DOI: 10.12264/JFSC2024-0056

棘胸蛙形态特征及遗传差异分析

徐博文,易霈霈,傅雪军,余进祥,余智杰,黄滨,龚海波,巫曦雅,兰若林 江西省水生生物保护救助中心,江西南昌 330029

摘要:过度的人为干扰导致棘胸蛙(Quasipaa spinosa)种质资源的衰退和遗传多样性的下降,成为亟待解决的问题。本研究旨在对我国棘胸蛙的不同地理群体进行种质鉴定,全面评估其种群的种质资源特性,并挖掘优良育种群体,为后续的群体选育和种质资源优化提供参考。研究采用单因素方差分析、主成分分析、聚类分析以及判别分析等方法,对来自贵溪(YJFGX)、宜丰(LHSYF)、于都(LHSYD)、泰宁(LHSTN)4个地理群体的120只棘胸蛙养殖个体的外部可量性状进行形态学分析,并结合简化基因组测疗(RAD-seq)结果,对群体遗传差异进行分析。分析结果显示,4个地理群体在形态特征上存在差异,其中LHSYD 群体与其他群体的差异最为显著。LHSTN 群体和 YJFGX 群体间形态相似,未表现出明显分化。4个地理群体在体肢长度等相关指标中表现出较为普遍的雌雄差异,存在部分两性异形。根据形态特征,4个群体大致可分为3大分支:LHSTN 群体、YJFGX群体各为一分支,LHSYF 群体和 LHSYD 群体组成一大分支。观测杂合度(H_a)为 0.035~0.038,低于期望杂合度(H_e, 0.103~0.129),近交系数为 0.197~0.287,处于较高水平。LHSTN 群体与其他几个群体,包括LHSYF(F_{st}值为 0.303)、LHSYD (F_{st}值为 0.277)和 YJFGX(F_{st}值为 0.276)群体之间,显示出较高的遗传分化。相比之下,LHSYF、LHSYD 和 YJFGX 这三个群体之间的遗传分化程度则属于中等水平。综合分析表明:(1)棘胸蛙 4个地理群体间存在一定程度的形态分化,但尚未达到亚种分化水平;(2)种群整体遗传多样性较低,遗传分化程度较高,遗传信息相对独立,这表明可以通过群体间的杂交来丰富本地种群的遗传信息,优化种质资源。研究结果可为棘胸蛙的保护和可持续利用提供科学依据。

棘胸蛙(Quasipaa spinosa)又称"山鸡""石蛙" "石鳞",隶属于两栖纲(Amphibian)、无尾目 (Anura)、叉舌蛙科(Dicroglossidae)、棘胸蛙属 (Quasipaa),主要分布于江西、广西、福建等丘陵 地区,是我国特有的大型野生蛙品种^[1]。随着棘胸 蛙人工养殖技术的不断成熟,该物种的养殖范围 和规模迅速扩大,现已成为我国极具特色、潜力 的养殖品种之一。近年来,由于棘胸蛙养殖繁育 体系缺乏成熟的繁育技术和专业人员指导,在繁 育过程中乱引种、亲本群体多次重复使用、近亲 繁育等问题频发,造成种质资源严重衰退,在一 定程度上限制了棘胸蛙养殖产业的持续发展^[2]。 同时,栖息地破坏和过度捕猎导致棘胸蛙野生资 源减少,分布区域缩小,已被《中国生物多样性红 色名录——脊椎动物卷(2020)》列为易危(VU)物 种。因此,对棘胸蛙不同地理群体的种质资源进 行调查,分析遗传多样性和分化差异,对于种质 资源保护和良种选育至关重要。

形态学研究和分子标记技术在物种分类鉴别 中扮演着重要角色^[3]。在环境压力、栖息地变化 或生存空间变动下,物种的种质资源和形态结构 会发生适应性变化^[4]。形态学方法作为物种鉴别 的传统手段,至今仍是最直接和简便的方法^[5]。尽 管两栖类动物的形态学研究较为广泛^[6-8],但对

收稿日期: 2024-03-04; 修订日期: 2024-04-15.

基金项目:国家大宗淡水鱼产业技术体系项目(CARS-45-41);江西省重点研发计划"揭榜挂帅"项目(20223BBF61010).

作者简介:徐博文(1997-),男,硕士,从事水产养殖遗传育种研究. E-mail: xub0wen@163.com

通信作者:傅雪军,研究员,从事水生动物繁养殖技术研究. E-mail: fuxuejun721@163.com

棘胸蛙群体的形态学分析相对较少。蒋泽元等^[9] 对我国 8 个地区棘胸蛙种群的形态学分析表明, 不同地理种群间存在显著形态差异, 部分种群甚 至达到种间区分水平; 章海鑫等^[10]根据棘胸蛙的 花斑特征将其分类为"金线蛙" "黑白斑蛙"和"黑 斑蛙"。近年来、微卫星[11-13]、线粒体基因 (COI)^[14-17]、简化基因测序(GBS)^[18]、随机扩增多 态 DNA (RAPD)^[19-20]等分子标记技术被应用于棘 胸蛙种质鉴定。简化基因组测序技术(RAD-seq) 以其操作简便、成本效益高,成为鉴定高密度单 核苷酸多态性(SNP)位点^[21-22]、遗传进化分析^[23-24] 及重要性状候选基因预测[25-26]的有效工具。尽管 如此,目前尚未有研究报道利用 RAD-seq 技术对 棘胸蛙不同地理群体的遗传多样性进行深入分 析。这一领域尚待进一步探索, 以揭示棘胸蛙在 不同地理环境下的遗传分化和适应性演化。

本研究旨在通过 RAD-seq 技术对棘胸蛙简化 基因组进行测序分析,比较不同地理群体的形态 差异,探究形态分化程度和遗传分化水平及亲缘 关系。本研究通过全面评估棘胸蛙种质资源特性, 以期为群体选育、种质优化提供科学依据,并为 保护和合理利用这一独特生物资源提供理论支持 和实践指导。

1 材料与方法

1.1 实验材料

本研究所用的棘胸蛙样本于 2023 年 3 月分别 采集于江西省贵溪市(YJFGX, n=30)、江西省宜丰 县(LHSYF, n=30)、江西省于都县(LHSYD, n=30) 以及福建省泰宁县(LHSTN, n=30)(图 1)。4 个群体 共采集到 120 只养殖个体样本(表 1),保存于无水 乙醇中。

图 1 4 个棘胸蛙不同地理群体栖息地地形分布图 Fig. 1 Habitat topographical distribution maps of the four populations of *Quasipaa spinosa*

	表目	└ 棘胸蛙爭	采样信息	
Tab. 1	The sampl	ing informa	tion of <i>Quasip</i>	oaa spinosa
形体	+¥ + *		佐南	位库

群体	样本数	位置	纬度	经度
population	number	location	latitude	longitude
YJFGX	30	江西省贵溪市	28°14′11N	117°11′8E
LHSYF	30	江西省宜丰县	28°24′56N	114°47′46E
LHSYD	30	江西省于都县	25°58′22N	115°27′38E
LHSTN	30	福建省泰宁县	26°55′19N	117°9′49E

1.2 形态学研究

1.2.1 形态学指标测量 每个群体各选取 30 只 (15 雌、15 雄),使用游标卡尺(精度: 0.1 mm)、直 尺对主要形态学指标进行测量。形态学测量指标 (图 2)及方法参考费梁^[27]。测量指标如下:体长 (total length, L_{t} ,)、头长(head length, L_{h} ,)、头宽(head width, W_{h})、吻长(snout length, L_{s} ,)、腿全长(hind

limb length, L_{hl})、前肢长(foot length, L_f)、前臂长 (forearm length, L_{fo})、眼径(eye diameter length, L_e)。为消除不同规格个体对特征指标的影响,对 数据进行标准化处理。标准化指标定义如下: L_h/L_t 为头长/体长; W_h/L_t 为头宽/体长; L_s/L_t 为吻长/体 长; L_{hl}/L_t 为腿全长/体长; L_f/L_t 为前肢长/体长; L_{fo}/L_t 为前臂长/体长; L_e/L_t 为眼径/体长。

图 2 棘胸蛙形态特征测量示意图 ① 吻端;② 眼前端;③ 上、下颌关节后缘;④ 第3指末端;

5 肘关节; 6 第 4 趾末端; 7 体末端; 8 腿关节; 1: 体长;
2: 头长; 3: 头宽; 4: 跗足长; 5: 前臂长; 6: 吻长; 7: 眼径.

Fig. 2 Morphological characteristics measurement diagram of *Quasipaa spinosa*

 Rostral end, 2 Anterior end, 3 Posterior margin of upper and mandibular joints, 4 End of the third finger, 5 Elbow joints, 6 End of the fourth toe, 7 Body terminal, 8 Leg joints.
 body length, 2: head length, 3: head width, 4: length of foot and tarsus, 5: forearm length, 6: snout length, 7: eye diameter.

1.2.2 数据处理 本研究中的形态学指标结果均 使用平均值±标准差(x ±SD)表示。为消除年龄的 影响,测量的形态学性状均利用体长进行标准化 处理。数据的统计分析使用 SPSS 27.0.1 完成,制 图使用 Illustrator 2020 软件和 R 4.3.2 软件完成。 采用 SPSS 27.0.1 进行单因素方差分析和多重比 较(P>0.05 时,用 LSD 法; P<0.05 时,用 Dunnett 法),然后参照 Mary 等^[28]方法计算变异系数 (cofficient of variation, CV),计算公式如下:

 $CV = (M1 - M2)/(S1 + S2)_{\circ}$

式中, CV 表示变异系数, M1 和 M2 分别代表两群

体某个性状指标的平均值; S1 和 S2 分别代表两 群体特征计量的标准差。

使用 R 4.3.2 软件对 7 组主要形态性状比例参数进行主成分分析,根据 3 个主成分的贡献率和负荷值绘制主成分散点图。使用 SPSS 27.0.1 软件采用欧氏距离的方法对 7 组比例参数的平均值进行聚类分析。

1.3 简化基因组测序分析

1.3.1 样本基因组 DNA 提取 采用 EasyPure 基因组提取试剂盒提取棘胸蛙基因组 DNA,并使用 1.2%的琼脂糖凝胶电泳和紫外分光光度计对 DNA 样本的质量及浓度进行检测。

1.3.2 构建基因组文库 委托南京派森诺基因科 技有限公司完成简化测序文库的构建及测序。操 作步骤具体如下:(1)采用限制性内切酶对提取 的 DNA 进行完全酶切,并通过凝胶电泳进行检 测。(2)使用磁珠离心的方法(VAHTSTM DNA clean beads)去掉酶切后过大和过小的片段,并将 P1 接头与 P2 接头进行连接。(3)对 DNA 片段进 行 PCR 扩增,并采用磁珠进行纯化。(4) 对测序 文库进行最终的片段选择与钝化处理。

1.3.3 数据处理利用 Plink (V1.90)软件进行主成分分析并计算个体间的 IBS 相似度,生成距离 (=1-IBS)矩阵;使用 Gmatrix (Ver2)计算两个体间的 *G* 值;利用 FastTree (V2.2.11)软件中的 Maximum Likelihood 算法构建系统发育树;利用 Admixture (V1.3.0)软件利用 SNP 信息分析群体遗传结构,设置 *K*=2~10,模型选择为混合模型;使用 TreeMix (V1.13)软件利用全基因组范围内等位 基因频率数据,推断多个群体分裂和混群事件并绘制出群体最大似然树。

2 结果与分析

2.1 单因素方差分析

运用单因素方差分析对 4 个棘胸蛙种群 7 组 主要形态性状比例参数以及前肢长/腿全长比例 进行比较,结果显示如图 3, LHSTN 群体、YJFGX 群体在 *L*_h/*L*_t (图 3a)、*L*_s/*L*_t (图 3c)、*L*_f/*L*_t (图 3e)、 *L*_{h1}/*L*_t(图 3d)、*L*_e/*L*_t (图 3g)、*L*_{fo}/*L*_t (图 3f)以及

 L_{f}/L_{hL} (图 3h)等指标中均差异不显著(P>0.05), LHSYD 群体的 $L_{s}/L_{t}, L_{f}/L_{t}, L_{e}/L_{t}$ 这 3 个指标显著 高于其他 3 个种群(P<0.05), 而在 L_{f}/L_{hl} 中显著低 于其他 3 个种群(P<0.05); LHSTN 群体、LHSYF 群体及 YJFGX 群体在 $L_{h}/L_{t}, L_{f}/L_{t}, U_{D}, L_{e}/L_{t}$ 等指标中差异不显著(P>0.05)。

进一步分析 6 组棘胸蛙主要形态性状比例参数的两性差异,结果显示如图 4。经过 one-way ANOVA 检验,棘胸蛙形态性状参数中体肢长度 (如 $L_{\rm hl}/L_{\rm t}$ 、 $L_{\rm f}/L_{\rm t}$)在 LHSYF 群体、LHSTN 群体、YJFGX 群体的两性中呈现显著性差异,均为雄性大于雌性,此外, $L_{\rm fo}/L_{\rm t}$ 在 4 个群体中均表现出极显著差异,而其他形态特征在不同群体间的差异并不普遍,整体上差异不明显。

2.2 主成分分析及聚类分析

对棘胸蛙的 7 个主要形态性状比例参数进行

主成分分析(PCA), 以探究其形态变异的结构。分 析结果表明, 第一主成分(PC1)和第二主成分 (PC2)的特征值分别为1.691和1.135,均显著高于 1、而第三主成分(PC3)的特征值为 0.922。在 PC1 中, 前肢长(L_f)、腿全长(L_h)和前臂长(L_{fo})等指标 显示出较高的负载荷值; PC2 主要受头长(L_b)和前 臂长(Lfo)等指标的影响; PC3 则与吻长(Ls)和眼径 (L_e)等指标具有较高的相关性(表 2)。值得注意的 是, 前两个主成分的累积解释变异量仅为 57.6%, 其中 PC1 的贡献率为 32.3%, PC2 的贡献率为 25.3%(图 4b)。基于前 3 个主成分绘制的散点图(图 5a)显示, 4 个种群之间存在个体的交叉混合, 但 整体上可划分为 3 个主要分支: YJFGX 群体和 LHSTN 群体构成一个分支, 而 LHSYF 群体和 LHSYD 群体各自形成独立分支。进一步的聚类分 析(图 5c)基于所有样本的标准化值的平均值,结

图 4 4 个棘胸蛙不同地理群体雌雄单因素方差分析 a. 腿全长/体长; b. 前臂长/体长; c. 头宽/体长; d. 头长/体长; e. 吻长/体长; f. 前肢长/体长. ****、**、**、*分别代表 0.1‰、1‰、1%、5%的显著性水平. Fig. 4 The one-way ANOVA for males and females of the four populations of *Quasipaa spinosa*

a. $L_{\rm hl}/L_{\rm t}$; b. $L_{\rm fo}/L_{\rm t}$; c. $W_{\rm h}/L_{\rm t}$; d. $L_{\rm h}/L_{\rm t}$; e. $L_{\rm s}/L_{\rm t}$; f. $L_{\rm f}/L_{\rm t}$.

***, ***, **, and * represent the significance levels of 0.01%, 0.1%, 1%, and 5%, respectively.

表 2 4 个棘胸蛙不同地理群体主成分分析 Tab. 2 Principal component analysis of the four populations of *Quasipaa spinosa*

参数	主成分 principal component						
parameter	PC1	PC2	PC3	PC4	PC5	PC6	PC7
$L_{\rm h}/L_{\rm t}$	0.271	-0.596	0.352	-0.273	0.371	0.474	0.101
$W_{\rm h}/L_{\rm t}$	0.344	-0.386	0.074	0.755	0.108	-0.362	-0.118
$L_{\rm s}/L_{\rm t}$	0.384	0.046	0.562	-0.198	-0.674	-0.133	-0.154
$L_{\rm hl}/L_{\rm t}$	0.403	0.382	0.069	-0.296	0.560	-0.319	-0.428
$L_{\rm f}/L_{\rm t}$	0.500	0.122	-0.222	-0.122	0.005	-0.210	0.792
$L_{\rm fo}/L_{\rm t}$	0.388	0.450	-0.089	0.389	-0.050	0.692	-0.096
$L_{\rm e}/L_{\rm t}$	0.312	-0.361	-0.702	-0.254	-0.282	0.041	-0.365
特征值 sdev	1.691	1.135	0.922	0.838	0.764	0.636	0.559

果显示 YJFGX 群体与 LHSTN 群体在形态上更为 接近,而 LHSYD 群体与 LHSYF 群体则分化为另 外两个分支,这与主成分分析的结果基本一致。

2.3 判别分析

对 7 组主要比例参数进行判别分析, 建立 4 个棘胸蛙种群的费歇尔(Fisher)线性判别函数式:

LHSYF: $-908.816+2796.841L_h/L_t+239.491W_h/L_t+522.079L_s/L_t+159.275L_{hl}/L_t+16.771L_f/L_t-208.211L_{fo}/L_t+695.615L_e/L_t$

LHSTN: $-885.715+2812.252L_h/L_t+249.224W_h/L_t+500.212L_s/L_t+129.769L_{hl}/L_t+21.020L_f/L_t-195.707L_{fo}/L_t+710.741L_e/L_t$

YJFGX: $-910.970+2884.875L_h/L_t+270.452W_h/L_t+484.057L_s/L_t+123.176L_{hl}/L_t+15.436L_t/L_t-202.640$ $L_{fo}/L_t+705.521L_e/L_t$

LHSYD: $-995.175+2954.691L_h/L_t+241.386W_h/L_t+542.933L_s/L_t+135.145L_{hl}/L_t+68.757L_f/L_t-209.153L_{fo}/L_t+770.868L_e/L_t$

通过代入判别函数进行判别分析,以评估棘 胸蛙 4 个群体(LHSYF、LHSTN、YJFGX、LHSYD) 的形态参数区分能力。判别分析的结果如表 3 所 示,各群体的判别准确数量均为 30 只,总判别准 确数量达到 120 只。具体而言,LHSYF 群体、 LHSTN 群体、YJFGX 群体、LHSYD 群体的判别 准确率分别为 83.3%、66.7%、73.3%、90.0%,综 合判别准确率达到 79.2%。进一步的判别分析建 立了典型判别函数得分图(图 6),揭示了 LHSYD 群体和 LHSYF 群体在不同方向上形成独立的类 群,且组质心(centroid)之间的距离相对较远。与 此同时,YJFGX 群体和 LHSTN 群体的个体在形 态参数上存在交叉混合,其组质心也相对较近。

图 5 4 个棘胸蛙不同地理群体主成分分析及聚类分析 a. 棘胸蛙主成分散点图; b. 棘胸蛙主成分贡献率; c. 棘胸蛙聚类分析关系树. Fig. 5 Principal component analysis and cluster analysis of the four populations of *Quasipaa spinosa* a. Main dispersive dot plot of *Quasipaa spinosa*; b. Contribution rate of principal components in *Quasipaa spinosa*; c. Relationship tree for cluster analysis of *Quasipaa spinosa*.

表 3 4 个棘胸蛙不同地理群体判别分析 Tab. 3 Discriminant analysis of the four populations of *Quasipaa spinosa*

群体	数量 number	准确率/% accuracy -	预测分类 predicated species membership			
population			LHSYF	LHSTN	YJFGX	LHSYD
LHSYF	30	83.3	25	3	0	2
LHSTN	30	66.7	4	20	6	0
YJFGX	30	73.3	1	7	22	0
LHSYD	30	90.0	3	0	0	27

2.4 群体遗传多样性分析

对 4 个棘胸蛙地理群体进行群体遗传多样性 分析,结果表明: 4 个群体的观测杂合度 H_o (0.035~ 0.038)均低于期望杂合度 H_e (0.103~0.129),杂合 度整体偏低;各群体的近交系数为 0.197~0.287, 其中 LHSTN 群体平均近交系数最高(0.287), LHSYF 群体平均近交系数最低(0.197);核苷酸多 样性 *P*_i值为 0.116~0.146,均处于偏低水平(表 4)。

	populations of <i>Quasipaa spinosa</i>
Tab. 4	The results of genetic statistics of the four
表 4	4 个棘胸蛙不同地理群体遗传统计量信息

群体 population	样本数 <i>n</i>	观测杂 合度 H _o	期望杂 合度 H _e	核苷酸 多样性 <i>P</i> _i	近交 系数 F _{is}
LHSTN	30	0.035	0.129	0.146	0.287
LHSYF	30	0.038	0.103	0.116	0.197
LHSYD	30	0.035	0.114	0.130	0.238
YJFGX	30	0.037	0.124	0.143	0.264

2.5 群体结构分析

本研究采用 Plink (V1.90)软件对棘胸蛙的 SNP 标记进行主成分分析(PCA),其中第一主成 分(PC1)解释了 30.97%的变异,第二主成分(PC2) 解释了 9.95%的变异。分析结果如图 7a 所示,棘 胸蛙样本可分为 3 个明显的遗传分组。LHSTN 群 体与其他 3 个群体在遗传上存在显著分化;LHSYD 与 YJFGX 群体的聚类点较为接近,显示较近的亲缘 关系;而 LHSYF 群体则相对独立,但其与 LHSYD 群体和 YJFGX 群体之间存在部分遗传重叠。

进一步的系统进化树分析揭示了棘胸蛙不同 群体间的进化关系。如图 7b 所示,4 个群体可分 为3个遗传分支:LHSYF 群体首先分化形成独立 分支;LHSYD 群体和 YJFGX 群体共同形成一个 分支;LHSTN 群体则自成一分支。这一结果与 PCA 分析的分组结果相一致。

Fig. 7 Cluster analysis of the four populations of *Quasipaa spinosa* a. PCA analysis; b. Phylogenetic tree.

在群体遗传结构分析中,当交叉验证错误率 (CV error)达到最低时,表明该分群在所有可能的 参数设置下表现最佳^[29]。研究结果显示,在 *K*=4 时,交叉验证错误率最低,表明 4 个棘胸蛙养殖 群体具有 4 个不同的遗传信息来源(图 8a)。 LHSTN群体的遗传背景相对单一,主要由 group1 构成; YJFGX 群体的遗传来源较为复杂,主要由 group4 构成,同时包含少量的 group1 和 group2; LHSYD 群体的遗传来源主要为 group2 和 group4, 两者在群体中的比例相当; LHSYF 群体则包含两种

a. Cross-validation error rate; b. Population structure.

不同的遗传背景,分别为 group2 和 group3 (图 8b)。

2.6 群体分化指数和基因流分析

基于基因组测序数据分别计算 4 个棘胸蛙养 殖群体两两间的遗传分化程度,具体结果见表 5。 LHSTN 群体与 LHSYF 群体(F_{st} =0.303)、LHSYD 群体(F_{st} =0.276)、YJFGX 群体(F_{st} =0.276)之间均存 在程度较高的遗传分化(F_{st} >0.25),而 LHSYD 群 体与 LHSYF 群体、YJFGX 群体与 LHSYF 群体、 YJFGX 群体与 LHSYD 群体之间仅有中等程度的 遗传分化(0.15<P<0.25)。

	表 5	4 个棘胸蛙不同地理群体两两之间的
		遗传分化指数(F _{st})
1.	=	Construction de la const

Tab. 5Genetic differentiation index between pairs in
four population groups of Quasipaa spinosa

群体 population	LHSTN	LHSYF	LHSYD	YJFGX
LHSTN		0.303	0.276	0.276
LHSYF			0.188	0.224
LHSYD				0.193

在群体遗传学领域,基因流(gene flow)被形象地称为基因迁移,它是一种重要的进化驱动因素,能够影响生物群体的遗传多样性和适应性^[25]。 对 4 个棘胸蛙养殖群体进行基因流分析,结果显示,当假设有一个迁移事件发生时,LHSTN 群体 部分基因流向 LHSYF 群体(图 9)。

2.7 亲缘关系分析

通过计算状态同源序列(IBS)来评估 4 个棘胸 蛙养殖群体内个体间的遗传相似度。如图 10a 所

示,各群体内部个体间的遗传相似度普遍处于中 等或较低水平。在群体间的比较中,LHSTN 群体 与其他 3 个群体的遗传相似度整体较低,这表明 LHSTN 群体与其他群体的亲缘关系较为疏远。进 一步的全基因组关系矩阵(genomic relationship matrix)分析(图 10b)揭示了个体间的亲缘关系。结果显示,大多数个体的亲缘关系维持在中等或较远水平。特别值得注意的是,LHSTN 群体内部个体间的 G 值普遍较高,这可能指示该群体存在较高的近交风险。

3 讨论

3.1 形态学分析

本研究对棘胸蛙 4 个不同地理养殖群体进行 形态学分析。分析基于 7 个主要比例参数,发现 LHSYD 群体在 L_s/L_t 、 L_t/L_t 、 L_e/L_t 等指标上显著高 于其他 3 个群体(P<0.05),显示出较为明显的形 态学分化。相比之下,LHSTN 群体、LHSYF 群体 和 YJFGX 群体在 L_h/L_t 、 $L_{f'}/L_t$ 、 L_{fo}/L_t 以及 L_e/L_t 等 指标上的差异不显著(P>0.05),形态指标数值接 近,表明这 4 个群体整体上存在一定程度的分化, 这一分化趋势与蒋泽元等^[9]的研究结果相一致, 推测栖息地环境的差异性是影响棘胸蛙群体形态

图 10 4 个棘胸蛙不同地理群体亲缘关系矩阵图

a. IBS 距离矩阵热图. 方块的颜色越接近红色, 表示遗传距离越大, 关系越远; 颜色越接近蓝色, 表示遗传距离越小, 关系越近: b. G 值矩阵热图. 方块的颜色接近蓝色, 表示 G 值越小, 关系越近; 颜色越红, 表示 G 值越大, 关系越远.

Fig. 10 Plot of the kinship matrix of the four populations of Quasipaa spinosa

a. IBS distance. The color of the box is closer to blue, indicating that the smaller distance, the closer relationship, The the color is closer to red, indicating, the greater distance, the further relationship. b. G value matrix heat map. The color of the square is closer to red, the greater the G value, the closer the relationship. The bluer the color, the smaller the G value and the farther the relationship.

分化的原因之一。棘胸蛙作为山涧溪流中的珍稀 物种,对环境条件有着严格的要求,尤其是对气 温和水温变化极为敏感,环境因子的变化可能促 使棘胸蛙发生适应性分化。在对棘胸蛙的群体进 行两性特征差异性研究时, 观察到在 4 个养殖群 体中, L_{fo}/L_t 呈现出极为显著的差异。此外, L_{hl}/L_t 和L_f/L_t这两个指标在LHSYF 群体、LHSTN 群体、 YJFGX 群体中也显示出较为显著的性别差异, 这 与龙嘉航等^[30]的研究结果相吻合。具体来说,研 究结果表明, 棘胸蛙雄性的体肢长度普遍大于雌 性。这种两性异形现象可能与棘胸蛙的繁殖行为 和生活习性有着紧密的联系。雄性棘胸蛙拥有较 为粗壮和长的前臂,这使得在繁殖季节的配偶争 夺中占据优势。在激烈的竞争中,这样的身体特 征有助于雄性在抱对过程中保持稳定,避免从雌 性背部滑落,从而大大增加成功交配的概率。此 外, 雄性棘胸蛙较长的腿部和足部有利于进行跳 跃活动,这不仅提高了在复杂环境中的移动能力, 也有助于更高效地觅食,进而获取更丰富、更优 质的食物资源。形态学聚类分析显示,4个种群之 间存在个体交叉混合,但大致可分为3个主要分 支, 其中 YJFGX 群体和 LHSTN 群体构成一大分 支, 而 LHSYF 群体和 LHSYD 群体各自形成独立 分支,这一分化可能受到种群栖息环境的影响。 YJFGX 群体和 LHSTN 群体栖息于武夷山脉, 共 享相似的环境因子; LHSYD 群体生活在武夷山脉 南部,环境温度较高;LHSYF 群体位于江西与湖 南交界的九岭山脉, 与其他群体地理距离较远, 栖息环境差异较大。这些发现与空间和环境因素 对两栖动物多样性的影响研究相呼应, 如 Brown 等^[31]发现降水和海拔对生态过程的影响,以及温 度、地形和降水对物种丰富度的影响^[32-33]。不同 类型的植被、与水体的距离或环境异质性也已被确 定对生物多样性具有重要影响^[34-35]。蒋泽元等^[9] 的研究进一步揭示了棘胸蛙形态特征与环境因子 之间的相关性,指出生活在低纬度、温度较高的 地区的棘胸蛙往往具有更长的前肢和更大的眼 径。主成分分析显示,个体形态特征数值存在交 叉, 部分特征(如 L_b/L_t 、 L_f/L_t 、 L_{fo}/L_t)在统计上无 显著差异(P>0.05),表明 4 个地理群体的棘胸蛙 在长期地理隔离下产生了形态分化,但这种分化 尚未达到亚种水平,仍属于同一物种。这一发现 强调了棘胸蛙在物种层面上的遗传连续性,即使 在不同地理环境下,基本遗传结构和形态特征仍 然保持一致。遗传的稳定性对于物种的长期生存 和适应性进化具有重要意义,同时也为未来的保 护策略和生态研究提供了宝贵的信息。本研究仅 对棘胸蛙的形态特征进行了比较,未能深入探讨 形态特征与环境因素之间的具体关联。为了更全 面地理解棘胸蛙的适应性分化及其环境影响因子, 未来的研究需要结合更多的综合特征指标和环境 因子,进行深入的关联分析。

3.2 群体遗传多样性分析

核苷酸多样性反映种群中不同个体之间在核 苷酸序列上的差异程度,通常被用于衡量种群的 遗传变异程度^[29]。本研究中,4个棘胸蛙地理养殖 群体的核苷酸多样性指数(Pi)范围为 0.116~0.146, 显示出较低的遗传多样性。这一结果与刘南君等[19] 的研究(Nei's 基因多样性指数为 0.325±0.191, Shannon 多样性指数为 0.474±0.259)存在一定差 异, 刘南君等^[19]和 Zheng 等^[36]研究发现野生棘胸 蛙存在较高的遗传多样性,而与张艳萍等[16]研究 的养殖群体(P:=0.041)相似。野生群体生活在自然 环境中,面临着更为复杂多变的生存挑战。相比 之下,养殖群体通常是在人为控制的环境中进行 繁殖和管理,往往追求特定的经济性状,如生长 速度快、抗病性强等。这种人为选择的过程可能 会导致种群中某些不利的遗传变异被清除,同时 也限制了新的遗传变异的引入。此外、养殖群体 的种群规模通常较小,近亲繁殖的可能性更高, 这也会影响遗传多样性。高杂合度通常表明种群 个体间存在更多的遗传变异, 意味着丰富的遗传 多样性, 而低杂合度则暗示着遗传多样性相对较 低^[37-38]。4 个养殖群体的观测杂合度(H_o)为 0.035~0.038, 低于期望杂合度(He), 这与魏朝宇 等^[11]的研究结果(He=0.589, Ho=0.182)相近, 表明 杂合子缺失现象在棘胸蛙中较为普遍。在人工养殖 物种,如凡纳滨对虾^[39]、克氏原螯虾^[40]、草鱼^[41]、

黄颡鱼^[42]中,杂合子缺失现象同样普遍存在。张 帝等^[43]认为,人工养殖过程中的人为过度选育或 近亲杂交是导致群体性状纯合化,种群遗传多样 性下降的主要原因之一。遗传多样性的下降迫切 需要优化种群种质资源, 以丰富种群的遗传多样 性。近年来, 棘胸蛙的生存环境受到破坏, 种质资 源衰退,遗传瓶颈效应^[44]限制了物种的分歧程度, 遗传资源不断缩减,这也可能是杂合度降低的原 因之一。近交系数是衡量种群亲缘关系程度的指 标。近交系数越高,表明个体间亲缘关系越近^[45]。 4 个棘胸蛙养殖群体的近交系数为 0.197~0.287. 显示出较高的近交程度,进一步证实棘胸蛙人工 养殖过程中近交繁殖行为频繁,高频率的近交繁 殖会使得种群基因库中相同基因的频率增加,导 致纯合子的频率上升,从而下降杂合子的频率。 同时,大量研究表明长期近交繁殖会导致种群种 质快速衰退^[46],生长性能和抗逆性降低^[47-49],增 加疾病感染风险。在人工养殖的封闭环境中,近 交难以避免^[50-51],因此应通过科学的引种策略促 进基因交流, 增加遗传多样性, 减轻近交的潜在 危害。同时,加强对棘胸蛙野生种群的保护,为育 种提供优质亲本资源,对于维持和提升棘胸蛙的 遗传多样性至关重要。

3.3 群体遗传结构分析

在群体遗传学领域,遗传分化指数(Fst)是评 估群体间遗传差异的关键指标,其值域为0~1^[52]。 Fst 值为 0.15~0.25 时, 表示群体间存在显著的遗 传分化;而Fst值超过0.25则指示极显著的遗传差 异^[53]。本研究中, LHSTN 群体与其他 3 个群体的 Fst值均超过 0.25, 显示出极显著的遗传分化。相 对地, LHSYD 群体、LHSYF 群体和 YJFGX 群体 相互间的 F_{st} 值为 0.188~0.224, 表明这些群体间 的遗传分化程度处于中等水平。LHSTN 群体源自 于福建省,栖息在武夷山脉的东侧,而LHSYF 群 体和 YJFGX 群体则位于武夷山脉的西侧。天然的 地理隔离可能导致这些群体间的自然基因交流受 到阻碍。同时, LHSTN 群体与江西群体之间的养 殖环境存在显著差异,这可能进一步加剧了 LHSTN 群体的遗传分化。此外,随着棘胸蛙繁育技术的 进步,引种和复壮等行为在人工养殖过程中变得

更加频繁。引进本省内的良种可以提高引种的成 功率,降低适应性问题和生长风险,同时保护和 利用本地遗传资源。这种人为的引种干预可能加 速了江西群体间的基因交流,从而降低了群体间 的遗传分化程度。不同省份之间的繁育技术差异 也可能在一定程度上影响了种群的遗传结构。聚 类分析的结果进一步揭示了 LHSTN 群体具有较 为单一的遗传背景, 这表明该群体的基因交流受 到限制,种群历史相对简单,目近期内没有发生 显著的种群混合事件。个体间的G值和IBS分析 也显示, LHSTN 群体与其他群体的遗传相似度显 著较低, 而其他群体间的遗传相似度以及群体内 部的遗传相似度则处于中等水平,这与F_{st}值的结 果基本一致。LHSTN 群体内个体间的 G 值较大, 这进一步证实了近交繁育行为的存在。系统进化 树分析表明, LHSYF 群体与其他群体的遗传距离 最远,而 LHSTN 群体与 YJFGX 群体的遗传距离 最近。LHSYF 群体位于江西省西北部, 与东部丘 陵地带的 LHSTN 群体、LHSYD 群体和 YJFGX 群体地理距离较远, 遗传距离与地理距离呈正相 关。形态学分析结果与遗传分化指数相吻合,揭 示了形态特征分化与遗传分化之间存在一定的关 联性。TreeMix 分析揭示了 LHSTN 群体与 LHSYF 群体间的单向基因交流,进一步证实存在人为引种 干预的行为导致棘胸蛙种群间遗传分化水平下降, 类似情况在鲂属鱼类^[54]、克氏原螯虾^[55]、鲤^[56] 等物种中较为常见; PCA 分析进一步确认了 LHSTN 群体与其他群体的遗传差异。

4 结论

本研究对江西省、福建省两地 4 个棘胸蛙养 殖群体进行形态学及遗传差异分析,结果表明,4 个地理群体间遗传分化程度整体偏高,同时表现 出一定的形态特征差异,部分性状存在两性异形, 在聚类分析中两者存在一定相关性;4 个地理群 体遗传多样性均较低,存在杂合子缺失及程度较 高的近交繁育现象,在棘胸蛙人工养殖的繁育过 程中存在严重不足;4 个地理群体间遗传差异较 大,可通过相互之间进行科学性的杂交繁育,不 断丰富本地棘胸蛙种群的遗传多样性。

参考文献:

- Zhan Z G, Liu Y, Huang W S, et al. Germplasm resources of giant spiny frog *Quasipaa spinosa*[J]. Chinese Agricultural Science Bulletin, 2016, 32(2): 77-81. [詹忠根, 刘悦, 黄伟 素,等. 棘胸蛙种质资源研究进展[J]. 中国农学通报, 2016, 32(2): 77-81.]
- [2] Chen D X, Chen Z J, Wu X L, et al. Reflection on the development of *Quasipaa spinosa*[J]. China Fisheries, 2019(3): 72-74. [陈敦学, 陈兆军, 吴小丽, 等. 棘胸蛙产业发展的 思考[J]. 中国水产, 2019(3): 72-74.]
- [3] Wang L L, Zhang X M, Wang Z, et al. Morphological characteristics and genetic differentiation of a breeding population of *Sepia esculenta* in Qingdao[J]. Journal of Fishery Sciences of China, 2019, 26(2): 342-352. [王林龙, 张秀梅, 王展, 等. 青岛近岸金乌贼繁殖群体形态特征及 遗传分化[J]. 中国水产科学, 2019, 26(2): 342-352.]
- [4] Zhou Y F, Xu D P, Fang D A, et al. Analysis of morphological variation among four geographic populations of *Protosalanx hyalocranius* in China[J]. Journal of Southwest University (Natural Science), 2016, 38(3): 54-61. [周彦锋, 徐东坡, 方 弟安, 等. 大银鱼不同地理群体的形态差异与判别分析[J]. 西南大学学报(自然科学版), 2016, 38(3): 54-61.]
- [5] Gao T X, Han G, Ma G Q, et al. Morphological variation analysis of C. *lucidus* and C. *niveatus*[J]. Periodical of Ocean University of China (Natural Science), 2013, 43(1): 27-33. [高天翔, 韩刚, 马国强, 等. 黑鳃梅童鱼和棘头梅童鱼的 形态学比较研究[J]. 中国海洋大学学报(自然科学版), 2013, 43(1): 27-33.]
- [6] Svinin A O, Dedukh D V, Borkin L J, et al. Genetic structure, morphological variation, and gametogenic peculiarities in water frogs (*Pelophylax*) from northeastern European Russia [J]. Journal of Zoological Systematics and Evolutionary Research, 2021, 59(3): 646-662.
- [7] de Almeida A P, Moraes L J C L, Rojas R R, et al. Phylogenetic relationships of the poorly known treefrog *Boana hobbsi* (Cochran & Goin, 1970) (Anura: Hylidae), systematic implications and remarks on morphological variations and geographic distribution[J]. Zootaxa, 2021, 4933(3): 301-323.
- [8] Malekian M, Khoshnamvand H, Keivany Y. Morphological assessment raises the possibility of cryptic species within the Luristan newt, *Neurergus kaiseri* (Amphibia: Salamandridae) [J]. Herpetological Journal, 2019, 29(4): 237-244.
- [9] Jiang Z Y, Lu J Y, Zhang D D, et al. Characteristics and environmental adaptability of *Quasipaa spinosa* in different geographic populations[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(1): 154-157, 169. [蒋泽元, 卢俊义, 张

丹丹,等.不同地理种群棘胸蛙的表征与环境适应[J].浙 江农业科学,2022,63(1):154-157,169.]

- [10] Zhang H X, Zhang Y P, Yu J F, et al. Comparison of morphological characteristics of different "variegated" *Quasipaa spinosa*[J]. Jiangxi Fishery Science and Technology, 2023, 1(5): 14-16, 29. [章海鑫, 张燕萍, 余建芳, 等. 不同"花斑"棘胸蛙的形态学特征比较[J]. 江西水产科技, 2023, 1(5): 14-16, 29.]
- [11] Wei Z Y, Wang X D, Wei X Y, et al. Genetic diversity analysis among 5 cultured populations of *Quasipaa spinosa* by microsatellite markers[J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(6): 206-214.
 [魏朝宇, 汪小冬,魏秀英,等. 5 个棘胸蛙养殖群体微卫 星遗传多样性分析[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 206-214.]
- [12] Ye R H. SSR isolation and population genetic analysis of *PAA spinosa*[D]. Jinhua: Zhejiang Normal University, 2009.
 [叶容晖. 棘胸蛙微卫星分子标记筛选及其种群遗传分析
 [D]. 金华: 浙江师范大学, 2009.]
- [13] Yu D N, Zheng R Q, Lu Q F, et al. Genetic diversity and population structure for the conservation of giant spiny frog (*Quasipaa spinosa*) using microsatellite loci and mitochondrial DNA[J]. Studies of Asian Amphibians and Reptiles (English Version), 2016, 7(2): 75-86.
- [14] Lu Q F. Genetic structure of giant spiny frogs inferred from mitochondrial DNA markers[D]. Jinhua: Zhejiang Normal University, 2008. [路庆芳.利用线粒体 DNA 分子标记探 讨棘胸蛙种群遗传结构[D]. 金华:浙江师范大学, 2008.]
- [15] Huang H. Cryptic diversity of giant spiny frogs inferred from mitochondrial DNA markers[D]. Jinhua: Zhejiang Normal University, 2012. [黄华.利用线粒体 DNA 分子标记揭示 棘胸蛙中的隐种多样性[D]. 金华:浙江师范大学, 2012.]
- [16] Zhang Y P, Zhang H X, Xi H B, et al. Genetic diversity analysis of *PAA spinosa* cultured population based on mitochondrial COI gene[J]. Jiangxi Fishery Science and Technology, 2023, 1(4): 1-5. [张燕萍, 章海鑫, 习宏斌, 等. 基于线粒体 COI 基因对棘胸蛙养殖群体的遗传多样性分 析[J]. 江西水产科技, 2023, 1(4): 1-5.]
- [17] Zhang Q P, Zheng R Q, Zhang D D, et al. Mitochondrial and nuclear genes reveal the existence of introgressive hybridization among species of *Rana*[C]//The 13th member congress and Symposium of Zhejiang Zoological Society. Hangzhou: Zhejiang Zoological Society, 2018: 56-57. [张启鹏,郑荣泉, 张丹丹,等. 线粒体和核基因揭示棘胸蛙属种间存在渐渗 杂交[C]//浙江省动物学会第十三次会员代表大会暨学术 研讨会. 杭州:浙江省动物学会, 2018: 56-57.]
- [18] Wang M Y, Lai M Y, Huang H G, et al. Genetic diversity of

spine frog *Rana spinosa* in interior mountainous areas of Fujian Province[J]. Chinese Journal of Fisheries, 2020, 33(5): 20-25. [王茂元, 赖铭勇, 黄洪贵, 等. 福建内陆山区棘胸 蛙遗传多样性分析[J]. 水产学杂志, 2020, 33(5): 20-25.]

- [19] Liu N J, Wu T L, Lu J, et al. RAPD analysis of genetic diversity of *Paa spinosa* population in Kuankuoshui national natural reserve[J]. Guizhou Agricultural Sciences, 2013, 41(1): 14-17. [刘南君, 吴太伦, 路健, 等. 宽阔水自然保 护区棘胸蛙种群的 RAPD 遗传多样性[J]. 贵州农业科学, 2013, 41(1): 14-17.]
- [20] Lin W, Zhang Y D, Gao J M. Random amplified polymorphic DNA analysis of *Rana spinosa* and *Rana tigrina*[C]//The 8th member congress and national academic conference of the Chinese Society of Biochemistry and Molecular Biology. Shanghai: The Chinese Society of Biochemistry and Molecular Biology, 2001: 377-388. [林玮,张彦定,高建民. 棘胸蛙和虎纹蛙的随机扩增多态 DNA 分析[C]//中国生物 化学与分子生物学会第八届会员代表大会暨全国学术会 议.上海:中国生物化学与分子生物学会, 2001: 377-388.]
- [21] Mladineo I, Hrabar J, Trumbić Ž, et al. Community parameters and genome-wide RAD-seq loci of *Ceratothoa oestroides* imply its transfer between farmed European Sea bass and wild farm-aggregating fish[J]. Pathogens, 2021, 10(2): 100.
- [22] Guo L, Yao H, Shepherd B, et al. Development of a genomic resource and identification of nucleotide diversity of yellow perch by RAD sequencing[J]. Frontiers in Genetics, 2019, 10: article No.992.
- [23] Kato D I, Suzuki H, Tsuruta A, et al. Evaluation of the population structure and phylogeography of the Japanese Genji firefly, *Luciola cruciata*, at the nuclear DNA level using RAD-Seq analysis[J]. Scientific Reports, 2020, 10(1): article No.1533.
- [24] Cai M Y, Wen Y F, Uchiyama K, et al. Population genetic diversity and structure of ancient tree populations of *Cryptomeria japonica* var. *sinensis* based on RAD-seq data [J]. Forests, 2020, 11(11): article No.1192.
- [25] Yan J M, Zhu Y F, Li G H, et al. Study on genetic evolution of Langya chicken based on RAD-seq technology[J]. China Poultry, 2023, 45(5): 19-23. [殷建政, 朱云芬, 李国辉, 等. 基于 RAD-Seq 简化基因组测序分析琅琊鸡的遗传进化[J]. 中国家禽, 2023, 45(5): 19-23.]
- [26] Liu C M, Wang S H, Dong X G, et al. Exploring the genomic resources and analysing the genetic diversity and population structure of Chinese indigenous rabbit breeds by RAD-seq[J]. BMC Genomics, 2021, 22(1): article No.573.
- [27] Fei L. Atlas of Amphibians in China (field edition)[M].

Zhengzhou: Henan Science and Technology Press, 2020: 11-13. [费梁. 中国两栖动物图鉴(野外版)[M]. 郑州: 河 南科学技术出版社, 2020: 11-13.]

- [28] Mayr E, Linsley E G, Usinger R. Methods and principles of systematic zoology[J]. Mcgraw-Hill, 1953, 57: 1-328.
- [29] Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics, 2005, 1: 47-50.
- [30] Long J H, Hou J L, Hu Y Z, et al. Sexual dimorphism and fecundity of *Quasipaa spinosa*[J]. Chinese Journal of Wildlife, 2021, 42(3): 817-824. [龙嘉航, 侯金亮, 胡亚洲, 等. 棘胸蛙的两性异形及生殖力[J]. 野生动物学报, 2021, 42(3): 817-824.]
- [31] Brown, James H, Lomolino M V. Biogeography[M]. 2nd Edition. Mendelry, 1998.
- [32] Eduardo O Y C, Vivian P, Fernando Z. Temperature and precipitation as predictors of species richness in northern Andean amphibians from Colombia[J]. Caldasia, 2013, 35(1): 367-374.
- [33] Soares C, Brito J C. Environmental correlates for species richness among amphibians and reptiles in a climate transition area[J]. Biodiversity and Conservation, 2007, 16(4): 1087-1102.
- [34] Gonçalves D S, Crivellari L B, Conte C E. Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands[J]. Anais Da Academia Brasileira De Ciencias, 2015, 87(3): 1751-1762.
- [35] Ribeiro J, Colli G R, Batista R, et al. Landscape and local correlates with anuran taxonomic, functional and phylogenetic diversity in rice crops[J]. Landscape Ecology, 2017, 32(8): 1599-1612.
- [36] Zheng R Q, Ye R H, Yu Y Y, et al. Fifteen polymorphic microsatellite markers for the giant spiny frog, *Paa spinosa* [J]. Molecular Ecology Resources, 2009, 9(1): 336-338.
- [37] Cui L, Xie C X, Li Y H, et al. Analysis of genetic diversity among four different channel catfish populations by using microsatellite markers[J]. Journal of Huazhong Agricultural University, 2012, 31(6): 744-751. [崔蕾,谢从新,李艳和, 等. 斑点叉尾鮰四个群体遗传多样性的微卫星分析[J]. 华 中农业大学学报, 2012, 31(6): 744-751.]
- [38] Waterworth D. Analysis of Human Genetic Linkage. By J. OTT. Baltimore [J]. Annals of Human Genetics, 2000, 64(1): 89-92.
- [39] Wang J J, Wang Q, Qin Z, et al. Development of SSR markers from genomic data for *Litopenaeus vannamei* and analysis of genetic diversity in different cultured populations [J]. Journal of Fisheries of China, 2023, 47(6): 64-74. [王佳

佳, 王琼, 秦桢, 等. 凡纳滨对虾全基因组 SSR 标记开发 及不同养殖群体的遗传多样性[J]. 水产学报, 2023, 47(6): 64-74.]

- [40] Liu X Y, Xiong L J, Peng B, et al. Genetic diversity analysis of 14 cultured populations of red swamp crayfish *Procambarus clarkii* in China[J]. Fisheries Science, 2023, 42(3): 457-465.
 [刘小宇, 熊礼静, 彭波, 等. 1 四个克氏原螯虾养殖群体 遗传多样性分析[J]. 水产科学, 2023, 42(3): 457-465.]
- [41] Wang S T, Shen Y B, Meng X Z, et al. Genetic variability in wild and selected populations of *Ctenopharyngodon idella* using microsatellite markers[J]. Journal of Fisheries of China, 2018, 42(8): 1273-1284. [王沈同, 沈玉帮, 孟新展, 等. 草 鱼野生与选育群体遗传变异微卫星分析[J]. 水产学报, 2018, 42(8): 1273-1284.]
- [42] Zheng X, Xu J J, Zhang J J, et al. Genetic diversity analysis in four different geographical populations of yellow catfish *Pelteobagrus vachelli* by microsatellite markers[J]. Fisheries Science, 2020, 39(5): 657-668. [郑翔, 徐杰杰, 张佳佳, 等. 四个瓦氏黄颡鱼群体遗传多样性的微卫星分析[J]. 水产 科学, 2020, 39(5): 657-668.]
- [43] Zhang D, Qiang J, Fu J J, et al. Genetic analysis of five stocks of largemouth bass (*Micropterus salmoides*) with microsatellite and mitochondrial D-loop sequences[J]. Journal of Fishery Sciences of China, 2022, 29(9): 1277-1289. [张帝, 强俊, 傅建军, 等. 基于微卫星标记和线粒体 D-loop 序列 的 5 个大口黑鲈群体遗传变异分析[J]. 中国水产科学, 2022, 29(9): 1277-1289.]
- [44] Antoro S, Na-Nakorn U, Koedprang W. Study of genetic diversity of orange-spotted grouper, *Epinephelus coioides*, from Thailand and Indonesia using microsatellite markers[J]. Marine Biotechnology, 2006, 8(1): 17-26.
- [45] Chen M J, Li X, Yuan D D, et al. Analysis of population genetic background of *Salmo trutta fario* based on molecular marker coancestry[J]. Freshwater Fisheries, 2023, 53(4): 82-90. [陈孟娟, 李鑫, 袁冬冬, 等. 基于分子标记共祖的 亚东鲑育种群体遗传背景分析[J]. 淡水渔业, 2023, 53(4): 82-90.]
- [46] Zhao L, Li Y P, Lou J R, et al. Transcriptomic profiling provides insights into inbreeding depression in yesso scallop *Patinopecten yessoensis*[J]. Marine Biotechnology, 2019,

21(5): 623-633.

- [47] Yuan R P, Liu J Y, Zhang J C, et al. Effects of inbreeding on growth, survival and stress resistance in *Litopenaeus vannamei*[J]. Oceanologia et Limnologia Sinica, 2016, 47(6): 1250-1256. [哀瑞鹏, 刘建勇, 张嘉晨, 等. 近交对凡纳滨 对虾生长、存活及抗逆性的影响[J]. 海洋与湖沼, 2016, 47(6): 1250-1256.]
- [48] Ma D Y, Hu H L, Kong J. Inbreeding and its impact on aquaculture[J]. Journal of Fisheries of China, 2005, 29(6): 849-856. [马大勇, 胡红浪, 孔杰. 近交及其对水产养殖的影响[J]. 水产学报, 2005, 29(6): 849-856.]
- [49] Ewens W J. Genetics and analysis of quantitative traits[J]. American Journal of Human Biology, 1999, 11(6): 798-800.
- [50] Falconer D S, Mackay T F. Introduction to Quantitative genetics[M]. Edinburgh: Oliver and Boyd, 1960.
- [51] Pante M J R, Gjerde B, McMillan I. Inbreeding levels in selected populations of rainbow trout, *Oncorhynchus mykiss*[J]. Aquaculture, 2001, 192(2-4): 213-224.
- [52] Wright S. The genetical structure of populations[J]. Ann Eugen, 2012, 15(4): 323-354.
- [53] Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers[J]. Molecular Ecology, 2002, 11(2): 155-165.
- [54] Chen J. Population genetics of *Megalobrama* species based on the whole genome re-sequencing[D]. Wuhan: Huazhong Agricultural University, 2021. [陈静. 基于全基因组重测序 的鲂属鱼类群体遗传学研究[D]. 武汉: 华中农业大学, 2021.]
- [55] Cui W T, Zou Y F, Bai Z Y, et al. Genetic diversity and structure analysis of *Procambarus clarkii* populations in Anhui Province[J]. Journal of Fisheries of China, 2023, 47(9): 92-101. [崔文涛, 邹宇凡, 白志毅, 等. 安徽地区克 氏原螯虾群体的遗传多样性和遗传结构[J]. 水产学报, 2023, 47(9): 92-101.]
- [56] Ji D, Yang Y M, Yao J J, et al. Analysis of genetic diversity and genetic structure of 7 cultured *Cyprinus carpio* populations in Guizhou Province[J]. Marine Fisheries, 2023, 45(3): 257-266. [纪达,杨玉梅,姚俊杰,等.贵州 7 个鲤养殖群 体遗传多样性与遗传结构分析[J]. 海洋渔业, 2023, 45(3): 257-266.]

Morphological characteristics and genetic differences in *Quasipaa* spinosa

XU Bowen, YI Peipei, FU Xuejun, YU Jinxiang, YU Zhijie, HUANG Bin, GONG Haibo, WU Xiya, LAN Ruolin Jiangxi Provincial Aquatic Biology Protection and Rescue Center, Nanchang 330029, China

Abstract: Due to excessive human disturbance, the germplasm resources of Quasipaa spinosa are experiencing a decline, and the gradual reduction in genetic diversity has become an urgent issue that needs to be addressed. The objective of this study was to identify the germplasm of different geographical populations, comprehensively evaluate their characteristics, and identify excellent breeding populations. This would provide important reference materials for subsequent population selection and the optimization of germplasm resources. The study employed methods such as single-factor analysis of variance, principal component analysis, cluster analysis, and discriminant analysis to conduct morphological analyses of 120 cultured individuals from four geographical populations (Guixi YJFGX, Yifeng LHSYF, Yudu LHSYD, and Taining LHSTN). Genetic differences among Quasipaa spinosa populations were also analyzed based on simplified genome sequencing results. The findings revealed variations in the morphological characteristics among the four geographical populations. Particularly notable were the differences between LHSYD and the other three populations; however, there were similarities in morphological traits between LHSTN and YJFGX, without significant differentiation. Four geographical populations exhibit a relatively common sexual dimorphism in body limb length and other related indicators. Based on morphological characteristics, the four populations can be roughly divided into three major branches: the LHSTN population and the YJFGX population each form a branch, while the LHSYF population and the LHSYD population comprise another branch. The observed heterozygosity (H_0) ranged from 0.035 to 0.038, lower than the expected heterozygosity (H_e) ranging from 0.103 to 0.129. Moreover, the average inbreeding coefficient ranged from 0.197 to 0.287, indicating a high level of inbreeding within these populations. A relatively high degree of genetic differentiation was observed between LHSTN and LHSYF (F_{st} =0.303), LHSYD (F_{st} =0.277), and YJFGX $(F_{si}=0.276)$ populations; however, only moderate genetic differentiation existed among LHSYF, LHSYD, and YJFGX populations. In summary, (1) there is morphological variation among the four studied populations, but not at the subspecies level and (2) the overall genetic diversity of the population was relatively low, indicating a high degree of genetic differentiation and independent genetic information. This characteristic makes them suitable as parental sources for crossbreeding, thereby enhancing the genetic diversity of the local population and optimizing germplasm resources.

Key words: *Quasipaa spinosa*; morphological characteristics; simplifying genome sequencing; genetic differentiation Corresponding author: FU Xuejun. E-mail: fuxuejun721@163.com