DOI: 10.12264/JFSC2023-0179

菲律宾蛤仔 GST 基因家族的全基因组鉴定及急性盐度胁迫下的表达特征

蒋欣月^{1,2},周丽青^{1,2},孙秀俊¹,井浩^{1,2},葛广玉¹,吴彪¹,刘志鸿¹

1. 中国水产科学研究院黄海水产研究所,农业农村部海洋渔业可持续发展重点实验室,山东 青岛 266071;

2. 上海海洋大学, 水产种质资源发掘与利用教育部重点实验室, 上海 201306

摘要:为阐明菲律宾蛤仔(Ruditapes philippinarum)谷胱甘肽转移酶(glutathione S-transferase, GST)基因(RpGST)家族特征及其在应对急性盐度变化中所起的作用,本研究通过生物信息学方法对 RpGST 基因家族进行了全基因组水平的鉴定、染色体定位、结构特征分析、进化分析和表达特征分析,共鉴定出 7 个 RpGST 基因家族成员,分别命名为 RpGSTA1、RpGSTA2、RpGSTA3、RpGSTA4、RpGST_C_3a、RpGST_N_M1、RpGST_N_M2。RpGSTs 不均匀地定位在 5 条染色体上,其编码蛋白的理化性质呈现出不同程度的亲水性。RpGST 蛋白均定位于细胞质中,该基因家族成员都具有谷胱甘肽转移酶结构域(PF00043、PF02798),表明 RpGSTs 蛋白参与抗氧化和解毒过程;系统发育分析显示,RpGSTs 分为 3 个亚家族且在进化上保守。实时荧光定量分析显示,急性盐度胁迫菲律宾蛤仔 0 h、12 h和 24 h后,急性高盐(40)胁迫下肝胰腺中 RpGSTA 和 RpGST_N_M 亚家族的基因整体表达水平随时间逐步升高;急性低盐(15)胁迫下肝胰腺中 RpGSTA、RpGST_C_3 和 RpGST_N_M 亚家族的基因表达水平随时间逐步升高;急性低盐胁迫下谷胱甘肽转移酶表达量显著高于急性高盐胁迫,说明急性低盐胁迫对菲律宾蛤仔的影响大于急性高盐胁迫。以上研究结果明确了 RpGST 基因家族的序列结构特征、系统进化以及对急性高盐和急性低盐胁迫的响应机制,证明 RpGST 基因家族在菲律宾蛤仔抗氧化和解毒过程中发挥了重要作用,为菲律宾蛤仔抗逆分子选择育种研究提供了理论依据。

关键词: 菲律宾蛤仔; *RpGST* 基因家族; 急性盐度胁迫; 表达模式 中图分类号: S917 **文献标志码: A 文章编号:** 1005--8737--(2023)09--1055--12

近年来,由于频繁出现高温干旱和强降雨天 气,部分滩涂或浅海的盐度常发生急骤变化,影 响了海洋贝类的生长、存活及生理代谢^[1-2]。低盐 可以导致贝类体内的病原体大量繁殖^[3],而高盐 会使贝类组织造成不可逆性的损伤甚至死亡,因 此无论高盐还是低盐环境均会威胁到贝类的生长 和存活。前期已有学者从生理生化、分子、组学 分析等几个层面研究了贝类机体对盐度变化的响应 机制,进一步证实盐度的变化会影响贝类的组织结 构、生理代谢和能量代谢相关基因的表达等^[4-5]。 然而,对盐度变化对海洋贝类抗氧化防御及解毒 功能的影响仍知之甚少。

为适应海洋环境中的盐度波动,海洋生物体 内会产生大量的活性氧,并通过相关的抗氧化防 御机制适应盐度变化,从而减轻盐度变化对机体 的危害^[6]。谷胱甘肽转移酶(GST, EC2.5.1.1.8)作为 抗氧化防御机制中的一种广泛分布的多功能酶, 主要参与解毒代谢和抗氧化防御过程^[7-8],能有

收稿日期: 2023-08-17; 修订日期: 2023-09-05.

基金项目:国家自然科学基金面上项目(32273107); 崂山实验室科技创新项目(LSKJ202203803); 中国水产科学研究院黄海水 产研究所基本科研业务费项目(20603022022001); 青岛市市南区科技计划项目(2022-2-026-ZH); 莆田市科技计划项 目(2021NJJ002).

作者简介: 蒋欣月(1997-), 女, 硕士研究生, 研究方向为贝类遗传育种研究. E-mail: 1774581414@qq.com

通信作者:周丽青,副研究员,研究方向为贝类遗传育种研究. E-mail: zhoulq@ysfri.ac.cn.

效清除活性氧自由基^[9]。国内外学者研究发现 GSTs 基因的表达与盐度变化应激有密切关系,例 如,牙鲆(Paralichthys olivaceus)和中华绒螯蟹 (Eriocheir sinensis) GSTs 基因在盐度胁迫下表达 水平均升高^[10-11];长牡蛎(Crassostrea gigas) GSTs 基因在急性盐度胁迫下和长期慢性盐度胁迫下均 表现出显著差异表达^[12]。因此,揭示海洋生物 GSTs 基因在盐度变化过程中的表达模式和响应 规律,对于阐明其抗氧化防御机制及培育耐盐品 种具有重要的理论意义和应用价值。

菲律宾蛤仔隶属于软体动物门(Mollusea)、双 壳纲 (Bivalvia)、帘蛤科 (Veneridae)、蛤仔属 (Ruditapes),属广温、广盐性滩涂贝类。菲律宾蛤 仔广泛分布于我国的南北沿海地区,是我国四大 传统海水养殖贝类之一[13]。菲律宾蛤仔的年产量 超过 300 万 t, 占世界总产量的 90%^[14], 具有极 其重要的经济价值。研究发现, 高盐或低盐环境 对菲律宾蛤仔的生长和存活具有显著影响[15]。近 年来,代谢组研究发现菲律宾蛤仔谷胱甘肽代谢 可能参与盐度胁迫下抗氧化防御系统调节,并结 合离子通道激活、神经适应和能量代谢来维持渗 透压平衡^[16]。然而, 菲律宾蛤仔 GSTs 基因在盐度 变化过程中的表达模式和响应规律仍尚未明确。 因此, 查明菲律宾蛤仔 GSTs 基因在急性盐度变化 下的响应机制, 探讨其在蛤仔抗氧化防御中的作 用机制,能够为培育耐盐群体及提高养殖产量提 供理论指导和科学依据。

为查明菲律宾蛤仔 GST 基因家族及其急性盐 度胁迫下的表达特征,本研究基于全基因组鉴定 菲律宾蛤仔的 GST 基因家族(RpGSTs)成员,并对 RpGSTs 进行了序列特征分析和系统进化分析,通 过实时荧光定量 PCR 方法揭示 RpGST 基因家族 在菲律宾蛤仔响应急性盐度胁迫过程中的表达模 式,研究结果将为阐明菲律宾蛤仔抗氧化防御机 制及耐盐群体选育提供理论参考和科学依据。

1 材料与方法

1.1 *RpGST* 基因家族成员鉴定及理化性质分析 从 NCBI 数据库中下载菲律宾蛤仔基因组

(GCA 009026015.1), 硬壳蛤[Mercenaria mercenaria (GCA 021730395.1)]、长牡蛎[Crassostrea gigas (GCA 902806645.1)]、虾夷扇贝[Patinopecten yessoensis (GCA_002113885.2)]的 GST 蛋白序列, 通过 TBtools (v1.098769)^[17]软件的 BLASTP 程序 鉴定菲律宾蛤仔 GST 基因; 使用"hmmsearch"扫 描预测蛋白质序列,查找 HMMER (v3.2.1)中 GST_C 结构域和 GST_N 结构域(PF00043、 PF02798)的(HMM)图谱; 为验证 HMM 结果, 使 用 Pfam (http://pfam.xfam.org/)、简单模块化架构 研究工具 SMART (http://smart.embl-heidelberg.de/) 和 NCBI 保守域数据库(NCBI-CDD)工具(https:// www.ncbi.nlm.nih.gov/cdd/)分析这些潜在序列, 最终以 HMM、PFAM、SMART 和 NCBI-CDD 中 发现的保守 GST 结构域为标准, 筛选出菲律宾蛤 仔 GST 基因家族成员;利用在线软件 ExPASy (http://www.expasy.org/tools/)分析菲律宾蛤仔 GST 基因家族成员的基因长度、蛋白质分子量、 理论蛋白等电点、亲水性总平均值和脂肪族氨基 酸指数;使用在线亚细胞定位工具 Euk-mPLoc 2.0 (http://www.csbio.sjtu.edu. cn/bioinf/euk-multi-2/#) 对RpGST基因家族成员表达产物进行亚细胞定位 预测;利用 Tbtools 软件在线绘制染色体定位图。

1.2 RpGST 基因家族系统发育分析

为分析菲律宾蛤仔 GST 基因的进化关系,对 硬壳蛤、长牡蛎、虾夷扇贝、中华绒螯蟹(Eriocheir sinensis)和斑马鱼(Danio rerio) GST 的氨基酸序 列进行系统发育分析,所有 GST 氨基酸序列通过 MEGA 7.0 软件中的 ClustalW 程序,使用默认参 数进行对齐,运用邻接(Neighbor-Joining)法构建 系统发育树,校验参数 bootstrap 值设置为 1000 次重复。

1.3 RpGST 基因家族的基因结构、基序分析和结构域预测

基于鉴定出的 *RpGST*基因家族成员的保守蛋白结构域的氨基酸序列,在Tbtools软件上在线绘制基因结构示意图;使用默认参数的 MEME Suite (v5.3.3, http://meme-suite.org/index.html)分析了 RpGST 的基序; NCBI-CDD 预测了 RpGST

的保守结构域。

1.4 盐度胁迫实验

实验材料于 2022 年 10 月采自山东省莱州市, 平均壳长为(27.4±1.94) mm。在盐度胁迫实验前, 菲律宾蛤仔在水温 20 ℃、盐度 30 的海水中充气 暂养 7 d,期间每天换水 1 次,早晚各投喂小球藻 (*Chlorella vulgaris*) 1 次。盐度胁迫时,将菲律宾 蛤仔转移到利用海水晶配制的盐度为 40 和通过 添加淡水配置的盐度为 15 的水体中分别进行急 性高盐胁迫和急性低盐胁迫,其他养殖条件与暂 养时相同。胁迫 0 h、12 h、24 h 共 3 个时间点后 取菲律宾蛤仔的肝胰腺组织并存放至-80 ℃保存, 以便后续用于 RNA 提取实验,其中 0 h 为实验对 照组。

1.5 急性盐度胁迫下 *RpGSTs* 在菲律宾蛤仔肝胰 腺中的表达分析

实验采用 Trizol 法提取 RNA,利用微量分光 光度计(NanoPhotometer[™],德国)检测 RNA 的纯 度,选用 OD₂₆₀/OD₂₈₀ 值在 1.8~2.1 之间的 RNA 样 品用于后续实验, 1.5%琼脂糖凝胶电泳检测 RNA 质量; HiScript III RT SurperMix for qPCR (Vazyme, 中国)合成 cDNA,荧光定量实验所需引物通过 Primer 5.0 (http://www.premierbiosoft.com/)软件设 计(表 1),实验以 β-actin 基因为内参基因进行

表 1	实时	荧光题	定量 PC	CR 🗄	实验中	使用I	的引	物
Tab. 1	1 Pi	imers	used in	RT-	qPCR	experi	iment	ts

引物名称 primer name	序列(5'-3') sequence (5'-3')
RpGSTA1	TGATGCCAGACGATCCTTACACAG
	CCGCAGTACCCTTGACCAAATTTC
RpGSTA2	GGAAAGTTTCGCCGCCATTCG
	TATCCGACAAGCAGGGTTTATCCG
RpGSTA3	GAATGAGTCGGGTGCGATTTGC
	CGGCTCTCTCGTTGACATCCTG
RpGSTA4	TCAGAGGAGGAAGGCATTGAAACC
	CACAGGTCGCCGGTGAACTC
RpGST_C_3a	GTCCTTGCGGTCGCTGGAAC
	AGGCAGCGTTCCTTGTGGTG
RpGST_N_M1	AGGCAATGGATCTCAGGCATGG
	CCCAGCAAACCAGTCATTCACAC
RpGST_N_M2	ACGGTCAAACGGTGGCATGG
	GGTGGTGTTGTTGTTGTCTGGTTGTG
β -actin	CTCCCTTGAGAAGAGCTACGA
	GATACCAGCAGATTCCATACCC

qRT-PCR, 检测 *RpGST* 基因家族成员在急性高盐 和急性低盐胁迫后肝胰腺组织中的表达量。 qRT-PCR 反应体系(20 µL)包括: 2×ChamQ SYBR Color qPCR Master Mix 10 µL,上下游引物各 0.4 µL、 DEPC 水 7.2 µL,模板 cDNA 2 µL (500 ng/µL),反 应程序为: 95 ℃预变性 10 min 后,95 ℃变性 10 s, 60 ℃ 60 s,95 ℃ 15 s。待反应结束后,利用 2^{-ΔΔCt} 法计算基因相对表达量, SPSS (v26.0)软件进行单 因素方差分析, GraphPad Prism (v8.0)软件绘制基 因表达柱形图。每个组别设置 3 个生物重复和 3 个技术重复。

2 结果与分析

2.1 RpGST 基因家族成员鉴定及理化性质分析

菲律宾蛤仔基因组中共鉴定出 7 个 *RpGST*基因家族成员,包括 4 个 *RpGstA*、1 个 *RpGST_C_3*和 2 个 *RpGST_N_Mu*, RpGST 蛋白的理化性质分析结果(表 2)显示 *RpGST*基因家族成员的氨基酸数目长度范围为 168~1722 aa, RpGstA3 最长,为 1722 aa; RpGST_N_M1 最短,为 168 aa; RpGST 蛋白的分子量(MWs)在 19.40~190.17 kD 之间,其中 RpGSTA3 最大, RpGST_N_M1 最小;预测的理论蛋白等电点范围为 5.06~9.74,其中 6 个 RpGST 蛋白等电点都小于 7,表明大部分家族成员为弱酸性蛋白, RpGstA3 等电点最大, RpGST_C_3a 等电点最小;蛋白疏水性计算分析表明,所有成员均存在不同程度的亲水性;脂肪族氨基酸指数范围为 54.87~96.41,平均为 82.08;亚细胞定位结果显示, RpGSTs 蛋白均定位于细胞质中。

2.2 RpGSTs 的染色体定位

通过染色体定位发现,7个菲律宾蛤仔 GST 家族成员不均匀地分布在5条染色体上(图1),其 中 *RpGstA1* 定位在第1号染色体;*RpGstA2、Rp GST_N_M1*和 *Rp GST_N_M2* 定位在第2号染色 体;*RpGstA3* 定位在第4号染色体;*RpGstA4* 定位 在第10号染色体;*RpGST_C_3a* 定位在第16号染 色体。 表 2 RpGST 基因家族蛋白质组成和理化性质

Tab. 2 Protein composition and physicochemical properties of the <i>RpGST</i> gene family							
基因名称 gene name	基因 ID gene ID	染色体 chromosome	氨基酸数目/aa number of amino acids	分子量/kDa molecular weight	理论等电点 theoretical pI	亲水性总平均值 grand average of hydropathicity	脂肪族 氨基酸指数 aliphatic index
RpGst A1	RpG00019457	1	233	26.82	5.97	0.181	88.63
RpGst A2	RpG00005358	2	262	30.4	6.5	0.21	96.41
RpGst A3	RpG00013161	4	1722	190.17	9.74	0.788	54.87
RpGst A4	RpG00022328	10	262	30.42	6.5	0.21	96.41
RpGST_C_3a	RpG00069394	16	295	33.09	5.06	0.499	84.34
RpGST_N_M1	RpG00006490	2	168	19.4	6.43	0.354	86.96
RpGST_N_M2	RpG00006496	2	544	60.36	5.58	0.329	66.99

图 1 *RpGST* 基因家族染色体分布示意图 染色体中的不同颜色代表基因密度, 左侧为染色体长度标尺.

Fig. 1 Chromosome location diagram of *RpGST* gene family

Different colors in the chromosomes represent the gene density, and the chromosome length scale is on the left.

2.3 RpGSTs 基因结构、基序分析和结构域分析

RpGST 基因家族 7 个成员的基因结构示意图 如图 2 所示,不同基因的总长度不同,*RpGstA3* 最长,*RpGST_N_M1* 最短,*RpGstA3* 基因有 1 个非翻 译区(UTR),除了少数基因(*RpGstA3、RpGST_N_M1* 和 *Rp GST_N_M2*)的编码序列(CDS)数量存在 差异外,同类型基因的 CDS 数量和长度保持了极高的一致性。

7 个 *RpGSTs* 家族成员中共鉴定出 10 个保守的 motif (图 3), 氨基酸序列长度范围 13~50 aa (表 3)。多数家族成员有 motif 1、motif 5 和 motif 6, 其中 motif 5 数量最多, 有 7 个家族成员。家族成员具有的 motif 数量有一定差别, *RpGSTA1* 和

of 7 members in the *RpGST* family

图 3 *RpGST* 家族 7 个成员的保守基序元件的分布 Fig. 3 Distribution of conserved motif elements of the 7 members in the *RpGST* family

쿡	₹3	RpGST	基因》	家族蛋白	日基序	信息	
Fab. 3	R pGS	ST gene	family	protein	motif	informa	ition

_

基序 motif	蛋白序列 protein sequence	氨基酸数目 number of amino acids	所在基因个数 number of genes
Motif 1	EIHPHPELPIYIDGDVLITESPAILTYLARKY	32	5
Motif 2	QAEWSGTKFKMWPHVEKWLSRVKNQVH WDTVHMSHSMYLRELERCALFD	49	2
Motif 3	AVFSGKMNGLNGVHRRPVELYLIRINPAC RIIWFYALQHNIPHILIDVDF	50	2
Motif 4	DFAGYGITLQNRLLTESLISWANSELHRA VGHSYIYPQFLEQYA	44	2
Motif 5	LGDSDFLTGNRITVADSFVYPILL	24	7
Motif 6	AEPARLVLVYAGLKFEDRQLEIG	23	5
Motif 7	MSEEEGIETEAKYHGKFRRH	20	2
Motif 8	DGVTVNEKAVVDMLLEEAMDLRNGIV	26	3
Motif 9	CLGQCCPICHDDV	13	5
Motif 10	DCDVRVKPVGACCFYCEEKY	20	2

 $RpGST_C_3a$ 有两个 motif; 而 RpGstA2 和 RpGst4有 7 个 motif, 且都按照 motif 7、3、1、4、6、5、 2 的顺序排列。大多数 RpGSTA 亚家族中 motif 的 数量和类型相对保守。

所有的 RpGST 蛋白都具有保守的结构域(图 4)。 motif 3 只存在于 GSTA 类别中,表明 GSTA 类别 拥有特定的功能。RpGSTs 蛋白都具有 GST 结构 域,但 RpGstA3 还具有疱疹病毒主要外包膜糖蛋 白 超 家 族 (Herpes_BLLF1 superfamily) 结构 域, RpGST_N_M2 还具有 von Willebrand 因子 C 型 (VWC superfamily)结构域。

2.4 RpGSTs 系统发育分析

为探明菲律宾蛤仔 GST 基因的进化,对菲律 宾蛤仔、硬壳蛤、长牡蛎、虾夷扇贝、中华绒螯 蟹和斑马鱼的 28 个 GST 氨基酸序列构建了系统 发育树(图 5),结果显示,这 28 个 RpGST 蛋白分 为 RpGSTM (9 个成员)、RpGSTP (7 个成员)、 RpGSTA (6 个成员)和 RpGST_C_3 (6 个成员) 4 类, RpGSTM 类成员最多, RpGSTs 进化不断演变 成独立的集群,如 RpGSTM 类和 RpGSTA 类。

图 4 *RpGST* 家族 7 个成员的保守结构域分析 Fig. 4 Conservative domain analysis of 7 members of the *RpGST* family

图 5 6个物种 RpGST 基因家族成员系统发育树 Rp: 菲律宾蛤仔; Mmer: 硬壳蛤; Cgi: 长牡蛎; Myi: 虾夷扇贝; Esn: 中华绒螯蟹; Dre: 斑马鱼. Fig. 5 Phylogenetic tree of RpGST gene family members among six species Rp: Ruditapes philippinarum; Mmer: Mercenaria mercenaria; Cgi: Crassostrea gigas; Myi: Mizuhopecten yessoensis; Esn: Eriocheir sinensis; Dre: Danio rerio.

2.5 高盐胁迫下菲律宾蛤仔肝胰腺 GST 基因的 表达模式

*RpGSTs*在胁迫 24 h 后表达量都处于最高值 (图 6)。*RpGSTA1、RpGSTA2、RpGST_N_M1*和 *RpGST_N_M2*的表达水平随胁迫时间的增加而升 高;其中 *RpGSTA1* 和 *RpGST_N_M2* 相对表达量变 化明显, *RpGSTA1* 的表达水平随胁迫时间延长极 显著升高,24 h 表达量约为0 h 的 20 倍(*P*<0.01); *RpGST_N_M2* 的表达水平随胁迫时间延长极显著 升高,12 h 表达量约为0 h 的 4 倍(*P*<0.01),24 h 表

* indicates significant difference compared with 0 h (*P*<0.05); ** indicates extremely significant difference compared with 0 h (*P*<0.01).

达量约为 0 h 的 46 倍(P<0.01); 而 *RpGSTA3*、 *RpGSTA4*和 *RpGST_C_3a*的表达水平随胁迫时间 的增加先降低后升高。

2.6 低盐胁迫下菲律宾蛤仔肝胰腺 GST 基因的 表达模式

RpGSTs在急性低盐胁迫下的表达变化见图 7。RpGSTA1、RpGSTA4、 $RpGST_C_3a$ 、 $RpGST_N_M1$ 和 $RpGST_N_M2$ 的表达水平随着胁迫 时间的增加逐步升高,其中RpGSTA1和RpGSTA4的相对表达量变化显著(P<0.05),胁迫 12 h 后 RpGSTA1的表达量是 0 h 的 120 倍, 24 h 表达量是 0 h 的 150 倍;处理 24 h 后 RpGSTA4的表达量是 0 h 的 150 倍;而 RpGSTA2的相对表达量变化随 胁迫时间的增加呈现先降低后升高的趋势, RpGSTA3 的相对表达量变化则随着胁迫时间的增加先升高后降低。

3 讨论

3.1 RpGSTs 基因序列特征及进化分析

前期有学者对水生动物 GST 基因家族进行了 全基因组分析,包括紫贻贝(Mytilus galloprovincialis)、沙尖鱼(Sillago sihama)、鲤(Cyprinus carpio) 等^[18-20],但尚未对菲律宾蛤仔中的 GST 基因家族 进行系统研究。本研究共鉴定出 7 个菲律宾蛤仔 GST 基因,分为 3 个类别,包括 4 个 RpGstA、1 个 RpGST_C_3 和 2 个 RpGST_N_Mu。GST_C 被 认为从硫氧还蛋白样祖先进化而来,GST_N 结构 域可能由谷氧还蛋白(GRX)进化而来,两种结构

significant difference compared with 0 h (P<0.01).

域均参与机体氧化应激的生物学过程[21-24]。本研 究中发现大多数 RpGSTs 同时含有以上两种结构 域,这可能和菲律宾蛤仔抗氧化性较强有关,反 映了菲律宾蛤仔能较快适应因盐度变化导致的溶 氧变化这一特点。本研究中确定的基序1中含有 硫氧还蛋白成分,支持GST C由硫氧还蛋白样祖 先进化而来这一观点。所有 RpGSTs 的基序都具 有保守的谷胱甘肽转移酶结构域, 该结构域与抗 氧化及解毒功能相关[25-26],基序3和基序8还存 在其他的结构域,这可能被赋予了其他的功能, 虽然 RpGSTs 的组成各不相同, 但其保守基序在 相同的类别中基本相同, 说明 RpGSTs 既具有结 构功能的相对高度保守性,又有结构多样性来适 应环境变化。Ciacci等^[27]将紫贻贝的鳃组织暴露 于六价铬下发现, GST 可以结合谷胱甘肽并在保 护组织免受氧化应激方面起关键作用; Li 等^[28]在

鲢(Hypophthalmichthys molitrix)腹腔中注射微囊 藻毒素-LR 反应后发现, 肝脏中 GST 活性显著增加, 而 GSH 含量显著降低, 表明 GST 可以催化 GSH 和微囊藻毒素-LR (MC-LR)结合, 然后通过 ABCC (ATP-binding cassette C subfamily)转运蛋 白排出体外, 揭示了肝脏 GST 的解毒功能。

系统发育分析显示, 7 种 *RpGSTs* 中 A 类成员 最多, 在菲律宾蛤仔中有 4 个, *RpGSTs* 均进化成 独立的簇, 如 *RpGSTA* 和 *RpGSTM*, 这与菲律宾蛤 仔具有广泛分布和适应能力强的特点有关, 该结 果可以为后续选育耐高盐或耐低盐的菲律宾蛤仔 群体提供参考依据。

3.2 RpGSTs 功能及表达特征

前期研究发现GST在多种生物体遭遇逆境胁 迫时起至关重要的作用,如盐度^[29]、干旱^[30]、氧 化应激等^[31]。近年来,由于全球环境的恶化和气

*RpGSTA3、RpGSTA4*和*RpGST_C_3a*在急性高盐和急性低盐胁迫下表达量趋势并不一致,低盐胁迫24h后*RpGSTA1*和*RpGSTA4*的表达量与对照组相比可以高达150倍,说明了菲律宾蛤仔在急性低盐环境比在急性高盐环境需要更多的谷胱甘肽转移酶来维持其细胞的正常稳态,这与笔者前期预实验菲律宾蛤仔在低盐环境中的高死亡率结果一致,表明控制盐度变化是菲律宾蛤仔生产上重要的管理操作之一。结合上述结果认为,*RpGST*

中发挥了重要作用。

参考文献:

第二阶段的酶, 当生物体内毒素产生时, GST 的 活性会因诱导而升高^[32], 通过催化 GSH 与广泛 的疏水和亲电底物的结合来解毒异生素^[33]。GST 还可以作为监测胁迫因素的生物标志物,如长牡 蛎(Crassostrea gigas)中的Ω和μGST类别可用作 碳氢化合物胁迫下的标志物, π 和 Σ GST类别可用 作农药胁迫下的标志物^[34];马氏珠母贝(Pinctada martensii)在镉和细菌的胁迫下,主要在肝胰腺中 检测到 GST3 基因表达产物, PmMGST3 mRNA 水 平在暴露于镉 2 d 后增加了 4.3 倍后呈下降趋势, 而细菌攻击 PmMGST3 mRNA 水平呈现先降低后升 高的表达趋势, 以上结果说明了肝胰腺在异生解毒 和抗过氧化中起着重要作用, PmMGST3 通过在细 胞防御镉和细菌引起的氧化应激中发挥的重要作 用来维持细胞的正常功能^[35]。因此,通过监测 GST 类别及含量变化能提前应对沿海生态系统中不利 因素对双壳贝类代谢产生的影响,可以感知这些 不利条件对双壳贝类生理及代谢的变化,从而有 望指导实际生产操作调整来减少损失。GST 的表 达与生物逆境胁迫耐受性之间存在密切关系,当 鲍(Haliotis discus discus)受到热休克、重金属和内 分泌干扰物(EDC)刺激时, HdGSTO1 在鲍的所有组 织中均表达,而 HdGSTO2 在性腺和消化道中表现 出特异性表达^[36],说明不同的 HdGSTO 基因在响 应逆境胁迫的能力上是不同的; 肝胰腺是生物体 内主要的药物代谢器官,合浦绒螯蟹(Eriocheir hepuensis)的肝胰腺组织中 GSTM3、GSTTl 和 GSTDl 的表达水平均在印楝素胁迫下 6 h 和 24 h 后显著升高,说明 GST 参与肝胰腺药物代谢并发 挥了解毒作用^[37]。

候的多变,导致贝类面临温度升高、盐度变化等

一系列不利状况, 而温度升高促使细菌病原体繁

殖并在生物体内产生毒素, GST 是生物解毒系统

本研究比较了菲律宾蛤仔肝胰腺 GST 基因响 应急性高盐和急性低盐胁迫的表达模式,发现大 多数 RpGST 基因家族成员在响应过程中均有表达 差异, RpGSTA1、Rp GST_N_M1 和 RpGST_N_M2 的表达在高盐和低盐胁迫中表达趋势相一致,均 随胁迫时间升高相对表达量增加;而 RpGSTA2、 Fan C. The influence of salinity and temperature stress on growth and survival of Manila clam *Ruditapes philippinrum* and selection of complete set line of thermal resistance[D]. Dalian: Dalian Ocean University, 2016. [范超. 盐度和温度 对菲律宾蛤仔生长和存活的影响及抗高温配套系选育[D]. 大连:大连海洋大学, 2016.]

基因家族成员在菲律宾蛤仔肝胰腺的解毒和抗氧

化功能中起重要作用,不同亚类基因在不同盐度

应激中发挥抗氧化及解毒功能且均有表达变化,

进一步证实了 RpGST 基因家族在盐度胁迫耐受性

- [2] Ding H B. Effects of high salinity on growth, physiological and energy metabolism related gene expression of *Sinonovacula constricta*[D]. Shanghai: Shanghai Ocean University, 2021.
 [丁红兵. 高盐对缢蛏生长、生理和能量代谢相关基因表达 的影响[D]. 上海: 上海海洋大学, 2021.]
- [3] Chen M Y. Basic study on ecological immune mechanism of Chlamys farreri in *Chlamys farreri*[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2007. [陈慕雁. 栉孔扇贝 Chlamys farreri 生态免疫机制的基础研究[D]. 青岛:中国科学院海洋研究所, 2007.]
- [4] Cao W. Effects of high salinity stress on the survival, physiological and biochemical, and transcriptome in razor clam *Sinonovacula constricta*[D]. Zhoushan: Zhejiang Ocean University, 2022. [曹伟. 高盐胁迫对缢蛏存活、生理生化 及转录水平的影响[D]. 舟山:浙江海洋大学, 2022.]
- [5] Chen Y H, Ye B, Niu D H, et al. Changes in metabolism and immunity in response to acute salinity stress in Chinese razor clams from different regions[J]. Aquaculture Reports, 2021, 19: 100624.
- [6] Zhou D, Mu C K, Song W W, et al. Effects of low salinity stress on the antioxidant enzyme and ATPase activities in tissues of swimming crab *Portunus trituberculatus*[J]. Ecological Science, 2014, 33(4): 698-703. [周东, 母昌考, 宋微微, 等.

低盐胁迫对三疣梭子蟹组织中抗氧化酶和 ATP 酶活力的 影响[J]. 生态科学, 2014, 33(4): 698-703.]

- [7] Ahmadi S, Ghafouri H, Tarazi S, et al. Cloning, purification and biochemical characterization of two glutathione S-transferase isoforms from *Rutilus frisii kutum*[J]. Protein Expression and Purification, 2021, 179: 105800.
- [8] Gui Y P, Feng M L, Lu W T, et al. Detoxification and antioxidant functions and regulatory mechanisms of two Delta-class GSTs in paddy crayfish (*Procambarus clarkii*) after imidacloprid stress[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology: CBP, 2023, 271: 109674.
- [9] Zaccaron da Silva A, Zanette J, Fernando Ferreira J, et al. Effects of salinity on biomarker responses in *Crassostrea rhizophorae* (Mollusca, Bivalvia) exposed to diesel oil[J]. Ecotoxicology and Environmental Safety, 2005, 62(3): 376-382.
- [10] Choi C Y, An K W, An M I. Molecular characterization and mRNA expression of glutathione peroxidase and glutathione S-transferase during osmotic stress in olive flounder (*Paralichthys olivaceus*)[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 149(3): 330-337.
- [11] Qi T T, Liu J, Zhao P S, et al. A novel modulation of physiological regulation in cultured Chinese mitten crab (*Eriocheir sinensis*) in response to consistent salinity changes[J]. Gene, 2020, 756: 144914.
- [12] Chen L P, Zhang X M, Wang Z H, et al. Proteomics analysis of Pacific oyster (*Crassostrea gigas*) under acute and longerterm chronic salinity stress treatment as examined by labelfree mass spectrometry[J]. Aquaculture, 2022, 551: 737868.
- [13] Zhou L Q, Jing H, Ge G Y, et al. Effects of three dissolved oxygen modes on oxidative stress and physiological metabolism in *Ruditapes philippinarum* gill tissue and hemolymph[J]. Journal of Fishery Sciences of China, 2023, 30(3): 361-370.
 [周丽青,井浩,葛广玉,等. 溶氧变化模式对菲律宾蛤仔 鳃组织和血淋巴液氧化应激及生理代谢的影响[J]. 中国 水产科学, 2023, 30(3): 361-370.]
- [14] Dong S P. Construction of individual growth model and estimation of carrying capacity of *Ruditapes philippinarum* in Jiaozhou Bay[D]. Shanghai: Shanghai Ocean University, 2020. [董世鹏. 胶州湾菲律宾蛤仔个体生长模型构建及养 殖容量评估研究[D]. 上海:上海海洋大学, 2020.]
- [15] Fan C, Wen Z C, Huo Z M, et al. Influence of salinity stress on growth and survival of Manila clam *Ruditapes philippinarum* at various developmental stages[J]. Journal of Dalian Ocean University, 2016, 31(5): 497-504. [范超, 温子

川, 霍忠明, 等. 盐度胁迫对不同发育时期菲律宾蛤仔生 长和存活的影响[J]. 大连海洋大学学报, 2016, 31(5): 497-504.]

- [16] Sun X J, Wu B A, Tu K, et al. Transcriptome and metabolome analyses provide insights into the salinity adaptation of clam *Ruditapes philippinarum*[J]. Aquaculture Reports, 2022, 27: 101368.
- [17] Chen C J, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
- [18] Vodiasova E A, Meger Y V, Lantushenko A O. Identification and characterization of the novel genes encoding glutathione S-transferases in *Mytilus galloprovincialis*[J]. Comparative Biochemistry and Physiology Part D, Genomics & Proteomics, 2021, 40: 100926.
- [19] Pan Y Y, Lin X H, Chen F Y, et al. Genome-wide identification and expression profiling of glutathione S-transferase family under hypoxia stress in silver Sillago (*Sillago sihama*)[J]. Comparative Biochemistry and Physiology Part D, Genomics & Proteomics, 2021, 40: 100920.
- [20] Chen B H, Peng W Z, Xu J A, et al. Genomic analysis of glutathione S-transferases (GST) family in common carp: Identification, phylogeny and expression[J]. Pakistan Journal of Zoology, 2017, 49(4): 1437-1448.
- [21] Koonin E V, Mushegian A R, Tatusov R L, et al. Eukaryotic translation elongation factor 1 gamma contains a glutathione transferase domain—study of a diverse, ancient protein superfamily using motif search and structural modeling[J]. Protein Science: a Publication of the Protein Society, 1994, 3(11): 2045-2054.
- [22] Martin J L. Thioredoxin—a fold for all reasons[J]. Structure, 1995, 3(3): 245-250.
- [23] Oakley A J. Glutathione transferases: New functions[J]. Current Opinion in Structural Biology, 2005, 15(6): 716-723.
- [24] Fernandes A P, Holmgren A. Glutaredoxins: Glutathionedependent redox enzymes with functions far beyond a simple thioredoxin backup system[J]. Antioxidants & Redox Signaling, 2004, 6(1): 63-74.
- [25] Liu Z Q, Zhang Y N, Zheng Y Y, et al. Genome-wide identification glutathione-S-transferase gene superfamily in *Daphnia pulex* and its transcriptional response to nanoplastics[J]. International Journal of Biological Macromolecules, 2023, 230: 123112.
- [26] Hoarau P, Garello G, Gnassia-Barelli M, et al. Purification and partial characterization of seven glutathione S-transferase isoforms from the clam *Ruditapes decussatus*[J]. European Journal of Biochemistry, 2002, 269(17): 4359-4366.

1065

- [27] Ciacci C, Barmo C, Gallo G, et al. Effects of sublethal, environmentally relevant concentrations of hexavalent chromium in the gills of *Mytilus galloprovincialis*[J]. Aquatic Toxicology, 2012, 120-121: 109-118.
- [28] Li X H, Feng C, Sha H, et al. Identification and characterization of ABCC gene family and their roles in the response to intraperitoneal injection of microcystin-LR in liver of silver carp (*Hypophthalmichthys molitrix*)[J]. Aquaculture Reports, 2023, 30: 101592.
- [29] Jha B, Sharma A, Mishra A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from *Salicornia brachiata* in tobacco for salt tolerance[J]. Molecular Biology Reports, 2011, 38(7): 4823-4832.
- [30] Cicero L L, Madesis P, Tsaftaris A, et al. Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses[J]. Phytochemistry, 2015, 116: 69-77.
- [31] Yun B. Experimental study on the effect of GP17 on the expression of HO-1, NQO1 and GST in oxidative stress in skin photoaging mice[D]. Liaoning University of Traditional Chinese Medicine,2018.[云博. GP17 对皮肤光老化小鼠氧 化应激中 HO-1、NQO1、GST 表达影响的实验研究[D]. 辽宁中医药大学, 2018.]
- [32] Liu Y, Ling Q F, Wang L, et al. Effects of ammonia-N stress

on GST activities of livers of four-naris carp[J]. Journal of Aquaculture, 2011, 32(7): 13-15. [刘洋, 凌去非, 王磊, 等. 氨氮胁迫对四鼻须鲤鱼肝脏 GST 酶活力的影响[J]. 水产养殖, 2011, 32(7): 13-15.]

- [33] Frova C. The plant glutathione transferase gene family: Genomic structure, functions, expression and evolution[J]. Physiologia Plantarum, 2003, 119(4): 469-479.
- [34] Boutet I, Tanguy A, Moraga D. Characterisation and expression of four mRNA sequences encoding glutathione S-transferases Pi, mu, omega and sigma classes in the Pacific oyster Crassostrea gigas exposed to hydrocarbons and pesticides[J]. Marine Biology, 2004, 146(1): 53-64.
- [35] Chen J H, Xiao S, Deng Y W, et al. Cloning of a novel glutathione S-transferase 3 (GST3) gene and expressionanalysis in pearl oyster, *Pinctada martensii*[J]. Fish & Shellfish Immunology, 2011, 31(6): 823-830.
- [36] Wan Q, Whang I, Lee J S, et al. Novel omega glutathione S-transferases in disk abalone: Characterization and protective roles against environmental stress[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology: CBP, 2009, 150(4): 558-568.
- [37] Liu K, Liu J X, Ren T J, et al. Cloning and analysis of three glutathione S-transferases in *Eriocheir hepuensis* and their expression in response to azadirachtin stress[J]. Aquaculture Reports, 2021, 19: 100635.

Genome-wide identification of the *Ruditapes philippinarum GST* gene family and its expression characteristics in the hepatopancreas under acute salinity stress

JIANG Xinyue^{1, 2}, ZHOU Liqing^{1, 2}, SUN Xiujun¹, JING Hao^{1, 2}, GE Guangyu¹, WU Biao¹, LIU Zhihong¹

- 1. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Key Laboratory of Aquatic Germplasm Resources Exploration and Utilization, Ministry of Education; Shanghai Ocean University, Shanghai 201306, China

Abstract: Glutathione S-transferase (GSTs, EC 2.5.1.18), a class of multifunctional detoxification enzymes widely distributed in organisms, is involved in the metabolism of many toxic substances from both internal and external sources, and plays an important role in protecting cells against biological and abiotic stresses. This study investigated the characteristics of the *Ruditapes philippinarum* gene family (*RpGST*) and its function in response to acute hypersalinity and acute hyposalinity stress. Bioinformatics methods were used to identify *RpGST* gene family members and analyze their structural characteristics, chromosome localization, phylogeny, and expression

characteristics in the hepatopancreas after acute salt stress. A total of seven RpGST genes were identified, namely GSTA1, GSTA2, GSTA3, GSTA4, GST_C_3a, GST_N_M1, and GST_N_M2. Chromosome localization results revealed that these seven GST genes were located on five chromosomes. The hydrophobicity analysis showed that all protein members had different degrees of hydrophilicity. The average aliphatic amino acid index was 82.08; subcellular localization found that RpGST proteins were all located in the cytoplasm; and all members of this gene family possess the glutathione transferase domain (PF00043, PF02798), which is associated with antioxidant and detoxification functions. Phylogenetic analysis revealed that *RpGSTs* were divided into three subfamilies and were evolutionarily conserved. The seven RpGSTs were divided into three distinct classes, with the GSTA class being the largest, consisting of four members within the Ruditapes philippinarum family, whereas the GSTM class consisted of two members and the GST C 3 class of one member. All GSTs in the Ruditapes philippinarum family evolved into separate clusters, such as *RpGSTA* and *RpGSTM*, related to the wide distribution and strong adaptability of the family. These results can provide a reference for the subsequent breeding of Ruditapes philippinarum with high and low salinity tolerance. After acute salinity stress in Ruditapes philippinarum for 0 h, 12 h and 24 h, the hepatopancreatic expression levels of RpGST members in acute hypersaline (40) and hyposaline (15) stress were detected by qRT-PCR. The results evidenced that the relative expression levels of *RpGSTA1*, RpGSTA2, RpGST N M1, and RpGST N M2 in the hepatopancreas of Ruditapes philippinarum increased with time, and the expression levels of RpGSTA1 and RpGSTM2 were significantly different from those of the control group (P < 0.01), whereas the relative expression levels of RpGSTA3, RpGSTA4 and Rp GST C 3a first decreased and subsequently increased. The relative hepatopancreatic expression levels of RpGSTA1, RpGSTA4, RpGST C 3a, *RpGST* N M1, and *RpGST* N M2 in *Ruditapes philippinarum* increased over time under acute hyposaline stress. Specifically, those of *RpGSTA1* and *RpGSTA4* significantly changed during acute hyposaline stress, gradually increasing with time, and this difference was significant compared with the control group (P<0.05). In contrast, the relative expression levels of *RpGSTA2* initially decreased and subsequently increased over time, while the relative expression of *RpGSTA3* first increased and then decreased. The expression of glutathione transferase under acute low-salt stress was significantly higher than that under acute high-salt stress, indicating that acute low-salt stress had a more pronounced effect on Philippine clams than acute high-salt stress. This study clarified the gene characteristics, phylogeny and response mechanism of the RpGST gene family in the context of acute hypersaline and hyposaline stress. It enriches the research data on the RpGST gene family in bivalve shellfish and provides a reference for further study on the role of this gene family in regulating salinity stress.

Key words: *Ruditapes philippinarum; RpGST* gene family; acute salt stress; expression pattern **Corresponding author:** ZHOU Liqing. E-mail: zhoulq@ysfri.ac.cn.