_{\rm IS}$	$F_{\rm IT}$	$F_{\rm ST}$	$N_{\rm m}$
LMB03	10	1.560	0.820	0.295	0.360	0.342	0.036	0.181	0.150	1.415
LMB07	5	2.085	0.821	0.476	0.522	0.413	0.049	0.084	0.038	6.373
LMB10	4	1.217	0.393	0.078	0.179	0.171	0.495	0.556	0.120	1.839
LMB15	3	1.012	0.041	0.012	0.012	0.012	-0.023	-0.004	0.018	13.854
LMB16	5	1.082	0.213	0.048	0.076	0.075	0.325	0.367	0.062	3.779
LMB22	9	1.623	0.737	0.375	0.386	0.338	-0.076	0.023	0.092	2.470
LMB24	11	3.867	1.557	0.279	0.744	0.699	0.569	0.625	0.129	1.688
LMB28	19	4.242	1.892	0.506	0.767	0.741	0.280	0.342	0.086	2.649
LMB30	5	2.002	0.915	0.316	0.502	0.450	0.083	0.372	0.314	0.545
LMB37	6	1.404	0.572	0.220	0.289	0.263	0.129	0.240	0.127	1.712
LMB38	9	2.112	1.194	0.435	0.528	0.504	0.061	0.173	0.119	1.844
LMB39	7	3.332	1.333	0.566	0.702	0.646	0.036	0.196	0.166	1.253
LMB40	6	1.484	0.694	0.256	0.327	0.308	0.101	0.212	0.124	1.773
LMB42	10	3.228	1.495	0.599	0.692	0.652	0.067	0.132	0.070	3.319
均值 mean	8.4	2.238	0.952	0.338	0.452	0.419	0.147	0.242	0.112	3.190

表 3 基于 14 个微卫星位点对 5 个大口黑鲈群体遗传多样性的检测结果 Tab. 3 Genetic diversity of 5 *Micropterus salmoides* populations detected by 14 microsatellite loci

注: F_{IS}为群体内近交系数; F_{IT}为总群体近交系数; F_{ST}为群体间遗传分化指数; N_m为基因流, N_m为根据 F_{ST}=0.25(1-F_{ST})/F_{ST}估算的基因 流量.

Note: $F_{\rm IS}$ is inbreeding coefficient within a population; $F_{\rm IT}$ is inbreeding coefficient of the total population; $F_{\rm ST}$ is coefficient of genetic differentiation among populations; $N_{\rm m}$ is gene flow, which is estimated from $F_{\rm ST}=0.25(1-F_{\rm ST})/F_{\rm ST}$.

5 个大口黑鲈群体的遗传多样性参数见表 4。 群体的平均 N_a 由高到低依次为:北方亚种、"优 鲈 3 号"、杂交群体、台湾群体和"优鲈 1 号"。北 方亚种群体的平均 N_a、N_e、I、H_o、H_e和 PIC 均 为最高(N_a=6.733, N_e=3.223, I=1.210, H_o=0.439, H_e=0.568, PIC=0.514),而"优鲈 1 号"平均 N_a、N_e、 I、H_o、H_e和 PIC 均为最低(N_a=2.800, N_e=1.670, I= 0.567, *H*_o=0.263, *H*_e=0.310, PIC=0.278)。综合上述 参数,表明北方亚种群体的遗传多样性最高,其 他4个群体遗传参数较为接近,遗传多样性较低。

经测序共得到 165 尾大口黑鲈个体的 D-loop 序列。其中核苷酸组成显示: A+T 的含量(62.3%) 明显高于 C+G 的含量(37.7%)。通过序列分析对 比, 共检测到 23 个变异位点, 27 个单倍型(表 5)。

	1		1 1	1		1
分子标记 molecular markers	多样性参数 diversity parameter	优鲈 1 号 YL1	优鲈 3 号 YL3	台湾群体 CTW	北方亚种 US	杂交群体 HBY
微卫星标记	有效样本量 effective sample size	35	34	34	32	31
microsatellite markers	等位基因数 Na	2.800	3.533	3.067	6.733	3.133
	有效等位基因数 Ne	1.670	1.963	1.854	3.223	1.846
	Shannon's 指数 I	0.567	0.728	0.661	1.210	0.652
	观察杂合度 H。	0.263	0.324	0.309	0.439	0.305
	期望杂合度 He	0.310	0.396	0.364	0.568	0.358
	多态信息含量 PIC	0.278	0.359	0.327	0.514	0.320
D-loop 序列	有效样本量 effective sample size	35	31	35	34	30
D-loop sequence	多态位点数 S	5	4	5	17	7
	单倍型数 h	5	5	5	12	6
	单倍型多样性 H _d	0.218	0.299	0.267	0.882	0.414
	核苷酸多样性 π	0.0004	0.0005	0.0005	0.0034	0.0008
	平均核苷酸差异数 K	0.2857	0.3785	0.3899	2.6667	0.6483
	Tajima's D	-2.0077	-1.5831*	-1.7823	-1.1977	-1.8706^{*}

	表 4	大口黑鲈微卫星标记和 D-loop 序列的遗传多态性参数
Tab. 4	Genetic diversity paramet	ers of microsatellite markers and D-loop sequences in five <i>Micropterus salmoides</i> populations

注:*表示 Tajima's D 中性检验达到显著性水平(P<0.05).

Note: * Indicating statistical significance level for Tajima's D test (P < 0.05).

					-	••		-	-	-			
单倍型 haplotype	优鲈 1 号 YL1	+ 优鲈 3 号 YL3	台湾群体 CTW	北方亚种 US	杂交群体 HYB	总体 total	单倍型 haplotype	优鲈 1 号 YL1	优鲈 3 号 YL3	台湾群体 CTW	北方亚种 US	杂交群体 HYB	总体 total
H01	29	26	30		23	108	H15				1		1
H02		1	2			3	H16				1		1
H03		1	1		1	3	H17				1		1
H04			1			1	H18				1		1
H05		1	1		1	3	H19				1		1
H06				8		8	H20	1					1
H07				5		5	H21	1					1
H08				2		2	H22	1					1
H09				1	1	2	H23	1					1
H10				1		1	H24	1					1
H11				5		5	H25	1					1
H12				1		1	H26		2			2	4
H13				1		1	H27					2	2
H14				5		5							

表 5 大口黑鲈 5 个群体 D-loop 单倍型分布情况 Tab. 5 Distribution of the haplotypes in five *Micropterus salmoides* populations

注: 表中数字为各群体中不同单倍型个体数.

Note: Figures indicate numbers of different haplotypes in each population.

在 27 个单倍型中 H01 为优势单倍型,占个体总数的 65.5%。台湾群体(CTW)、"优鲈 3 号"(YL3)和 "优鲈 1 号"(YL1)群体都是优势群体,占有率分别为 85.7%、83.9%和 82.9%。各群体的单倍型多样 性(H_d)为 0.218~0.882,核苷酸多样性(π)为 0.0004~ 0.0034。其中北方亚种群体(US)的遗传多样性水 平最高(H_d=0.882, π=0.0034), "优鲈 1 号"(YL1)单 倍型多样性最低(H_d=0.218, π=0.0004)。中性检验 显示,5 个大口黑鲈群体 Tajima's *D* 值均为负值, 其中"优鲈 3 号"(YL3)、杂交群体(HBY)显著偏离 中性检验(*P*<0.05)(表 4)。

2.2 群体间遗传距离及遗传分化

根据微卫星标记的遗传分析(表 6)显示,"优 鲈 3 号"群体和杂交群体的遗传距离最近(*D*a= 0.016),北方亚种群体与"优鲈 3 号"群体遗传距离 最远(*D*a=0.300),其次为杂交群体(*D*a=0.293);北 方亚种群体与"优鲈 3 号"群体的遗传一致性最低 (*S*=0.741),杂交群体与"优鲈 3 号"群体遗传一致 性最高(*S*=0.985)。依据 D-loop 部分序列的遗传分 析,5个大口黑鲈群体间的 K2P 遗传距离为 0.000~ 0.012 (表 7),其中"优鲈 1 号"(YL1)、"优鲈 3 号"(YL3)和台湾群体(CTW)群体 K2P 遗传距离最 近,北方亚种(US)群体与其他 4 个群体 K2P 遗传 距离最远。

表 6 5 个大口黑鲈群体间 Nei's 遗传距离 (对角线以下)和遗传一致性(对角线以上) Tab. 6 Nei's genetic distance (below diagonal) and genetic consistency (above diagonal) of the five *Micropterus salmoides* populations

群体 population	优鲈 1 号 YL1	优鲈3号 YL3	台湾群 体 CTW	北方 亚种 US	杂交 群体 HYB
优鲈 1 号 YL1	-	0.963	0.980	0.743	0.975
优鲈 3 号 YL3	0.037	-	0.965	0.741	0.985
台湾群体 CTW	0.020	0.036	-	0.769	0.973
北方亚种 US	0.297	0.300	0.263	_	0.746
杂交群体 HYB	0.026	0.016	0.027	0.293	-

基于以上遗传距离构建的UPGMA聚类树(图 1)显示,"优鲈1号"、"优鲈3号"、杂交群体和台 湾群体最先聚类,最后再与北方亚种聚类。根据 168 尾大口黑鲈个体间的遗传距离构建的基于 Nei's遗传距离的NJ聚类树(图2)显示北方亚种群 体形成一个明显的群体分支;其他 4 个群体呈现 出镶嵌式排列。

表 7 大口黑鲈群体间 K2P 遗传距离(左下角) 和遗传分化指数 F_{ST} (右上角)

Tab. 7 Pairwise K2P genetic distances (below diagonal) and fixation indexes (F_{ST}, above diagonal) among *Micropterus salmoides* populations

群体 populations	优鲈 1 号 YL1	优鲈 3 号 YL3	台湾 群体 CTW	北方 亚种 US	杂交 群体 HYB
优鲈 1 号 YL1	_	-0.003	-0.008	0.884^{**}	0.012
优鲈 3 号 YL3	0.000	-	-0.014	0.829**	-0.007
台湾群体 CTW	0.000	0.000	-	0.836**	0.010
北方亚种 US	0.012	0.012	0.012	_	0.818**
杂交群体 HBY	0.001	0.001	0.001	0.012	-

注: **表示 US 群体与其他 4 个群体间遗传分化呈极显著统计水平(P<0.01).

Note: ****** Indicates that the US population has a extremely significant genetic differentiation with the other four populations (P < 0.01).

对 5 种大口黑鲈的遗传方差分析(AMOVA)显示(表 8),基于 SSP 位点变异,群体中有 20%的遗 传变异来自群体间,80%的遗传变异来自群体内, 遗传分化指数为0.200;基于 D-loop 序列变异,群 体间和群体内的方差组分占 79.13%和 20.87%, 群体间遗传分化指数为0.7913。

2.3 遗传结构及单倍型网络图

根据大口黑鲈个体间遗传距离的二维主坐标 分析(PCoA)结果(图 3)显示,北方亚种群体内的

图 2 基于 Nei's 遗传距离构建的 168 尾大口黑鲈个体的 NJ 聚类树 Fig. 2 NJ tree of 168 Micropterus salmoides individuals based on Nei's genetic distance

Ŧ	ŧ	8	5	个	大		三	誤角	卢君	样体	本考	ŧ-	Fð	散.	ኮ	星	位	点	和	D)-lo	oop	p F	亨歹	间自	匀 .	AN	AC)V	A 分	↾析	
Tab. 8	8	Aı	nal	lys	es	of	m	ol	ecı	ıla	r v	ar	iaı	nc	e (AN	40)V	A)	ba	ase	d o	n	mio	cro	sa	tel	lite	e m	ark	kers	and
				D)-la	00) s	seq	lne	enc	es i	in	fiv	/e	M	icr	ор	ter	us	sa	ılm	oia	les	po	pu	la	tio	ns				

分子标记 molecular marker	变异来源 source of variation	自由度 df	平方和 sum of squares	方差组分 variance component	百分率/% percentage of variation
SSR 标记	群体间 among populations	4	270.039	1.797	20
SSR marker	群体内 within populations	163	1168.449	7.168	80
	总变异 total variation	167	1438.488	8.965	100
D-loop 序列	群体间 among populations	4	291.207	2.191	79.13
D-loop sequence	群体内 within populations	160	92.447	0.578	20.87
	总变异 total variation	164	383.654	2.769	100

个体与其他 4 个群体内的个体存在显著差异, 而 "优鲈 3 号"、"优鲈 1 号"、杂交群体和台湾群体 4 个群体内的个体间遗传差异较小。

利用 Structure 2.0 软件进行大口黑鲈群体遗传 结构分析, K 设定为 1~20, 每个 K 重复运行 3 次 得到 ΔK 随 K 变化曲线, 发现当 K=2 时, 此时 $\Delta K=1500$, 出现峰值, 推断该研究所有参试个体 最佳分组为 2 个理论群。优鲈 3 号群体、优鲈 1 号群体、杂交群体和台湾群体聚为一组, 北方亚 种群体聚为另一组(图 4)。

图 5 为基于单倍型构建的大口黑鲈网络图。 群体间分享单倍型现象明显,且在 27 个单倍型中 优势单倍型明显,其中"优鲈 1 号"(YL1)、"优鲈 3 号"(YL3)、台湾群体(CTW)和杂交群体(HYB)均有 1 个共享单倍型(H01),北方亚种(US)与其他群体

共享单倍型较少,只与杂交群体(HYB)共享一个 单倍型(H09),遗传分化距离也较远。

3 讨论

3.1 基于 SSR 标记的大口黑鲈群体遗传多样性

实验中所用的 14 对微卫星引物的 PIC 介于 0.012~0.741, 根据 Botstein 等[25]的划分标准, 其 中3个位点(LMB10、LMB15、LMB16)属于低度多 态位点(PIC<0.25), 6 个位点(LMB03、LMB07、 LMB22、LMB30、LMB37、LMB40)属于中度多态 位点(0.25<PIC<0.5),5个位点(LMB24、LMB28、 LMB38、LMB39、LMB42)属于高度多态位点(PIC> 0.5)。群体中北方亚种平均等位基因数和平均杂合 度均高于其他 4 个群体, 且 PIC 为 0.514, 与樊佳 佳等^[9]检测的北方亚种的 PIC 相似(PIC= 0.5546), 这表明新引进的北方亚种群体保留了较高的遗传 多样性水平,具有较高的选育空间和潜力。其他4 个群体的 PIC 处于中度多态性(0.278< PIC<0.359), 与孙成飞等[7]和樊佳佳等[9]所测得的国内养殖群 体的多态信息含量相近(PIC=0.321、PIC=0.379), 表明国内养殖群体在经历过多代选育后种质退化 较为严重。

在本研究的 5 个群体中, 测得的观测杂合度 (H_o)均低于期望杂合度(H_e),这表明存在杂合子 缺失现象, 在鲤(Cyprinus carpio)^[26]、白甲鱼(Onychostoma sima)^[27]、中国明对虾(Fenneropenaeus chinensis)^[28]等物种中也存在类似现象,而这一现 象可能与无效等位基因、群体中性别比例不均衡、 近交以及选育过程中人为干扰过多有关。遗传距 离和一致性的分析结果均显示北方亚种群体与 "优鲈 3 号"群体的遗传距离最远(Da=0.3003),遗 传一致性最低(S=0.741),表明这两个群体间亲缘 关系最远, 遗传分化水平较高, 两个群体间开展 杂交育种可能具有较强的潜力。其中台湾群体与 "优鲈 1 号"群体遗传距离最近(D_a=0.02), 这与苏 胜彦等[11]研究结果相一致,说明"优鲈1号"群体 可能是台湾群体引进后本地化选育的结果, 或是 2 个养殖群体具有相似的育种或遗传改良路径。 因此,对于人工累代繁育引起的遗传多样性降低 的群体,应进行科学的引种,并建立有效的良种 保护,可在一定程度减少国内群体的种质匮乏与 混杂。

3.2 基于线粒体 D-loop 序列的大口黑鲈群体遗 传多样性

结合对大口黑鲈 5 个群体的 D-loop 区序列 (811 bp)分析表明, A+T 含量为 62.3%, C+G 的含 量为 37.7%,结果与李胜杰等^[3]对 3 个大口黑鲈群 体的线粒体 D-loop 基因序列分析结果相似,与其 他鲈形目鱼类如宝石鲈(*Scortum barcoo*)^[29]、松江 鲈(*Trachidermus fasciatus*)^[30]的研究结果一致,也 符合脊椎动物 mtDNA 碱基的含量分布^[31]。

物种的遗传多样性越高,其适应能力和生存 能力就越强, 育种和遗传改良的潜力就越大, 贫 乏的遗传多样性则会影响物种的进化和生存及种 质资源的利用和保护^[3]。就单倍型多样性和核苷 酸多样性而言,北方亚种的单倍型多样性和核苷 酸多样性水平相对较高(H_d=0.882, π=0.0034), 杂 交群体次之(H_d=0.414, π=0.0008); 台湾群体、"优 鲈1号"和"优鲈3号"群体最低(0.218<H_d<0.299, 0.0004<π<0.0005), 而这3个养殖群体在我国广泛 分布,具有一定代表性,所测得的核苷酸多样性 与李胜杰等^[3]分析得到国内养殖群体的核苷酸多 样性(H_d=0.400, π=0.0005)相似, 可见国内养殖群 体遗传多样性已显著下降(P<0.05), 这与引种时 奠基种群较少或基础种群没有得到及时补充与更 新,以及选育和引种群体时间较长有关。同时,5 个群体中的核苷酸多样性水平较低, 单倍型多样 性水平较高,这与鲤^[26]、宝石鲈^[29]、松江鲈^[30]、 草鱼(Ctenopharyngodon idella)^[32]、刀鲚(Coilia nasus)和湖鲚(Coilia nasus taihuensis)^[33]等其他鱼 类的研究结果相似, 表明在短时间内群体的单倍 型多样性比核苷酸多样性更容易积累。

遗传距离和种群分化指数是衡量群体间分化 程度的重要指标,两者数值越大,群体多态性越 高。本研究实验结果表明,5个群体间的遗传距离 为 0.000~0.012,这与青海湖裸鲤(Gymnocypris przewalskii Kessler)^[34]和斑鳜(Siniperca scherzeri)^[35]的遗传距离(0.011~0.019, 0.007~0.010)相 似,表明该群体间的遗传分化程度不大,遗传变 异水平较低。北方亚种和其他 4 个群体遗传分化 指数(F_{ST})在 0.8179~0.8359 之间,其他 4 个群体间 遗传分化指数(F_{ST})在-0.0143~0.0115 之间。根据 Ballouxd^[36]估计种群遗传分化的标准,北方亚种 群体与其他 4 个群体遗传分化程度极大,表明在 长期的人工养殖下大口黑鲈种质退化严重,有必 要从国外引种以丰富国内养殖群体,而通过引进 与补充国内养殖群体的种群数量是缓解种质退化 的有效方法。此外,该研究群体间的 K2P 遗传距 离也与 NJ 聚类的结果相符合,表明北方亚种群 体遗传多样性高,遗传距离相对较远,利用北方 亚种与其他群体开展杂交显得更具有潜力,其他 4 个群体间存在着广泛的基因交流,没有形成较为 明显的遗传分化,维持了较近的亲缘关系。

3.3 综合两种分析方法分析 5 个大口黑鲈群体的 遗传多样性

根据对 5 个大口黑鲈群体的 SSR 标记和线粒 体 D-loop 序列的分析, 均显示 5 个群体中北方亚 种群体的遗传多样性水平较高,其他4个群体(台 湾群体、"优鲈1号"、"优鲈3号"和杂交群体)的 遗传多样性水平较低。群体遗传分化指数和 AMOVA 分析结果表明北方亚种群体与其他4个群体间(台 湾群体、"优鲈1号"、"优鲈3号"和杂交群体)均 存在极显著的遗传分化。SSR 标记和线粒体 D-loop 部分序列变异在遗传距离以及 AMOVA 方 差组分估算上所表现的不同, 与两者所遵循不同 的遗传模式有关^[37]。基于线粒体 D-loop 序列单倍 型网络图分析表明, 单倍型明显分为 2 个分支, 具有明显的群体特异性(北方亚种所特有的单倍 型为一支,"优鲈1号"、"优鲈3号"、台湾群体和 杂交群体为另一支),与遗传结构图(K=2)、PCoA 和基于 Nei's 遗传距离构建的大口黑鲈个体 UPGMA 聚类树分析结果相符合,表明北方亚种 与其他 4 个群体遗传差异较大, 遗传结构相对独 立,也进一步说明了"优鲈1号"、"优鲈3号"、台 湾群体和杂交群体间存在一定程度上的遗传混杂 现象。

4 结论

本研究采用 SSR 标记和线粒体 D-loop 序列对 5 个大口黑鲈群体的遗传多样性进行分析,结果

表明, 引进的北方亚种群体保持了较高的遗传多 样性水平, 并与国内养殖群体间存在极显著遗传 分化, 基于北方亚种群体开展群体选育或与其他群 体开展杂交育种具有较好的应用前景。

参考文献:

- Bailey R M, Hubbs C L. The black basses (*Micropterus*) of Florida, with description of a new species[J]. University of Michigan Museum of Zoology, 1949.
- [2] Fisheries and Fisheries Administration of the Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. China Fishery Statistics Yearbook 2018[M]. Beijing: China Agriculture Press, 2020: 46-47. [农业农村部渔业渔政管理局, 全 国水产技术推广总站,中国水产学会.中国渔业统计年鉴 2020[M]. 北京:中国农业出版社, 2020: 46-47.]
- [3] Li S J, Bai J J, Ye X, et al. Approach on the taxonomic status and genetic variation of largemouth bass (*Micropterus salmoides*) cultured in China based on mitochondrial D-loop gene[J]. Marine Fisheries, 2008, 30(4): 291-296. [李胜杰, 白俊杰, 叶星, 等. 基于线粒体 D-loop 区探讨我国养殖大 口黑鲈的分类地位和遗传变异[J]. 海洋渔业, 2008, 30(4): 291-296.]
- [4] Zhu X P, Du H J, Zheng G M, et al. Genetic diversity analysis of largemouth bass (*Micropterus salmoides*) cultured in ponds[J]. Journal of Dalian Fisheries University, 2006, 21(4): 341-345. [朱新平, 杜合军, 郑光明, 等. 大口 黑鲈养殖群体遗传多样性的分析[J]. 大连水产学院学报, 2006, 21(4): 341-345.]
- [5] Chen W H, Ruan R X, Xuan Y F, et al. Genetic diversity analysis of largemouth bass in three different geographical populations[J]. Jiangsu Agricultural Sciences, 2012, 40(8): 231-233. [陈文华, 阮瑞霞, 宣云峰, 等. 3 个不同地理群体 大口黑鲈遗传多样性分析[J]. 江苏农业科学, 2012, 40(8): 231-233.]
- [6] Lu J F, Bai J J, Li S J, et al. AFLP analysis of genetic diversity in consecutive selected populations of largemouth bass (*Micropterus salmoides*)[J]. Freshwater Fisheries, 2010, 40(3): 3-7. [卢建峰, 白俊杰, 李胜杰, 等. 大口黑鲈选育群 体遗传多样性的 AFLP 分析[J]. 淡水渔业, 2010, 40(3): 3-7.]
- [7] Sun C F, Xie W F, Hu J, et al. Genetic diversity analysis of three cultured populations of *Micropterus salmoides*[J]. South China Fisheries Science, 2019, 15(2): 64-71. [孙成飞, 谢汶峰, 胡婕, 等. 大口黑鲈 3 个养殖群体的遗传多样性 分析[J]. 南方水产科学, 2019, 15(2): 64-71.]
- [8] Wang P P, Zhou G Q, Chen S Q, et al. Analysis of growth trait comparison and genetic diversity of F1 progeny on cross

species of southern largemouth bass, northern largemouth bass and "Youlu No.3"[J]. Marine Fisheries, 2020, 42(4): 403-409. [王佩佩, 周国勤, 陈树桥, 等. 大口黑鲈北方亚种、佛罗里达亚种及"优鲈 3 号"杂交 F1 子代生长性能及遗传多样性分析[J]. 海洋渔业, 2020, 42(4): 403-409.]

- [9] Fan J J, Bai J J, Li S J, et al. Establishment of DNA fingerprinting and analysis on genetic structure of largemouth bass with microsatellite[J]. Acta Hydrobiologica Sinica, 2012, 36(4): 600-609. [樊佳佳, 白俊杰, 李胜杰, 等. 大口黑鲈 微卫星 DNA 指纹图谱的构建和遗传结构分析[J]. 水生生 物学报, 2012, 36(4): 600-609.]
- [10] Li R, Bai J J, Li S J, et al. Analysis on genetic structure of selected population of largemouth bass by microsatellite DNA markers[J]. Journal of Guangdong Ocean University, 2010, 30(3): 11-15. [李镕, 白俊杰, 李胜杰, 等. 大口黑鲈 选育群体遗传结构的微卫星分析[J]. 广东海洋大学学报, 2010, 30(3): 11-15.]
- [11] Su S Y, Zhang L B, Li H Y, et al. Genetic diversity and structure analyses of largemouth bass (*Micropterus salmoides*) original and cultured populations based on microsatellite markers[J]. Journal of Zhejiang University (Agriculture & Life Science), 2020, 46(6): 687-698. [苏胜彦, 张林兵, 李 海洋,等.基于微卫星标记的大口黑鲈(*Micropterus salmoides*)原种和养殖群体遗传多样性和结构分析[J]. 浙 江大学学报(农业与生命科学版), 2020, 46(6): 687-698.]
- [12] Liang S X, Sun X W, Bai J J, et al. Genetic analysis for cultured largemouth bass(*Micropterus salmoides*) in China with microsatellites[J]. Acta Hydrobiologica Sinica, 2008, 32(5): 694-700. [梁素娴, 孙效文, 白俊杰, 等. 微卫星标 记对中国引进加州鲈养殖群体遗传多样性的分析[J]. 水 生生物学报, 2008, 32(5): 694-700.]
- [13] Cai L, Bai J J, Li S J, et al. Genetic analysis of northern largemouth bass, Florida largemouth bass, and their reciprocal hybrids[J]. Journal of Fishery Sciences of China, 2012, 19(1): 70-76. [蔡磊, 白俊杰, 李胜杰, 等. 大口黑鲈北方 亚种和佛罗里达亚种及其杂交子代的遗传分析[J]. 中国 水产科学, 2012, 19(1): 70-76.]
- [14] Fan J J, Bai J J, Li S J, et al. Nutrient composition and nutritive quality of the muscle of *Micropterus salmoides*, "Youlu No.1"[J]. Journal of Fishery Sciences of China, 2012, 19(3): 423-429. [樊佳佳, 白俊杰, 李胜杰, 等. 大口黑鲈"优鲈 1 号"选育群体肌肉营养成分和品质评价[J]. 中国水产科学, 2012, 19(3): 423-429.]
- [15] Lu J, Zhang J J, Zhou G Q, et al. Effect of acute high temperature stress on tissue damage and HSPs gene expression of largemouth bass *Micropterus salmoides* "Youlu No.3"[J]. Fisheries Science, 2021, 40(4): 508-515. [陆健, 张

佳佳,周国勤,等.急性高温胁迫对大口黑鲈"优鲈 3 号" 组织损伤及 HSPs 基因表达的影响[J].水产科学,2021, 40(4):508-515.]

- [16] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89(3): 583-590.
- [17] Liu K J, Muse S V. PowerMarker: An integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129.
- [18] Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
- [19] Peakall R, Smouse P E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research— An update[J]. Bioinformatics, 2012, 28(19): 2537-2539.
- [20] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data[J]. Genetics, 2000, 155(2): 945-959.
- [21] Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt[J]. Nucle Acids Symposium Series, 1999, 41(41): 95-98.
- [22] Rozas J, Sánchez-Delbarrio J C, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 2003, 19(18): 2496-2497.
- [23] Excoffier L, Lischer H E L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567.
- [24] Polzin T, Daneshmand S V. On Steiner trees and minimum spanning trees in hypergraphs[J]. Operations Research Letters, 2003, 31(1): 12-20.
- [25] Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3): 314-331.
- [26] Dong Z J, Liu N, Fu J J, et al. Genetic analysis for six wild and selection populations of common carp (*Cyprinus carpio*) using microsatellites[J]. South China Fisheries Science, 2018, 14(4): 46-55. [董在杰,刘念,傅建军,等. 6个野生与选育 鲤群体的微卫星遗传分析[J]. 南方水产科学, 2018, 14(4): 46-55.]
- [27] Xiong M H, Shi F, Xu N, et al. A preliminary analysis of genetic diversity of population of *Onychostoma sima* in Wujiang River with microsatellite markers[J]. Journal of Hydroecology, 2009, 30(2): 122-125. [熊美华, 史方, 徐念,

等. 微卫星标记分析乌江流域白甲鱼群体的遗传多样性 [J]. 水生态学杂志, 2009, 30(2): 122-125.]

- [28] Zhang T S, Liu P, Li J, et al. Genetic diversity of cultured populations of *Fenneropenaeus chinensis* shrimp using microsatellites[J]. Journal of Fisheries of China, 2005, 29(1): 6-12. [张天时, 刘萍, 李健, 等. 用微卫星 DNA 技术对中国对虾人工选育群体遗传多样性的研究[J]. 水产学报, 2005, 29(1): 6-12.]
- [29] Zhao L X, Dong J J, Sun C F, et al. Mitochondrial D-loop sequences and simple sequence repeat markers combination analysis of genetic diversity in reared *Scortum barcoo* populations[J]. Freshwater Fisheries, 2019, 49(3): 37-46. [赵 立祥, 董浚键, 孙成飞, 等. 结合线粒体 D-loop 序列和 SSR 标记对宝石鲈养殖群体遗传多样性的分析[J]. 淡水 渔业, 2019, 49(3): 37-46.]
- [30] Zhao L L, Bi X X, Song L, et al. Analysis of the structure of mitochondrial DNA control region and the genetic diversity of *Trachidermus fasciatus* in different populations[J]. Acta Hydrobiologica Sinica, 2016, 40(1): 35-41. [赵林林, 毕潇 潇, 宋林, 等. 松江鲈线粒体 DNA 控制区结构和遗传多 样性分析[J]. 水生生物学报, 2016, 40(1): 35-41.]
- [31] Broughton R E, Milam J E, Roe B A. The complete sequence of the zebrafish (*Danio rerio*) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA[J]. Genome Research, 2001, 11(11): 1958-1967.
- [32] Fu J J, Wang R Q, Shen Y B, et al. Genetic variation analysis based on d-loop sequences of wild populations of grass carp (*Ctenopharyngodon idella*) in China[J]. Acta Hydrobiologica Sinica, 2015, 39(2): 349-357. [傅建军, 王荣泉, 沈玉帮, 等.

我国草鱼野生群体 D-Loop 序列遗传变异分析[J]. 水生生物学报, 2015, 39(2): 349-357.]

- [33] Xu G C, Wei G L, Li J L, et al. The genetic diversity of farmed tapertail anchovy *Coilia nasus* and *Coilia nasus taihuensis* by mitochondrial D-loop genes analysis[J]. Journal of Dalian Ocean University, 2012, 27(5): 448-452. [徐钢春, 魏广莲, 李建林, 等. 基于线粒体 DNA D-loop 序列分析 养殖刀鲚与湖鲚的遗传多样性[J]. 大连海洋大学学报, 2012, 27(5): 448-452.]
- [34] Chen D Q, Zhang C L, Lu C, et al. Polymorphism of D-loop sequence from mitochondrial genomes of different broodstocks of *Gymnocypris przewalskii* (Kessler)[J]. Journal of Fishery Sciences of China, 2006, 13(5): 800-806. [陈大庆, 张春霖, 鲁成, 等. 青海湖裸鲤繁殖群体线粒体基因组 D-loop 区序列多态性[J]. 中国水产科学, 2006, 13(5): 800-806.]
- [35] Li S. Genetic structure and genetic diversity of Siniperca scherzeri population in Qingshuijiang River[D]. Guiyang: Guizhou University, 2018. [李珊. 清水江斑鳜种群遗传结 构及其遗传多样性研究[D]. 贵阳: 贵州大学, 2018.]
- [36] Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers[J]. Molecular Ecology, 2002, 11(2): 155-165.
- [37] Fu J J, Xu R W, Xue T, et al. Genetic analysis of three stocks of loach with microsatellite markers and D-Loop partial sequences[J]. Journal of Fisheries of China, 2015, 39(4): 465-474. [傅建军, 徐如卫, 薛婷, 等. 3 种泥鳅微卫星标记和 D-Loop 部分序列遗传变异分析[J]. 水产学报, 2015, 39(4): 465-474.]

Genetic analysis of five stocks of largemouth bass (*Micropterus salmoides*) with microsatellite and mitochondrial D-loop sequences

ZHANG Di¹, QIANG Jun^{1, 2}, FU Jianjun², XU Gangchun², ZHOU Guoqin³, DONG Zaijie², TAO Yifan², LU Siqi², LU Jian³, XU Pao^{1, 2}

1. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;

- 2. Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture and Rural
- Affairs; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- 3. Nanjing Fishery Science Research Institute, Nanjing 210017, China

Abstract: To explore the genetic structure and variation of the current largemouth bass (Micropterus salmoides) population, mitochondrial D-loop sequences and 14 simple sequence repeat (SSR) markers were used in this study. A total of 175 individuals from three cultured populations ("China-Taiwan" CTW, "YouLu1" YL1, "YouLu3" YL3), one breeding population (northern subspecies, US) and one "Hybrid population" (northern subspecies 3×10^{-10} K subspecies $3 \times 10^$ "YouLu 3" Q, HYB) were analyzed for genetic variation. The results showed that all 14 microsatellite loci could be effectively amplified, and five loci (LMB24, LMB28, LMB38, LMB39, and LMB42) showed high polymorphism (PIC>0.5). The highest polymorphism level was detected in the US population (PIC=0.514), whereas the polymorphism levels of the other four populations were lower (0.278<PIC<0.359). Based on D-loop sequencing, 23 mutation sites and 23 haplotypes were detected, and the haplotype diversity of the 5 populations ranged from 0.218 to 0.882. Abundant haplotypes (n=12) were detected in the US population. The dominant haplotype (H01) was detected in the other four populations, with contributions ranging from 76.7%-85.7%. Analysis of genetic variation based on SSR and D-loop sequences showed that Nei's genetic distance and K2P genetic distance (0.3003 and 0.012, respectively) between the US and YL3 populations were the farthest (0.300 and 0.012, respectively), which where greater than those among other populations (0.016–0.297 and 0.000–0.012, respectively). Molecular analysis of variance showed that the genetic differentiation of the five largemouth bass populations was highly significant (P<0.01). The results of the genetic structure and haplotype network analysis suggested that relative genetic independence was exhibited in the US population, whereas similar genetic resources were found in other cultured populations. The results showed that the newly introduced US population maintained a high level of genetic diversity and showed significant genetic differentiation from the domestic breeding populations. In conclusion, selective breeding of the US population and/or their crossbreeding with other populations has better prospects for genetic improvement.

Key words: *Micropterus salmoides*; microsatellite markers; D-loop sequences; genetic diversity Corresponding author: QIANG Jun, E-mail: qiangj@ffrc.cn; XU Pao, E-mail: xup@ffrc.cn