DOI: 10.12264/JFSC2022-0262

贝类养殖区 CO₂释放量化新模型的应用研究

蒋鑫坤¹, 李丽^{1,2}, 董双林^{1,2}

1. 中国海洋大学,教育部海水养殖重点实验室,山东 青岛 266003;

2. 青岛海洋科学与技术试点国家实验室海洋渔业科学与食物产出过程功能实验室, 山东 青岛 266235

摘要:海水贝类钙化过程将产生 CO₂,但由于不同养殖海区碳酸盐体系组成差异大,需要在考虑海区碳酸盐体系 变化特征的基础上更精确地量化该过程导致的 CO₂释放量。本研究将各种生物地球化学过程中产生的 CO₂ 源/汇效 应强度定义为 ϕ ,在钙化作用过程中, ϕ_{cal} 值可表示特定海区水文条件下,贝壳钙化作用实际释放到大气中的 CO₂ 与该过程产生的 CO₂的比率。应用新碳酸盐化学模型计算结果显示: ϕ_{cal} 值呈现季节变化特点,胶州湾、桑沟湾和 深澳湾的 ϕ_{cal} 值均为夏季最低;养殖海区内碳酸盐系统的区域性差异可改变 ϕ_{cal} 值,胶州湾、桑沟湾和深澳湾的平 均 ϕ_{cal} 值分别为 0.79, 0.72 和 0.72; 在贝类主要生长季节(3—7月),养殖海区的 ϕ_{cal} 值呈现下降趋势,此外,多项式 拟合结果表明胶州湾海区该阶段 ϕ_{cal} 值随温度的上升而降低。在温度高于 18 ℃后, ϕ_{cal} 值下降的速度逐渐加快。 Pearson 相关分析表明,胶州湾内 ϕ_{cal} 值与表层海水的 CO₂分压相关性极显著(P<0.01)。最后,基于模型计算的胶 州湾内 ϕ_{cal} 值水平,按胶州湾菲律宾蛤仔年产量 3.2×10⁵ t 计,胶州湾养殖菲律宾蛤仔贝壳生长部分预计每年向大 气中排放约 1.084×10⁵ t CO₂。本研究初步证实 ϕ_{cal} 可在考虑海区碳酸盐体系特征的基础上,更精确地量化贝类钙 化作用导致的 CO₂释放量,为后续的贝类的碳源/碳汇过程研究提供一定的参考。

关键词: 胶州湾; 贝类养殖; 钙化作用; 碳酸盐体系; 碳源; 碳汇
中图分类号: \$931
文献标志码: A
文章编号: 1005-8737-(2022)12-1693-11

近年来,气候变暖问题日益突出,温室气体,特别是二氧化碳(CO₂)的大量排放是造成这一大范围全球性气候突变的重要因素^[1]。工业革命前大气中 CO₂分压为 28.371 Pa^[2],而现阶段其数值已超过了 40.53 Pa。如果维持现有的 CO₂排放增长水平,预计到 21 世纪末,空气中 CO₂的分压将达到 75.99 Pa 以上^[3]。中国在 2020 年联合国气候大会上承诺将于 2030 年实现碳达峰,2060 年实现碳中和, CO₂ 减排增汇是实现这一目标的科学途径。海洋是全球碳循环的重要组成部分。海洋作为碳汇每年吸收的 CO₂ 约占人类工业活动排放总量的 25%^[4]。海洋碳汇(蓝碳)主要通过其内部地球生物化学过程降低表层海水的 CO₂分压(*p*CO₂)来实现^[5]。现有的研究表明,陆架边缘海区是海洋碳

汇的重要区域^[6],海区内浮游植物通过光合作用 消耗海水中的 CO₂和碳酸氢根(HCO₃),从而直接 降低海区的*p*CO₂,导致大气中的 CO₂向海水中溶 解^[7]。这些浅海区域约占全球海洋表面积的 7%, 具有海洋初级生产力总量的 14%~30%^[8],而产出 渔获量占比高达 90%^[9]。其中贝类养殖对于养殖 海区的碳源/碳汇过程的影响被广泛关注。

贝类养殖会影响表层海水的 pCO_2 。Filgueira 等^[10]详细阐述了这一影响。养殖贝类的呼吸会增 加海水 pCO_2 ; 贝类钙化作用过程中每沉淀 1 mol 的 CaCO₃都将生成 1 mol 的 CO₂, 其作用方程为: Ca²⁺+2HCO₃ \rightleftharpoons CaCO₃+H₂O+CO₂。海水具有复杂 的碳酸盐缓冲体系, CO₂ 溶入海水中后, 部分 CO₂ 与水结合形成 H₂CO₃, 随后 H₂CO₃在水中发生两

收稿日期: 2022-07-25; 修订日期: 2022-09-16.

基金项目:山东省自然科学基金项目(ZR2020MC194).

作者简介: 蒋鑫坤(1995-), 男, 硕士研究生, 研究方向为养殖生态. E-mail: jiangxinkun@stu.ouc.edu.cn

通信作者: 李丽, 副教授, 研究方向为水产养殖生产活动与环境的相互作用. E-mail: 1 li@ouc.edu.cn

步电离依次产生 $HCO_3^- 和 CO_3^{2-} (H_2CO_3 \Leftrightarrow HCO_3^- + H^+;$ $HCO_3^- \Leftrightarrow CO_3^{2-} + H^+)$ 。贝类通过呼吸和钙化作用产 生的 CO_2 最终有多少能排放到大气中与海水的缓 冲能力有关。

Frankignoulle 等^[11]将钙化作用过程在海水中 产生 CO₂ 的量与实际能够排放到大气中的量的比 值定义为 Ψ. 他们发现 Ψ 受到盐度、温度等环境 因素影响,并计算出在 pCO2 为 29.38 Pa (其假设 的工业革命前大气 pCO2 水平),海区温度和盐度 统一设置为 15 ℃和 35 的条件下, Ψ值为 0.64。即 贝类通过钙化作用每生成 1 mol 的 CaCO₃, 在海 水中约有 0.64 mol 的 CO2释放到大气中。Mistri 等^[12]假设海区的 pCO₂为 35.46 Pa, 并利用海区实 测温度和盐度, 计算意大利 Po River Delta lagoon 菲律宾蛤仔养殖区 Ψ为 0.67。以上研究均将海区 pCO_2 设定为固定值,但实际养殖海区的 pCO_2 并 非恒定不变,因此将海区 pCO2 变化与波动纳入 计算过程,更能精确地量化实际贝类养殖过程中 CO₂的释放。Humphreys 等^[13]提出的量化海区生 物地球化学过程中产生的 CO2 源/汇效应强度(表 示为 Φ)的模型,将海区的温度、盐度及 pCO2 变 化纳入了计算。Morris 等^[14]运用该模型,对西欧 4 个主要贻贝养殖区进行了初步研究,发现 Φ_{cal} (特定海区水文条件下, 贝壳钙化作用实际能释放 到大气中的 CO2 与该过程产生的 CO2 的比, 记为 Φ_{cal} 存在区域性差异。这表明不同海区内由于空 间、潮汐以及碳酸盐体系组成不同,其 Φ_{cal} 具有 差异性。

胶州湾、桑沟湾和深澳湾是我国重要的菲律 宾蛤仔养殖区,精确地量化其 Φ_{cal} ,对准确评估 贝类养殖海区中贝类钙化作用的碳源/碳汇强度 具有重要意义。本研究收集现有胶州湾、桑沟湾、 深澳湾菲律宾蛤仔养殖区的水文参数,依据 Humphreys 等^[13]的模型,具体量化了胶州湾、桑 沟湾和深澳湾的碳源/碳汇强度。计算比较了 3 个 贝类养殖区域中,贝类钙化作用释放 CO₂ 的比率 Φ_{cal} 的总体水平和分布规律。研究结果可为养殖 贝类碳源/汇形成机制的相关研究提供参考。

1 材料与方法

1.1 数据来源

本研究收集了胶州湾 2003—2017 年多个月份、桑沟湾 2011—2012 年 4 个月份、深澳湾 2014 年 3 个月份部分科考船航次调查结果(表 1),获得海区 *p*CO₂、DIC、pH、温度、盐度和 TA 等数据,用于后续计算。涉及 8 个年份共计 47 个月份的数据,采集站点超过 800 个。3 个湾区的地理位置如图 1 所示。

表 1 本研究的数据来源 Tab. 1 Data sources of the present study

	1 v
水质参数 water quality parameter	数据来源 data source
$T_{\rm s} S_{\rm s} \rm DIC_{\rm s} p \rm CO_{2}$	[15]
pH	[16]
T, S , DIC, p CO ₂ , TA	[17]
$T_{\lambda} S_{\lambda} DIC_{\lambda} pCO_{2} pH$	[18]
T , S , pCO_2	[19]
T, S	[20]
T, pH	[21]
T, S, pCO_2, pH	[22]
T, S, DIC, TA, pCO_2	[23]
T , S , DIC, TA, pCO_2	[24]
T, TA, DIC, pH	[25]
T , S , DIC, pH, pCO_2	[26]
S, DIC, TA, pH	[27]
T, S, DIC, pH, pCO_2, TA	[28]
T , S , DIC, pH, pCO_2	[29]
T, S, pH, DIC	[30]
S, pCO_2, DIC	[31]

注: *T* 表示表层海水温度; *S* 表示盐度; DIC 表示溶解性无机碳; TA 表示总碱度; *p*CO₂表示表层海水 CO₂分压.

Note: *T* indicates temperature of the surface seawater; *S* indicates salinity; DIC indicates dissolved inorganic carbon; TA indicates total alkalinity; pCO_2 indicates partial pressure of CO_2 in surface seawater.

1.2 *Φ*值的计算

Humphreys 等^[13]给出了适用于不同生物地球 化学反应 ϕ 的推导过程,本研究简化并单独列出 可用于量化钙化作用过程中 CO₂释放量的 ϕ_{cal} 的 推导过程如下:

大气与海水的CO₂交互过程是CO₂分子在气相 和液相中分配迁移的结果,其过程遵循亨利定律:

$$pCO_2 = c(CO_2)/K_0 \tag{1}$$

式中, K₀ 为亨利常数, c(CO₂)为与水分子结合的

CO₂的物质的量浓度(mol/L)。

图 1 胶州湾、桑沟湾、深澳湾地理位置图 Fig. 1 Geographical locations of Jiaozhou Bay, Sanggou Bay and Shenao Bay

溶入海水中的 CO₂分子与水分子结合形成碳酸(公式 2),再逐步发生电离生成碳酸氢根和碳酸根(公式 3,公式 5),最终共同构成海水的碳酸盐体系 (公式 7)^[32]。因此海水的 DIC 体系的平衡移动会直接反馈为 *p*CO₂ 的变化,进而影响海水与大气的二氧化碳通量,决定海水的碳汇/碳源的强度。

$$CO_2 + H_2O \xleftarrow{\kappa_0} c(H_2CO_3)$$
(2)

$$c(\text{H2CO3}) \xleftarrow{K_{I}} c(\text{HCO}_{3}^{-}) + c(\text{H}^{+})$$
 (3)

$$K_1 = c(\text{HCO}_3)c(\text{H}^+)/c(\text{H}_2\text{CO}_3)$$
 (4)

$$c(\mathrm{HCO}_{3}^{-}) \xleftarrow{K_{2}} c(\mathrm{CO}_{3}^{2^{-}}) + c(\mathrm{H}^{+})$$
 (5)

$$K_2 = c(\mathrm{CO}_3^{2^-})c(\mathrm{H}^+)/c(\mathrm{HCO}_3^-)$$
 (6)

$$DIC = c(H_2CO_3) + c(HCO_3^-) + c(CO_3^{2^-})$$
(7)

式中, K_1 为碳酸的一级电离常数; K_2 为碳酸的二级电离常数; $c(H_2CO_3)$ 为海水中碳酸浓度(mol/L); $c(HCO_3)$ 为海水中的碳酸氢根离子浓度(mol/L); $c(CO_3)$ 为海水中的碳酸根离子浓度(mol/L); $c(H^+)$ 为海水中的氢离子浓度(mol/L)。

海水的总碱度(TA)是海水中所有具有结合氢 离子能力的阴离子的总浓度,单位为 mol/L。公式 8中给出了适用于大多数海水条件下的碱度组成。

$$TA = c(HCO_{3}^{-}) + 2c(CO_{3}^{2-}) + c(B(OH)_{4}^{-}) + c(OH^{-}) - c(H^{+})$$
(8)

式中, $c[B(OH)_4]$ 为海水中的硼酸根离子浓度; $c(OH^{-})$ 为海水中氢氧根离子浓度。

通常的海水条件下,海水的 TA 变化主要受 HCO₃和 CO₃²⁻的影响。由公式 2,4,6可知海水的 DIC 变化和 TA 的改变存在相关性: TA 增大,海水 中和氢离子的能力越强,使得公式 3,5 平衡向电 离 H⁺的方向移动,有利于维持海水的低 *p*CO₂ 水 平,增强海水的碳汇能力。采用近似计算和向量 计算,可量化 TA 和 DIC 变化对于海水 *p*CO₂的影 响权重^[13]。具体推导过程如下:

$$DIC(\cancel{1}) = c(HCO_3^-) + c(CO_3^{2-})$$
(9)

TA(约)=
$$c(HCO_3^-)+2c(CO_3^{2-})$$
 (10)

由公式 1, 4, 6 得到:

$$pCO_{2} = \frac{K_{2c}(HCO_{3}^{-})^{2}}{K_{0}K_{1c}(CO_{3}^{2^{-}})}$$
(11)

式中, DIC 为溶解性无机碳, TA 为总碱度, *p*CO₂为 表层海水二氧化碳分压。

由公式 9, 10, 11 得到:

$$p\text{CO}_{2} = \frac{K_{2}(2\text{DIC}(\text{isj}) - \text{TA}(\text{isj}))^{2}}{K_{0}K_{1}(\text{TA}(\text{isj}) - \text{DIC}(\text{isj}))}$$
(12)

设:

$$\beta = \frac{K_0 K_1 p \text{CO}_2}{K_2} \tag{13}$$

由公式 12, 13 得到:

$$TA(\cancel{b})=2DIC(\cancel{b})+\frac{\beta}{2}-\sqrt{\frac{\beta^2}{4}}+\beta DIC(\cancel{b}) \qquad (14)$$

泰勒一级展开得到 DIC_(约)与 TA_(约)的数学关系如下:

$$TA(\cancel{y}) = DIC(\cancel{y}) \left(1 + \frac{DIC(\cancel{y})}{\beta}\right)$$
(15)

以 *Q* 表示 TA_(约)在给定 *p*CO₂下相对于 DIC_(约) 的等效率变化线:

$$Q(\text{isocapnic quotient}) = \frac{\partial TA(\cancel{y})}{\partial \text{DIC}(\cancel{y})}$$
(16)

将能改变 TA 和 DIC 的生物化学过程均以向 量 q 表示在 DIC 为横轴、TA 为纵轴的向量坐标 系中(图 2),将向量 q 表示为垂直向量 T_q和水平向

量 C_q 的和向量。给定的 pCO_2 下, TA 与 DIC 等效 率变化线为 Q_o 贝类钙化作用和大气海洋 CO_2 交 换过程中 TA 与 DIC 的变化如表 2, 贝类钙化作用 (q_2)形成 1 单位的 CaCO₃ 沉淀使得水体的 TA 下降 2 单位——表示为 T_{q2} , 同时 DIC 下降 1 单位—— 表示为 C_{q2} (图 2)。因此在固定的 pCO_2 下, 要使得 海水碳酸盐碱度系统重新恢复平衡, 则需要填补 C_{q2} 终点到 $\partial T/\partial C=Q$ 的水平差值,将此值记为 ϕ , 用以表示特定地球生物化学过程中水体 TA 和 DIC 变化后,水体碳源/碳汇强度变化值。当 ϕ 为 正时表示,系统的碳源强度增加,反之,碳汇强 度增加。由图 1, ϕ 值计算式如下表示:

$$\Phi = C_q - T_q/Q \tag{17}$$

表 2 碳酸钙沉淀与二氧化碳溶解过程对水体 总碱度(TA)和溶解性无机碳(DIC)的影响

Tab. 2 Effects of calcium carbonate precipitation and dissolution on total alkalinity (TA) and dissolved inorganic carbon (DIC) in sea water

地球生物化学过程 biogeochemical process	∂TA	∂DIC
海水 CO ₂ 向大气的排放 CO ₂ emission from seawater to atmosphere	0	-1
大气 CO ₂ 向海水的溶解 atmospheric CO ₂ dissolves into seawater	0	+1
钙化作用—CaCO3沉淀 calcification - CaCO3 precipitation	-2	-1
CaCO ₃ 的溶解 dissolution of CaCO ₃	+2	+1

注: ∂TA 与∂DIC 表示相应生物地球化学过程中总碱度(TA)和溶 解性无机碳(DIC)的变化量.

Note: $\partial TA = \partial DIC$ indicate the changes of total alkalinity (TA) and dissolved inorganic carbon (DIC) in the corresponding biogeochemical process.

1.3 分析方法

获得的海区 pCO_2 、DIC、pH、温度、盐度和 TA,其中温度和盐度为必需参数,其他指标只需 获取任意两个,使用 Matlab R2021a 中的 CO2SYS-Matlab 程序包^[33]计算 DIC、 pCO_2 。使用 Humphreys 等^[13]公开在 GitHub-mvdh7/biogeochem-phi 上的 程序包计算海水中的 Φ_{cal} 值。使用独立样本 t检 验比较不同月份的 Φ_{cal} 值,采用 pearson 相关性分 析确定 Φ_{cal} 值与温度和 pCO_2 的相关性,独立样本 t检验和相关分析均采用 SPSS 25.0 软件完成,并 以 P<0.05 表示差异显著。数据的可视化使用 GraphPad Prism 8 和 Origin 2021b。

此向量图简化自 Humphreys 等^[13]. σ 表示各种生物地球化学 过程中产生的 CO₂ 源/汇效应强度. TA 表示碱度. DIC 表示总 溶解性无机碳.在绿色区域中的生物地球化学过程最终导致 海水碳汇的增加,在橙色区域中则导致海水碳源的增加. 虚 线表示 TA 和 DIC 等量变化线.向量 q_1 表示碳酸钙溶解反应; 向量 q_2 表示钙化作用反应;向量 q_3 表示大气向海水中 CO₂ 的直接溶入;向量 q_4 表示海水向大气中 CO₂的直接溶出.向 量 q_1 和向量 q_2 的分解向量表示为向量 C_{q1} 、向量 T_{q1} 和向量 C_{q2} 、向量 T_{q2} . Q表示给定的 pCO_{2(ocean)}下, TA 与 DIC 等效率 变化线.

Fig. 2 Vector calculation diagram of Φ This vector graph is simplified from Humphreys^[13]. Φ indicates the intensity of CO₂ source/sink effects generated by different biogeochemical processes. TA indicates total alkalinity. DIC indicates total dissolved inorganic carbon. The biogeochemical process of the earth indicate the increase of the final seawater carbon sink in the green area and the increase of the seawater carbon source in the orange area. The dotted line indicates the equivalent change line of TA and DIC. Vector q_1 represents calcium carbonate dissolution reaction; Vector q_2 represents calcification reaction; Vector q_3 represents the direct dissolution of CO_2 from the atmosphere into seawater. Vector q_4 represents the direct release of CO2 from seawater to the atmosphere. The decomposition vectors of vector q_1 and vector q_2 are shown as vector C_{q1} , vector T_{q1} and vector C_{q2} , vector T_{q2} . Q indicates the isoefficiency change line of TA and DIC under a given pCO_{2 (Ocean)}.

2 结果与分析

2.1 胶州湾、桑沟湾和深澳湾 Φ_{cal} 值的对比分析

胶州湾、桑沟湾和深澳湾的基本信息见表 3。 3个海湾不同季节表层海水温度不同,胶州湾 σ_{cal} 值水平高于桑沟湾和深澳湾(P<0.05)。3 个湾在不 同月份 σ_{cal} 值的平均值见图 3,春秋两季胶州湾的 σ_{cal} 值整体变化不明显。7月 σ_{cal} 值为0.72±0.011,低 于 6 月(0.79±0.019)(P<0.05)和 8 月(0.80±0.015)
(P<0.05),同时也是全年的最低值。冬季 12 月的
Φ_{cal} 值(0.84±0.007)显著高于 11 月的 0.80±0.020
(P<0.05)和1月份的 0.77±0.038 (P<0.05),同时也
是全年的最高值。

桑沟湾的 Φ_{cal} 值分布同样也是在夏季出现全

年的最小值 0.62±0.027。夏季到秋冬季, ϕ_{cal} 值变 化显著(P<0.05),整体呈上升趋势。冬季 1 月份 ϕ_{cal} 值达到全年的最大值 0.77±0.015,高于其余 3 个季节(P<0.05)。深澳湾春、夏、冬 3 个季节中, ϕ_{cal} 值最高值出现在春季的 3 月,而夏季的 7 月 ϕ_{cal} 值为 0.64±0.019,低于其余 3 个月份(P<0.05)。

表 3 胶州湾、桑沟湾和深澳湾的基本信息 Tab. 3 Basic information of the three bay areas

_	. OD
x	$\pm SD$

湾区 bay area	位置 location	表层海水温度/℃seawater surface temperature				đ
		春 spring	夏 summer	秋 autumn	冬 winter	\cdot Ψ_{cal}
胶州湾 Jiaozhou Bay	35°18′N–36°18′N, 120°04′E–120°23′E	17.62±1.12	26.25 ± 0.22	15.65±0.22	3.13±0.87	$0.79{\pm}0.044$
桑沟湾 Sanggou Bay	37°01′N–37°09′N,122°24′E–122°35′E	9.08 ± 1.40	21.42±1.59	16.37±0.79	3.55±0.66	0.72 ± 0.057
深澳湾 Shenao Bay	23°29'N-23°27'N,117°04'E-117°07'E	14.90±0.10	22.01±0.80	20.70±0.30	28.20±0.51	0.72±0.051

注: Ф cal 表示钙化作用过程中产生的 CO2 从海水排放到大气中的比率.

Note: Φ_{cal} indicates the ratio of CO₂ emitted from seawater to the atmosphere by calcification.

Fig. 3 Monthly distribution of Φ_{cal} in Jiaozhou Bay, Sanggou Bay and Shenao Bay

 Φ_{cal} indicates the ratio of CO₂ emitted from seawater to the atmosphere during calcification.

2.2 胶州湾 Φ_{cal} 值随时间变化情况

胶州湾 σ_{cal} 值呈现一定的周年变化规律,7月 σ_{cal} 值较其他月份明显较低(P<0.05)(图 4)。为进 一步分析 σ_{cal} 值的周年变化规律,选择数据相对 完整连续的 4 个年份进行分析。较为连续是指包 含了至少 5 个月份,且月份覆盖全部 4 个季节的 年份数据。经筛选获得 2008 年、2014 年、2016 年、2017 年 4 个较为连续的年份,其 σ_{cal} 值的月 分布见图 5。4 个年份从冬季进入春季时 σ_{cal} 值整 体呈上升趋势。2008 年和 2016 年 4 月时的 σ_{cal} 值达到 0.80 和 0.85,分别是整个年份中的最大 σ_{cal} 值。同时,4 个年份的7月均出现全年的最小

图 4 胶州湾 Φ_{cal}值的月分布 Φ_{cal}表示钙化作用过程中产生的 CO₂从海水排放 到大气中的比率.

Fig. 4 Monthly distribution of Φ_{cal} in Jiaozhou Bay Φ_{cal} indicates the ratio of CO₂ emitted from seawater to the

atmosphere during calcification.

Fig. 5 Monthly distribution of Φ_{cal} in Jiaozhou Bay in four consecutive years

Φ_{cal}值。其中 2008 年 7 月的 Φ_{cal}值为 0.71, 是 4
个年份中最低。7 月后, 4 个年份的 Φ_{cal}值开始上
升。2014 年、2016 年、2017 年胶州湾 Φ_{cal}值整
体水平高于 2008 年, 在原数据中也体现为 2008
年的胶州湾具有更低的 *p*CO₂ 或更高的 pH。

2.3 胶州湾 Φ_{cal}值与温度和二氧化碳分压的相关 性分析

由公式 13, 14, 15, 16, 17, 温度可以通过影响 TA和DIC中各种平衡常数,直接影响 ϕ_{cal} 的计算 结果,但在实际养殖环境下温度对于海水的影响 可能是多方面的。因此本研究分析了 ϕ_{cal} 值与温 度的相关性,相关性分析结果为极显著(P<0.01), 在此基础上进一步将胶州湾菲律宾蛤仔主要生长 季节(3—7月)的温度与 ϕ_{cal} 值变化进行了多项式 拟合,拟合方程的 R^2 为 0.64。由图 6,在菲律宾 蛤仔主要生长季节(3—7月),胶州湾内 ϕ_{cal} 整体 呈下趋势,在水温回升高于 18 ℃后, ϕ_{cal} 下降尤 为明显。

与 Φ_{cal} 的多项式拟合结果 Φ_{cal} 表示钙化作用过程中产生的 CO₂ 从海水排放 到大气中的比率.

Pearson 相关分析表明, 胶州湾内 Φ_{cal} 值与 pCO_2 相关性极显著(P<0.01), 因此进一步将 Φ_{cal} 值与 pCO_2 进行了线性回归(图 7), 回归方程的 R^2 为 0.5051, 表明随着胶州湾表层海水 pCO_2 的升高, Φ_{cal} 值也呈现出不断上升的趋势。

图 7 胶州湾二氧化碳分压与 *Φ*_{cal} 的线性回归结果 *Φ*_{cal} 表示钙化作用过程中产生的 CO₂ 从海水排放 到大气中的比率.

Fig. 7 Linear regression results of partial pressure of CO₂ and Φ_{cal} in Jiaozhou Bay Φ_{cal} indicates the ratio of CO₂ emission from seawater to the

atmosphere during calcification.

2.4 胶州湾菲律宾蛤仔贝壳生长部分的 CO₂ 年 排放量估算

基于胶州湾年平均 Φ_{cal} 值 0.79, 计算胶州湾 菲律宾蛤仔养殖过程中, 贝壳生长部分的 CO₂ 年 排放量。胶州湾菲律宾蛤仔年产量以 3.2×10⁵ t 计^[34], 干壳重系数(壳干重与湿重比)按 0.4501 计^[35], 蛤 仔贝壳的碳酸钙含量按 95%计^[36]。结果显示, 胶州 湾养殖菲律宾蛤仔贝壳生长部分预计每年向大气 中排放约 1.084×10⁵ t CO₂。

$E_{\rm CO_2} = \Phi_{\rm cal} \times P_{\rm s} \times Y \times \rho_{\rm CaCO_3}$

式中, *E*_{CO2} 为胶州湾菲律宾蛤仔贝壳生长部分的 CO₂ 年排放量(t); *P*_s 为菲律宾蛤仔的干壳重系数, *Y* 为胶州湾菲律宾蛤仔年产量(t); *ρ*_{CaCO3} 为菲律宾 蛤仔贝壳中的碳酸钙含量。

3 讨论

涉及海洋水体的碳源/碳汇强度的评估与计 算中, pCO_2 是较为直观的指标^[37]。 pCO_2 可以一定 程度上反映海区的碳源/碳汇强度^[38]。胶州湾 ϕ_{cal} 值与表层海水 pCO_2 的线性回归结果表明,随 pCO_2 的升高 ϕ_{cal} 值也整体呈现上升的态势,这表 明 ϕ_{cal} 值与 pCO_2 的变化趋势相同,即 pCO_2 高的 海水中, ϕ_{cal} 值也较高。胶州湾 2008 年整体的 ϕ_{cal} 值水平低于 2014、2016 和 2017 年。Liang 等^[39] 的研究发现, 胶州湾的 pH 从 2010 年到 2017 年下 降了 0.103, 并预计到 2027 年胶州湾内的 pH 值会 继续下降到 7.775。在全球变暖和海洋酸化的大背 景下,此下降速度远超远离陆地和人类活动的太 平洋中部海域^[40]。而 pH 值的下降会直接降低海 水吸收驻留二氧化碳的能力,导致 *p*CO₂ 升高^[41], 本研究中胶州湾海区钙化作用过程产生 CO₂最终 释放率(*Φ*_{cal} 值)也持续升高。

胶州湾的 Φ_{cal} 值存在明显的周年变化规律, 春末夏初通常具有较低的 Φ_{cal} 值,这与王文松^[22]和 李云霄等^[42]对胶州湾春夏两季的海水表层 pCO_2 实地调查结果一致。本研究对此阶段的表层海水 温度与 Φ_{cal} 值水平多项式拟合结果表明,在春末 夏初胶州湾海区的 Φ_{cal} 值随温度的上升而不断降 低,说明夏季较低的 Φ_{cal} 值可能与较高的海水温 度有关。董世鹏等^[43]对胶州湾叶绿素 a 浓度调查 研究发现胶州湾叶绿素 a 浓度在此阶段有明显上 升且处于全年较高水平,因此光合作用更强,也 可能导致更低的 Φ_{cal} 值。综上,多种因素综合作 用导致春末夏初胶州湾具有较低的 Φ_{cal} 值。

本研究中胶州湾 Φ_{cal} 值相较于深澳湾和桑沟 湾更高。从地理位置看,深澳湾位于广东省南澳 岛北侧,其纬度更低,纬度上的差异使得深澳湾 四季的平均水温均高于胶州湾[44-45],这可能是导 致其较低的 Φ_{cal} 值的原因之一。但桑沟湾水深条 件和纬度位置都与胶州湾相似, 其具有较低的 Φ_{cal} 值的原因可能与其养殖模式有关。本研究调 查区域的胶州湾菲律宾蛤仔养殖以底播增殖单养 为主^[46],桑沟湾滩涂养殖和浅海养殖业十分发达, 不同于胶州湾的菲律宾蛤仔单养模式, 桑沟湾内 具有大面积贝类和大型藻类的混合养殖^[47]。夏季 (8 月)桑沟湾内的养殖藻类以龙须菜为主^[48],其 产量高达 66 t/hm^{2[49]}, 藻类的光合作用可能是导 致其湾内该阶段较低 Φ_{cal} 值的原因之一。但关于 贝藻混养能否显著降低养殖区 Φ_{cal} 值水平, 进而减 少贝类养殖中的 CO₂ 排放, 还需进一步研究证实。

我国是水产养殖大国,养殖种类丰富,产量高,规模大。据中国渔业统计年鉴^[50],2019年中国海水贝类养殖面积约1.204×10⁷hm²,占海水养殖总面积近 60%;海水贝类养殖产量 1.439×10⁷t,占海水养殖总产量的近 70%。贝类养殖在养殖产

量和面积上均占有绝对优势,但贝类在海洋生态 系统中的碳源/碳汇过程如其排泄物对浮游植物 群落的影响、对营养元素循环和有机颗粒物的垂 直运输^[51-53]等难以量化,因此现阶段贝类养殖并 未被纳入碳汇交易计算。为了实现减排增汇,量 化与评估贝类的养殖对于近海碳汇能力的影响的 是非常必要的。 σ_{cal} 值能够反映胶州湾这类环境 复杂的海区中碳源/碳汇强度的变化。同时通过计 算,能够量化对应 σ_{cal} 值下贝类养殖过程中因钙 化作用向空气中排放的 CO₂ 总量。

贝类生长过程中伴随的钙化作用会消耗水体 中碳酸氢根并释放 CO₂^[54]。但由于海水具有的缓 冲作用,钙化作用过程中释放的 CO₂并非全部排 放到大气,其中的一部分会被海水截留^[11]。胶州 湾养殖菲律宾蛤仔贝壳生长部分预计每年向大 气中排放约 1.084×10⁵ t CO₂。在全球气候变暖和 海洋酸化的大背景下,未来如果胶州湾的 Φ_{cal} 值 持续上升,胶州湾区域内贝类养殖活动将向大气 中排放更多 CO₂。此外,本研究发现胶州湾春末 夏初的 Φ_{cal} 值在全年中处于较低水平,而这一时 期正对应蛤仔的快速生长阶段^[24],这表明菲律宾 蛤仔的生长对于胶州湾水域二氧化碳排放的影 响并非是决定性的。因此该阶段较低的 Φ_{cal} 值有 利于减少贝类养殖活动向大气中排放的 CO₂ 的 量。

4 总结

本研究收集胶州湾、桑沟湾、深澳湾水文调 查数据计算的 Φ_{cal} 值,可以量化海区中贝类钙化 作用过程中 CO₂的释放量,反映海区的碳源/碳汇 能力动态变化:

(1) 3 个湾区的 Φ_{cal} 值分布具有明显的季节性
 规律,在夏季都具有全年的最低 Φ_{cal} 值水平。

(2) 胶州湾 Φ_{cal} 值分布与 pCO_2 呈线性相关, 在菲律宾蛤仔的主要生长季节, 胶州湾 Φ_{cal} 值随 温度的升高而逐渐降低, 这表明菲律宾蛤仔养殖 并非胶州湾内 Φ_{cal} 值的决定性因素。

(3) 贝类通过钙化作用向水体释放二氧化碳, 因不同水域的 *Φ*_{cal} 值差异,最终释放到空气中的 二氧化碳量也不同。

参考文献:

- Takahashi T. Ocean science. The fate of industrial carbon dioxide[J]. Science, 2004, 305(5682): 352-353.
- [2] Joos F, Spahni R. Rates of change in natural and anthropogenic radiative forcing over the past 20, 000 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5): 1425-1430.
- [3] Fabry V J, Seibel B A, Feely R A, et al. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. ICES Journal of Marine Science, 2008, 65(3): 414-432.
- [4] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO₂, and net sea-air CO₂ flux over the global oceans[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8-10): 554-577.
- [5] Nellemann C, Corcoran E. Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment[M]. Arendal, Norway: GRID-Arendal, 2009
- [6] Thomas H, Bozec Y, Elkalay K, et al. Enhanced open ocean storage of CO₂ from shelf sea pumping[J]. Science, 2004, 304(5673): 1005-1008.
- [7] Bala G, Caldeira K, Mirin A, et al. Multicentury changes to the global climate and carbon cycle: Results from a coupled climate and carbon cycle model[J]. Journal of Climate, 2005, 18(21): 4531-4544.
- [8] Gattuso J P, Frankignoulle M, Wollast R. Carbon and carbonate metabolism in coastal aquatic ecosystems[J]. Annual Review of Ecology and Systematics, 1998, 29: 405-434.
- [9] Pauly D, Christensen V. Primary production required to sustain global fisheries[J]. Nature, 1995, 374(6519): 255-57.
- [10] Filgueira R, Byron C J, Comeau L A, et al. An integrated ecosystem approach for assessing the potential role of cultivated bivalve shells as part of the carbon trading system[J]. Marine Ecology Progress Series, 2015, 518: 281-287.
- [11] Frankignoulle M, Canon C, Gattuso J P. Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO₂[J]. Limnology and Oceanography, 1994, 39(2): 458-462.
- [12] Mistri M, Munari C. Clam farming generates CO₂: A study case in the Marinetta lagoon (Italy)[J]. Marine Pollution Bulletin, 2012, 64(10): 2261-2264.
- [13] Humphreys M P, Daniels C J, Wolf-Gladrow D A, et al. On the influence of marine biogeochemical processes over CO₂ exchange between the atmosphere and ocean[J]. Marine Chemistry, 2018, 199: 1-11.
- [14] Morris J P, Humphreys M P. Modelling seawater carbonate

chemistry in shellfish aquaculture regions: Insights into CO₂ release associated with shell formation and growth[J]. Aquaculture, 2019, 501: 338-344.

- [15] Li X G, Song J M, Niu L F, et al. Role of the Jiaozhou Bay as a source/sink of CO₂ over a seasonal cycle[J]. Scientia Marina, 2007, 71(3): 441-450.
- [16] Liu S Y, Liu C Y, Yan P, et al. Research of spectrophotometric ph measurements of seawaters in Jiaozhou Bay and coastal waters of Qingdao[J]. Transactions of Oceanology and Limnology, 2013(3): 108-114. [刘淑雅, 刘春颖, 延鹏, 等. 胶州湾及青岛近海海水 pH 值的分光光度法研究[J]. 海洋湖沼通报, 2013(3): 108-114.]
- [17] Deng X, Hu Y B, Liu C Y, et al. Distributions and seasonal variations of carbonate system in the Jiaozhou Bay, China[J]. Oceanologia et Limnologia Sinica, 2016, 47(1): 234-244. [邓 雪,胡玉斌,刘春颖,等. 胶州湾表层海水碳酸盐体系的 季节变化[J]. 海洋与湖沼, 2016, 47(1): 234-244.]
- [18] Zhang L J, Xue M, Liu Q Z. Distribution and seasonal variation in the partial pressure of CO₂ during autumn and winter in Jiaozhou Bay, a region of high urbanization[J]. Marine Pollution Bulletin, 2012, 64(1): 56-65.
- [19] Xue M. Air-sea CO₂Flux in Jiaozhou Bay and its controls[D]. Qingdao: Ocean University of China, 2014. [薛明. 胶州湾 海—气 CO₂通量及其控制[D]. 青岛: 中国海洋大学, 2014.]
- [20] Wang Y J, Liu Z, Zhang Y, et al. Temporal and spatial variations of chlorophyll a and environmental factors in Jiaozhou Bay in 2010-2011[J]. Haiyang Xuebao, 2015, 37(4): 103-116. [王玉珏, 刘哲, 张永, 等. 2010—2011 年胶州湾 叶绿素 a 与环境因子的时空变化特征[J]. 海洋学报, 2015, 37(4): 103-116.]
- [21] Liu Z L, Ding H B, Yang G P. Distribution and characteristics of low molecular-weight organic acids in the surface water of the Jiaozhou Bay[J]. Advances in Marine Science, 2013, 31(1): 116-127. [刘宗丽,丁海兵,杨桂朋. 胶州湾表 层水中低分子量有机酸的分布及特征[J]. 海洋科学进展, 2013, 31(1): 116-127.]
- [22] Wang W S. The distribution and seasonal evolution of sea surface pCO₂ between spring and summer in Jiaozhou Bay[D]. Qingdao: Ocean University of China, 2013. [王文松. 胶州湾春、夏季表层水体 pCO₂分布及季节演变[D]. 青岛: 中国海洋大学, 2013.]
- [23] Li Y X, Zhang L J, Xue L, et al. Spatial variation in aragonite saturation state and the influencing factors in Jiaozhou Bay, China[J]. Water, 2020, 12(3): 825.
- [24] Zhang J H, Wu W G, Ren L H, et al. Seasonal variation of pCO₂ and its potential influencing factors in aquaculture areas of Sanggou Bay[J]. Progress in Fishery Sciences, 2013,

34(1): 57-64. [张继红, 吴文广, 任黎华, 等. 桑沟湾表层 水 pCO₂ 的季节变化及影响因素分析[J]. 渔业科学进展, 2013, 34(1): 57-64.]

- [25] Zhou Y J. Studying effects of low-molecular-weight organic acids on acidification of seawater in the Jiaozhou Bay[D]. Qingdao: Ocean University of China, 2013. [周玉娟. 低分 子量有机酸对胶州湾 pH 的影响研究[D]. 青岛: 中国海洋 大学, 2013.]
- [26] Gong X B, Han P, Zhang L J, et al. Distribution and controlling factors of sea surface partial pressure of CO₂ in Jiaozhou Bay during April[J]. Periodical of Ocean University of China, 2015, 45(4): 95-102. [龚信宝,韩萍,张龙军,等. 胶州湾春季4月份表层海水 pCO₂分布及控制因素分析[J]. 中国海洋大学学报(自然科学版), 2015, 45(4): 95-102.]
- [27] Lyu L N, Lu D M, Sun C J, et al. A new software of calculating the pH values of coastal seawater: Considering the effects of low molecular weight organic acids[J]. Marine Chemistry, 2019, 211: 108-116.
- [28] Wang S J, Du H, Zhang Q F, et al. The influence of the cultivation of *Gracilaria lemaneiformis* on the pCO₂ in surface waters of Shen'ao Bay[J]. Ecological Science, 2017, 36(5): 152-159. [王首吉, 杜虹, 张清芳, 等. 龙须菜养殖 对深澳湾表层水体 pCO₂ 的影响[J]. 生态科学, 2017, 36(5): 152-159.]
- [29] Han P, Li Y X, Yang X F, et al. Effects of aerobic respiration and nitrification on dissolved inorganic nitrogen and carbon dioxide in human-perturbed eastern Jiaozhou Bay, China[J]. Marine Pollution Bulletin, 2017, 124(1): 449-458.
- [30] Li L Y, Sun X, Wang Z X, et al. Analysis of surface distribution of aragonite saturation state and its control factors in the Jiaozhou Bay during the fall[J]. Advances in Marine Science, 2019, 37(2): 315-324. [李劳钰, 孙霞, 王宗 兴, 等. 胶州湾秋季文石饱和度分布及控制因素分析[J]. 海洋科学进展, 2019, 37(2): 315-324.]
- [31] Liu X Y, Yang X F, Li Y X, et al. Sea surface pCO₂ in an urbanized coastal system (Jiaozhou Bay, China) during summer[J]. Marine Pollution Bulletin, 2019, 146: 767-778.
- [32] Zeebe R E. History of seawater carbonate chemistry, atmospheric CO₂, and ocean acidification[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 141-165.
- [33] Van H S, Pierrot D, Rae J, et al. CO2SYS v 1.1, MATLAB program developed for CO₂ system calculations[J]. ORNL/ CDIAC-105b Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US DoE, Oak Ridge, TN, 2011.
- [34] Zhang M L. The research of carrying capacity of shellfish in the Jiaozhou Bay[D]. Qingdao: First Institute of Oceano-

graphy,MNR. 2008. [张明亮. 胶州湾贝类养殖容量研究与 分析 [D]. 青岛: 国家海洋局第一海洋研究所, 2008.]

- [35] Zhang J H, Fang J G, Tang Q S. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem[J]. Advance in Earth Sciences, 2005, 20(3): 359-365. [张继红, 方建光, 唐启升. 中国浅海贝藻 养殖对海洋碳循环的贡献[J]. 地球科学进展, 2005, 20(3): 359-365.]
- [36] Goulletquer P, Wolowicz M. The shell of *Cardium edule*, *Cardium Glaucum* and *Ruditapes philippinarum*: Organic content, composition and energy value, As determined by different methods[J]. Journal of the Marine Biological Association of the United Kingdom, 1989, 69(3): 563-572.
- [37] Frankignoulle M, Abril G, Borges A, et al. Carbon dioxide emission from European Estuaries[J]. Science, 1998, 282(5388): 434-436.
- [38] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO₂[J]. Science, 2004, 305(5682): 367-371.
- [39] Liang H R, Lyu L N, Sun C J, et al. Low-molecular-weight organic acids as important factors impacting seawater acidification: A case study in the Jiaozhou Bay, China[J]. Science of the Total Environment, 2020, 727: 138458.
- [40] Sutton A J, Sabine C L, Maenner-Jones S, et al. A high-frequency atmospheric and seawater pCO₂ data set from 14 open-ocean sites using a moored autonomous system[J]. Earth System Science Data, 2014, 6(2): 353-366.
- [41] Schrier-Uijl A P, Veraart A J, Leffelaar P A, et al. Release of CO₂ and CH₄ from lakes and drainage ditches in temperate wetlands[J]. Biogeochemistry, 2011, 102(1): 265-279.
- [42] Li Y X, Liu X Y, Xue L, et al. Distribution and controlling mechanism of the partial pressure of CO₂ in Jiaozhou Bay during the summer in 2016[J]. Periodical of Ocean University of China, 2019, 49(4): 82-90. [李云霄, 刘翔宇, 薛亮, 等. 2016 年夏季胶州湾表层海水 pCO₂的分布及控制机制[J]. 中国海洋大学学报(自然科学版), 2019, 49(4): 82-90.]
- [43] Dong S P, Lin F, Jiang W W, et al. Simulation and validation of Manila clam *Ruditapes philippinarum* growth with a DEB-based individual growth model in Jiaozhou Bay[J]. Progress in Fishery Sciences, 2020, 41(4): 94-101. [董世鹏, 蔺凡, 姜娓娓, 等. 胶州湾菲律宾蛤仔个体生长模型的构 建与验证[J]. 渔业科学进展, 2020, 41(4): 94-101.]
- [44] Zhao Z X, Sun X X, Zhao Y F, et al. A dataset of monitoring hydrological and chemical environmental factors in the Jiaozhou Bay during 2006-2010[J]. China Scientific Data, 2020, 5(2): 83-90. [赵增霞, 孙晓霞, 赵永芳, 等. 2006— 2010 年胶州湾水文和化学环境因子监测数据集[J]. 中国 科学数据, 2020, 5(2): 83-90.]

- [45] Xu S M, Qi Z H, Shi R J, et al. Influence of mariculure on tempo-spatial distribution of nitrogen and phosphorus in subtropical zone: A case study of Shen'ao Bay[J]. South China Fisheries Science, 2019, 15(4): 29-38. [徐淑敏, 齐占 会, 史荣君, 等. 水产养殖对亚热带海湾氮磷营养盐时空 分布的影响——以深澳湾为例[J]. 南方水产科学, 2019, 15(4): 29-38.]
- [46] Fan Y, Liu X S. Seasonal distribution and resource assessment of Manila clam (*Ruditapes philippinarum*) in Jiaozhou Bay, China[J]. Periodical of Ocean University of China, 2016, 46(7): 70-74. [范颖, 刘晓收. 胶州湾菲律宾蛤仔的季节分布与资源评估[J]. 中国海洋大学学报(自然科学版), 2016, 46(7): 70-74.]
- [47] Yang Y Y. Assessment of the influence of large-scale aquaculture on benthic environment in sanggou bay[D]. Dalian: Dalian Ocean University, 2018. [杨艳云. 桑沟湾规模化养殖 对底质环境的影响评价[D]. 大连: 大连海洋大学, 2018.]
- [48] Chai Z Q, Li R H, Ning Z M, et al. Effects of aquaculture activities on nutrients and phytoplankton composition: A case study of sanggou bay mesocosm experiment[J]. Periodical of Ocean University of China, 2022, 52(6): 92-102. [柴正晴, 李瑞环, 宁志铭, 等. 水产养殖活动对水体营养盐及浮游 植物组成的影响——以桑沟湾围隔实验为例[J]. 中国海 洋大学学报(自然科学版), 2022, 52(6): 92-102.]

- [49] Li K. Status and development suggestion of green and healthy aquaculture in Shandong Province[J]. Journal of Fisheries Research, 2022, 44(2): 178-186. [李凯. 山东省水产绿色健 康养殖现状及发展建议[J]. 渔业研究, 2022, 44(2): 178-186.]
- [50] Ministry of Agniculture and Rural Affairs of the People's Republic of China. China Fishery Statistical Yearbook[M].
 Beijiing: China Agriculture Press, 2020. [农业农村部渔业 渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出 版社, 2020.]
- [51] Cranford P J, Strain P M, Dowd M, et al. Influence of mussel aquaculture on nitrogen dynamics in a nutrient enriched coastal embayment[J]. Marine Ecology Progress Series, 2007, 347: 61-78.
- [52] Rie N. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review[J]. Journal of Shellfish Research, 2004, 23(1): 51-61.
- [53] Pietros J M, Rice M A. The impacts of aquacultured oysters, *Crassostrea virginica* (Gmelin, 1791) on water column nitrogen and sedimentation: Results of a mesocosm study[J]. Aquaculture, 2003, 220(1-4): 407-422.
- [54] Zhao L Q, Schöne B R, Mertz-Kraus R. Delineating the role of calcium in shell formation and elemental composition of *Corbicula fluminea* (Bivalvia)[J]. Hydrobiologia, 2017, 790(1): 259-272.

Study on the applications of a new model for quantifying CO₂ emission in shellfish culture areas

JIANG Xinkun¹, LI Li^{1,2}, DONG Shuanglin^{1,2}

1. Key Laboratory of Mariculture, Ministry of Education; Ocean University of China, Qingdao 266003, China;

 Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China

Abstract: The process of calcification of shellfish produces CO₂. However, there are large differences in carbonate system compositions among different aquaculture areas. Thus, more rigorous carbonate chemistry modeling, including concurrent changes in seawater carbonate systems, is needed to quantify the CO₂ released into the atmosphere during calcification. In this study, the ratio between the CO_2 emitted into the atmosphere during various biogeochemical processes and the CO₂ produced by these processes is defined as Φ . Therefore, in the calcification process, the Φ_{cal} value represents the amount of CO₂ emitted from the seawater to the atmosphere when 1 mol of CaCO₃ is formed during shell growth. Results showed that Φ_{cal} value varied among seasons. The Φ_{cal} value was lowest during summer in Jiaozhou Bay, Sanggou Bay, and Shenao Bay. Regional differences in the carbonate system in the aquaculture sea area could change the Φ_{cal} value. In Jiaozhou Bay, 0.79 mol CO₂ was released into the atmosphere for every 1 mol CaCO₃ deposited during shell growth. In Sanggou Bay and Shenao Bay, this value was 0.72. In Jiaozhou Bay, the Φ_{cal} value decreased in the shellfish's main growing season (from March to July). The result of polynomial fitting further suggested that the Φ_{cal} value decreased with the temperature rise during this season. The Φ_{cal} value decreased faster when the water temperature exceeded 18 °C. Finally, the annual production of 3.2×10⁵ tons of Philippine clams in Jiaozhou Bay was expected to emit about $1.084 \times 10^{\circ}$ tons of CO₂ into the atmosphere due to shell growth. This study preliminarily confirmed that Φ_{cal} , including concurrent changes in the seawater carbonate system in the aquaculture area, could better quantify the CO₂ release caused by shellfish calcification. This study could provide some references for future studies on the topic of the carbon source/sink process of shellfish.

Key words: Jiaozhou Bay; shellfish farming; calcification; carbonate system; carbon source; carbon sink Corresponding author: LI Li. E-mail: 1_li@ouc.edu.cn