雅鲁藏布江弧唇裂腹鱼不同地理群体形态学差异分析

苏奇1,李洪池2,杨娜娜3,熊冬梅1,张驰2

1. 西北农林科技大学动物科技学院水产科学系, 陕西 杨凌 712100;

2. 西藏自治区农牧科学院水产科学研究所, 西藏 拉萨 850000;

3. 西藏自治区林芝市农业农村局畜牧兽医站, 西藏 林芝 860000

摘要:为探究不同地理群体弧唇裂腹鱼(*Schizothorax curvilabiatus*)的形态差异,本研究整合传统形态学和框架分析 法 2 种数据体系,对采自雅鲁藏布江干流墨脱江段、帕隆藏布和察隅河 3 个地理群体弧唇裂腹鱼的 62 个形态参数 进行多变量统计分析。经传统形态学分析发现 3 个群体间差异主要体现在须长、眼后头长、体高、尾柄长和厚、 背鳍硬刺长以及臀鳍长等,主成分分析结果表明墨脱群体与察隅群体在主成分 1 上差异显著,主要反映头部、背鳍 硬刺以及尾柄特征。而框架数据结果显示,墨脱群体与帕隆群体在主成分 1 上差异较大,主要体现在头部至背鳍、中轴及尾柄部。传统和框架形态学分别选取 14 个和 6 个主要参数建立判别公式,初始判别成功率为 94.70%和 86.40%,两类数据体系构建的散点图质心分离,墨脱群体较为独立,而帕隆与察隅群体存在个别重叠; 2 个数据体系的聚类分析呈现为墨脱群体聚为 1 支,帕隆与察隅群体聚为 1 支。以上研究结果表明墨脱群体与帕隆、察隅群体形态明显分化,而帕隆与察隅群体之间差异较小,但均未达到亚种水平。

关键词: 弧唇裂腹鱼; 地理群体; 形态分化; 雅鲁藏布江 中图分类号: \$931 ______文献标志码: A _______文章编号: 1005-8737-(2025)02-0190-13

弧唇裂腹鱼(Schizothorax curvilabiatus),隶 属于鲤形目(Cyprinifomes),鲤科(Cyprinidae),裂 腹鱼亚科(Schizothoracinae),裂腹鱼属(Schizothorax)。别名为吉阿(门巴族语)、弧唇弓鱼,广泛 分布于雅鲁藏布江(以下简称雅江)下游干流墨脱 江段、支流帕隆藏布和察隅河,分布海拔范围为 500~2300 m,曾是当地特有经济鱼类^[1-2],也是雅 江下游的优势鱼类。受高原特殊生境的影响,西 藏土著鱼类生长速度缓慢,资源量补充周期较长, 性成熟时间较晚^[3],其中弧唇裂腹鱼雌性 12 龄初 次性成熟,雄性 6 龄^[4]。近年来,受到经济原因产 生的过度捕捞、水利水电设施修建导致栖息地破 坏以及外来物种等诸多因素影响,弧唇裂腹鱼野 外种群数量急剧下降,资源呈衰退趋势,个体小型化、低龄化现象明显^[5-6],亟需深入开展基础研究工作为其资源保护提供参考和依据。现有的弧唇裂腹鱼研究主要集中于生物学特性^[7-9]、肌肉营养成分^[10]等研究,鲜有地理群体间分化的研究资料,仅马海鑫^[11]基于 SLAF-seq 方法分析弧唇裂腹鱼雅江墨脱段和易贡湖(帕隆藏布一级支流)群体的遗传差异,并开发出 SNP 标记,未见形态差异分析相关报道。

传统形态学和框架形态学作为最早应用于鱼 类形态学的分析方法,因其数据可溯源^[12],可充 分发掘和利用鱼体形态上的稳定变异^[13],成为鱼 类形态学判定的主要研究方法。而基于鱼类群体

收稿日期: 2024-08-28; 修订日期: 2024-11-04.

基金项目: 西藏自治区重点科技计划项目(XZ202301ZY0012N); 西藏自治区科技计划项目(XZ202301YD0017C); 农业农村部 财政专项(CJW2023034); 中国水产科学研究院中央公益性科研院所基本科研业务费专项资金资助项目(2023YJ04).

作者简介:苏奇(2000-),男,硕士研究生,研究方向为鱼类种质资源与利用.E-mail: suqi@nwafu.edu.cn

通信作者: 张驰, 研究员, 研究方向为渔业资源与环境, E-mail: zc0891@163.com; 熊冬梅, 教授, 研究方向为鱼类遗传资源保 护及水域环境监测, E-mail: xiongdongmei@nwsuaf.edu.cn

形态区分^[14]、种间形态判定^[15]、杂交育种形态分 析^[16]以及群落结构分析^[17]等多元化需求,综合多 种形态数据的分析方法逐渐成为主流研究手段。

自然条件的差异会塑造不同的形态特征。有研究表明^[18]栖息环境、饵料组成和海流等可能是导致棱鯪(*Liza carinata*)不同群体形态学和耳石形态差异主要因素;而章翊涵等^[19]发现早期的地理隔离可能是多鳞四指马鲅(*Eleutheronema rhadinum*)5个地理群体差异的主要原因,但未达到种群分化程度,且差异程度与地理距离呈正相关。此外,裸鲤属和裸裂尻属的部分鱼类因长期生活在静水环境中(如西藏纳木错和班公湖),致其唇部角质前缘发生退化^[20-22]。长期的地理隔离可导致亚种形成,如大渡河和雅砻江水系的松潘裸鲤(*Gymnocypris potanini*)与其亚种硬刺松潘裸鲤(*G potanini firmispinatus*)可根据臀鳞行列长区分^[15]。以上研究表明鱼类形态塑造是对自然条件长期适

应的结果。

课题组前期研究发现墨脱、帕隆和察隅 3 个 群体间达到中等遗传程度(数据未发表),但目前 雅江下游不同弧唇裂腹鱼地理群体的形态是否发 生分化,以及这种分化是否达到亚种水平有待深 入研究。本研究通过传统形态学和框架形态学分 析雅江弧唇裂腹鱼的形态分化,旨在为弧唇裂腹 鱼的种质资源保护提供参考资料。

1 材料与方法

1.1 样品采集

本研究于 2024 年 1—5 月使用刺网及地笼在 雅江干支流采集到弧唇裂腹鱼样本 140 尾,分别 为干流墨脱江段 42 尾,支流帕隆藏布 52 尾,支流 察隅河 46 尾,形态参数测量前样本未做任何固定 处理,测量完成后,所有样本采用 10%福尔马林 保存。采样位点详细信息见表 1。

表 1 弧唇裂腹鱼样本采集信息 Tab. 1 Sample information of *Schizothorax curvilabiatus*

群体 population	采样地点 sampling site	水系 river drainage	样本量 sample size	采样时间 sampling time	经度和纬度 longitude and latitude
墨脱群体 MT population	墨脱县背崩乡 Beibeng town, Motuo county	雅鲁藏布江 Yarlung Zangbo River	42	2024.01-2024.05	95°05′27″E 29°12′16″N
帕隆群体 PL population	波密县易贡乡 Yigong town, Bomi county	帕隆藏布江 Palong River	52	2024.01-2024.05	95°04′90″E 30°06′60″N
察隅群体 CY population	察隅县竹瓦根镇 Zhuwagen town, Chayu county	察隅河江 Chayu River	46	2024.01-2024.05	97°02′49″E 28°27′20″N

1.2 数据测定

对采集的新鲜样本进行形态学指标测定,测 定指标如下:吻须长(X1)、颌须长(X2)、眼后头长 (X3)、吻长(X4)、头高(X5)、头厚(X6)、眼径(X7)、 眼间距(X8)、鼻孔间距(X9)、口裂长(X10)、口裂 宽(X11)、上唇厚(X12)、下唇厚(X13)、体高(X14)、 体厚(X15)、尾柄长(X16)、尾柄高(X17)、尾柄厚 (X18)、背吻距(X19)、背尾距(X20)、背鳍硬刺长 (X21)、背鳍基长(X22)、胸鳍长(X23)、胸鳍基长 (X24)、腹鳍长(X25)、腹鳍基长(X26)、臀鳍长 (X27)、臀鳍基长(X28)、尾鳍长(X29)、尾鳍基长 (X30)、胸鳍起点至腹鳍起点距(X31)、腹鳍起点 至臀鳍起点距(X32)及头长和体长,共计 34 个参 数,使用数显游标卡尺精确至 0.01 mm。 框架数据: 12 个解剖学同源坐标点参照刘鸿 等^[23],由 K₁₋₂(Y1)、K₁₋₃(Y2)、K₁₋₁₁(Y3)、K₁₋₁₂ (Y4)、K₂₋₃(Y5)、K₂₋₃(Y6)、K₂₋₇(Y7)、K₂₋₈(Y8)、 K₂₋₉(Y9)、K₂₋₁₀(Y10)、K₂₋₁₁(Y11)、K₂₋₁₂(Y12)、 K₃₋₄(Y13)、K₃₋₅(Y14)、K₃₋₆(Y15)、K₃₋₇(Y16)、 K₃₋₈(Y17)、K₃₋₉(Y18)、K₃₋₁₀(Y19)、K₃₋₁₁(Y20)、 K₄₋₅(Y21)、K₄₋₆(Y22)、K₄₋₇(Y23)、K₅₋₆(Y24)、 K₆₋₇(Y25)、K₇₋₈(Y26)、K₈₋₉(Y27)、K₉₋₁₀(Y28)、 K₁₀₋₁₁(Y29)及K₁₀₋₁₂(Y30)共30个参数组成的框架 系统(图 1),采用 Photoshop 软件测量框架数据(精 确到 0.01 mm)。

1.3 数据分析

为消除鱼体大小对研究性状的影响,将头部 性状参数除以头长,其余参数除以体长予以标准

图 1 弧唇裂腹鱼框架结构示意图 1: 吻端; 2: 背鳍基部起点; 3: 背鳍基部末端; 4: 尾鳍背部起 点; 5: 侧线末端; 6: 尾鳍腹部末端; 7: 臀鳍末端; 8: 臀鳍起点; 9: 腹鳍末端; 10: 腹鳍起点; 11: 胸鳍起点; 12: 口裂下缘. Fig. 1 Truss network for distance measurement of *Schizothorax curvilabiatus* 1: tip of snout; 2: origin of dorsal fin base; 3: terminus of dorsal fin base; 4: dorsal origin of caudal fin; 5: end of lateral line; 6: ventral origin of caudal fin; 7: end of anal fin; 8: origin of anal fin; 9: end of pelvic fin; 10: origin of pelvic fin; 11: origin of pectoral fin; 12: lower edge of mouth.

化处理^[24-27]。使用 SPSS 22.0 软件对 3 个群体的 形态比例性状进行单因素方差分析。对各个参数 进行方差齐性检验,当参数符合方差齐性时,采 用两两比对分析(LSD法),反之,采用 Tamhane's T2 法多重比较分析。3 个群体间亚种 区分方法按照形态差异系数(coefficient of difference, CD)是否大于 1.28 进行划分^[28]。采用 SPSS 22.0 软件对 3 个群体的 62 个参数进行主 成分分析(PCA),获取各主成分的载荷值和贡 献率^[29],并根据贡献率最大的主成分 1 和主成分 2 得分绘制变量参数主成分双标图。3 个群体间形 态差异采用逐步判别法(DFA),利用参与分析的 参数构建不同群体的函数,并验证准确率^[30]。利 用 SPSS 22.0 对参数指标平均值进行聚类分析, 聚类方法为组间联接,使用欧式距离系数构建 聚类树^[31]。

2 结果与分析

本研究共采集到原始数据 260 组,其中形态 数据 140 组,框架数据 120 组,剔除异常数据(茎 叶图法)后,获得形态数据 131 组,框架数据 110 组 (表 2)。传统形态学体长范围为:墨脱群体(160.20~ 286.40 mm)、帕隆群体(165.60~482.10 mm)、察隅 群体(142.62~459.00 mm);框架形态学体长范围 如下:墨脱群体(171.60~303.80 mm)、帕隆群体 (202.70~458.88 mm)、察隅群体(141.75~459.00 mm)。

表 2 弧唇裂腹鱼 3 个群体样本信息 Tab. 2 Sample information of three populations of *Schizothorax curvilabiatus*

NA 114	形态数	女据 morphometric data	框架数据 box-truss data				
关利 category	样本量/ind sample size	体长范围(均值)/mm body length range (mean)	样本量/ind sample size	体长范围(均值)/mm body length range (mean)			
墨脱群体 MT population	36	160.20-286.40 (232.81)	32	171.60-303.80 (242.69)			
帕隆群体 PL population	51	165.60-482.10 (362.43)	35	202.70-458.88 (351.07)			
察隅群体 CY population	44	142.62-459.00 (316.77)	43	141.75–459.00 (319.25)			
合计 total	131		110				

2.1 单因素方差分析

各个参数中不具备方差齐性的为 X4、X7、 X14、X19、X22、X26、X28~X30、X32 共计 10 个变量,采用 Tamhane's T2 法进行多重比较分析, 其余变量采用 LSD 法进行分析。

单因素方差分析表明弧唇裂腹鱼 3 个群体的 32组形态参数中有 25 组差异显著(P<0.05), 7 组差 异不显著(P>0.05)。其中,X1、X2、X3、X17、 X21、X28 在 3 个群体中差异显著,分别为鱼体的 须长、眼后头长、尾柄厚、背鳍硬刺长以及臀鳍 长;墨脱与其余 2 个群体间有 6 个参数存在显著 差异,分别为 X7、X15、X23、X25、X27、X29,还 有 5 个参数(X5、X10、X13、X14、X22)在帕隆 与另外 2 个群体间差异显著;察隅与其余 2 个群 体间差异体现为 X6、X9、X19、X20、X24 参数; 其余参数最多在 2 个群体间存在显著性差异 (P<0.05)(表 3)。此外, 32 个形态参数在各个群体 间差异系数(CD)均小于 1.28 (表 3),表明弧唇裂 腹鱼 3 个群体的形态差异未达到亚种分化水平。

30个框架参数中Y4、Y5、Y9、Y10、Y13、 Y16~Y18、Y21~Y30 共 18 个参数未通过方差齐 性检验,这些参数采用Tamhane's T2 法进行多重

表 3	弧唇裂腹鱼形态参数单因素方差分析差异系数
Tab. 3	The coefficient of difference (CD) of morphometric
	parameters of Schizothorax curvilabiatus by
	one-way analysis of variance

	墨脱群体/	墨脱群体/	帕隆群体/		
形态参数	帕隆群体	察隅群体	察隅群体		
morpho-	MT	MT	PL	F	Р
parameter	population/	population/	population/		
P	population	population	population		
X1	0.8616 ^b	1.2653ª	0.3913 ^c	70.102	0.000
X2	0.5523 ^b	1.1397ª	0.5055°	43.992	0.000
X3	0.741 ^a	0.6166 ^b	0.2321°	17.241	0.000
X4	0.0257ª	0.2311ª	0.1987ª	2.689	0.072
X5	0.3471 ^a	0.0166 ^b	0.3085 ^a	5.387	0.006
X6	0.0558 ^b	0.3694ª	0.3401ª	8.132	0.000
X7	0.8777 ^b	1.2198 ^a	0.1696°	57.514	0.000
X8	0.2677^{a}	0.0748 ^b	0.2551 ^a	3.539	0.032
X9	0.1227 ^b	0.5671ª	0.4953ª	18.110	0.000
X10	0.3317^{a}	0.2726 ^b	0.5126 ^a	13.424	0.000
X11	0.1752 ^a	0.1492 ^a	0.0817^{a}	1.058	0.350
X12	0.1351 ^a	0.0868 ^a	0.1932 ^a	1.942	0.148
X13	0.3685^{a}	0.1359 ^b	0.1579 ^b	3.959	0.021
X14	0.7369ª	0.2543 ^b	0.4057^{b}	19.328	0.000
X15	0.2765ª	0.2205ª	0.0150^{a}	2.427	0.092
X16	0.2830^{a}	0.0060^{a}	0.1873^{a}	2.568	0.081
X17	0.2337°	0.4817^{a}	0.3101^{b}	10.363	0.000
X18	0.0704^{a}	0.1551^{a}	0.2268^{a}	2.364	0.098
X19	0.0151 ^b	0.5112ª	0.5264^{a}	16.268	0.000
X20	0.0796 ^b	0.6259ª	0.5352 ^a	21.086	0.000
X21	1.1494 ^b	1.2468 ^a	0.0864 ^c	63.905	0.000
X22	0.3294ª	0.0449 ^b	0.3859ª	7.784	0.001
X23	0.4801^{a}	0.4623 ^a	0.0559 ^b	9.600	0.000
X24	0.2977 ^b	0.5158ª	0.3606 ^b	11.289	0.000
X25	0.5384^{a}	0.5037^{a}	0.1622^{b}	11.421	0.000
X26	0.2880^{a}	0.1015 ^b	0.1645 ^b	3.236	0.043
X27	0.4575 ^a	0.4426 ^a	0.1686 ^b	7.847	0.001
X28	0.2745 ^c	0.8033^{a}	0.4428^{b}	21.672	0.000
X29	0.7747ª	0.7775 ^a	0.0605 ^b	25.651	0.000
X30	0.3233ª	0.0530 ^a	0.1231ª	0.692	0.502
X31	0.0838^{a}	0.0299 ^a	0.0546 ^a	0.310	0.734
X32	0.1769 ^a	0.0580^{a}	0.1485 ^a	1.746	0.179

注: 同行标有不同字母表示具有显著性差异(P<0.05).

Note: Different letters in the same row indicate significant differences (P < 0.05).

比较分析,剩余参数采用 LSD 法进行分析。

分析发现弧唇裂腹鱼 3 个群体框架参数除 Y21、Y26、Y27、Y29外, 其余 26 组参数均差异 显著(P<0.05)。其中,Y4、Y9、Y10、Y25在3个 群体中差异显著, 主要反映鱼体的唇部、体高与 尾柄部位; Y1、Y2、Y5、Y11、Y12、Y18~Y20、 Y28 共 9 个参数在墨脱与其余 2 个群体间差异显 著,主要发生在鱼体的前驱干部分和背鳍基部, 集中在 A、B、C 这 3 个解剖同源点; 8 个参数 (Y6~Y8、Y13~Y17)在察隅与其余 2 个群体间具有 显著差异,主要为鱼体的后躯干部分;Y3 与Y30 在帕隆与其余 2 个群体存在显著差异, 而 Y22~ Y24参数则仅在墨脱与帕隆群体间存在显著差异, 表现为尾柄部分存在差异。3 个群体彼此之间框 架数据差异系数(CD)均小于 1.28 (表 4),表明 3 个群体间框架数据形态存在形态差异,但未达到 亚种水平。

3个群体形态相似度统计结果见表 5, 传统形态学数据分析发现, 帕隆和察隅群体相似度最高, 为46.88%, 墨脱与帕隆群体为43.75%, 墨脱与察 隅群体为40.63%; 框架形态学分析结果为, 帕隆和察隅群体相似度最高, 为53.33%, 墨脱和帕隆 群体为40.00%, 墨脱和察隅群体为30.00%。

2.2 主成分分析

本研究中弧唇裂腹鱼 3 个群体 2 种数据体系 均通过 Kaiser-Meyer-Olkin (KMO)和 Bartlett 检验, 其中 KMO 度量值符合条件(接近 1), Bartlett 球形 度极显著(P<0.01),可进行主成分分析(表 6)。随 后对 32 项形态参数和 30 项框架参数进行相关性 分析,筛选相关系数大于 0.8 的参数,消除参数间 多重相关性对分析结果的影响。形态参数中仅 X1 和 X2 相关系数大于 0.8,保留 X1 参与后续分析; 框架参数中,共有 Y1、Y2、Y6-Y20 共计 17 个参 数相关系数大于 0.8,保留 Y1、Y6、Y8、Y10、 Y12、Y14、Y16、Y18、Y20 参与后续分析。

对形态数据进行主成分分析,筛选特征值大于1的主成分,共得到9个主成分,累积贡献率为71.04%;筛选特征值大于2的主成分,得到4个主成分,累积贡献率为48.36%,其中主成分1贡献率为19.26%,主成分2贡献率为13.90%,主成

%

表 4 弧唇裂腹鱼框架参数单因素方差分析差异系数

 Tab. 4
 The coefficient of difference (CD) of box-truss parameters of Schizothorax curvilabiatus

by one-way	analysis of	f variance
------------	-------------	------------

	墨脱群体/	墨脱群体/	帕隆群体/		
框架参数	帕隆群体	察隅群体	察隅群体		
box-truss	MT	MT	PL	F	P
parameter	PL	population/ CY	population/ CY		
	population	population	population		
Y1	0.5955ª	0.8459 ^a	0.0969 ^b	15.454	0.000
Y2	0.6440^{a}	0.7762 ^a	0.1866 ^b	15.323	0.000
Y3	0.6348^{a}	0.0504^{b}	0.3649 ^a	7.704	0.001
Y4	0.5548^{a}	0.3123 ^b	0.0950°	6.62	0.002
Y5	0.6318^{a}	0.6019 ^b	0.1651 ^b	17.528	0.000
Y6	0.2115^{b}	0.6901ª	0.6181^{a}	18.083	0.000
Y7	0.2057 ^b	0.4079 ^a	0.5576^{a}	11.701	0.000
Y8	0.1826 ^b	0.4102 ^a	0.5259ª	10.367	0.000
Y9	0.7395 ^a	0.2675°	0.3816 ^b	14.567	0.000
Y10	1.0326 ^a	0.6745 ^b	0.5126 ^b	42.384	0.000
Y11	0.6925ª	0.7730^{a}	0.0173^{b}	18.133	0.000
Y12	0.6724^{a}	0.6947ª	0.1364 ^b	17.188	0.000
Y13	0.0924^{b}	0.7717^{a}	0.5467^{a}	20.127	0.000
Y14	0.0947°	0.8223ª	0.4888^{b}	17.604	0.000
Y15	0.1495°	0.7778^{a}	0.4654^{b}	18.138	0.000
Y16	0.1748 ^c	0.5685ª	0.3436 ^b	10.877	0.000
Y17	0.0276^{b}	0.2895ª	0.3190^{a}	4.821	0.010
Y18	0.6837^{a}	0.6369ª	0.0715^{b}	17.670	0.000
Y19	0.9024ª	0.8533ª	0.1458^{b}	31.040	0.000
Y20	0.5552^{a}	0.6751ª	0.0230^{b}	11.946	0.000
Y21	0.2283^{a}	0.2076 ^a	0.0226^{a}	1.961	0.146
Y22	0.3469ª	0.2481ª	0.0499^{b}	3.231	0.043
Y23	0.4623ª	0.2623ª	0.0973^{b}	3.859	0.024
Y24	0.3290^{a}	0.0043 ^b	0.1365 ^a	0.860	0.426
Y25	0.3196 ^b	0.2281 ^c	0.4543ª	9.112	0.000
Y26	0.1118 ^b	0.1988 ^b	0.2682^{a}	3.099	0.049
Y27	0.0954^{a}	0.0140^{a}	0.0652ª	0.252	0.778
Y28	0.6494 ^a	0.3628^{b}	0.1927 ^b	10.861	0.000
Y29	0.1694 ^a	0.0740^{a}	0.1780^{a}	1.414	0.248
Y30	0.4259ª	0.0322^{b}	0.3034^{a}	5.514	0.005

注: 行间标有不同字母表示具有显著性差异(P<0.05).

Note: Different letters indicate significant differences (P<0.05).

分 3 贡献率为 8.51%, 主成分 4 贡献率为 6.68%。 前 4 个主成分中, 载荷值较大的指标为: 吻须长、 眼后头长、吻长, 主要反映弧唇裂腹鱼头部的形 态学特征。而 X1、X3、X4、X7、X9、X21、X28 为主成分 1 的主要贡献参数, 主要反映鱼类头部、 背鳍硬刺以及臀鳍部位; 主成分 2 与 X14、X15、 X16、X17、X18 和 X30 高度相关, 贡献最大形态 参数为尾柄高, 其次为体宽和尾柄长。基于主成

表 5 弧唇裂腹鱼 3 个群体形态相似度 Tab. 5 Morphological similarity of three populations of *Schizothorax curvilabiatus*

群体形态相似度 population morphological similarity	墨脱群体 MT population	帕隆群体 PL population	察隅群体 CY population
墨脱群体 MT population		40.00	30.00
帕隆群体 PL population	43.75		53.33
察隅群体 CY population	40.63	46.88	

注: 对角线左下角为形态数据, 右上角为框架数据.

Note: The lower left corner of the diagonal is the morphology data, the upper right corner is box-truss data.

表 6 弧唇裂腹鱼形态和框架参数的 KMO 和 Bartlett 检验 Tab. 6 The KMO and Bartlett test of morphology and

box-truss parameters of Schizothorax curvilabiatus

类别 category	形态参数 morphometric parameter	框架参数 box-truss parameter
Kaiser-Meyer-Olkin 度量 Kaiser-Meyer-Olkin measurement	0.706	0.766
Bartlett 球形度检测显著性 Bartlett sphericity detection significance	0.000	0.000

分散点图表明, 主成分 1 和 2 的坐标轴上 3 个群体均有一定程度重叠(图 2a)。

对框架数据进行主成分分析,筛选特征值大 于 1 的主成分,前 5 个主成分累积贡献率为 74.23%,其中主成分 1 贡献率为 29.22%,主成分 2 为 17.90%,前 2 个主成分即可覆盖 3 个群体 47.12%的个体差异。22 项框架参数中 Y1、Y5、 Y6、Y10、Y11、Y21、Y22、Y23、Y30 对主成 分 1 贡献相对较大,对应鱼体头部至背鳍、中轴 及尾柄部差异;主成分 2 主要为 Y3、Y4、Y13、 Y16、Y27、Y28 框架参数差异显著,反映了鱼体 头部至胸鳍、尾柄以及腹鳍至臀鳍部性状差异。 基于框架数据构建的散点图结果与形态散点图结 果类似,主成分 1 和 2 的坐标轴上 3 个群体均有 一定程度重叠(图 2b)。

2.3 逐步判别分析

对形态参数进行特征值和 Wilks' λ 检验,结果 表明,构建的前 2 个判别函数可包含 3 个群体间的 形态差异;此外判别函数 1 和判别函数 2 经 Wilks' λ 检验显著成立(P<0.01),具有统计学意义(表 7)。

在贡献率分析中(不包含未参与分析变量),

表 7 弧唇裂腹鱼形态参数判别函数特征值和 Wilks'λ 检验结果

Tab. 7 The results of discriminant functions eigenvalues and Wilks' λ tests of morphometric parameters of *Schizothorax curvilabiatus*

特征值 eigenvalue				Wilks' λ				
函数 function	特征值 eigenvalue	方差/% variance	累积/% cumulative	函数检验(s) test of function	Wilks' λ	卡方 Chi-square	df	Р
判别函数1DF1	5.025	80.5	80.5	判别函数 1-2 DF1-DF2	0.075	314.765	28	0.000
判别函数 2 DF2	1.214	19.5	100	判别函数 2 DF2	0.452	96.564	13	0.000

X1、X7 和 X21 对判别函数 1 (DF1)具有较高的贡 献率,主要表现为鱼体的吻须长、眼径和背鳍硬 刺长度;在判别函数 2 (DF2)中 X10、X14 和 X20 贡献率突出,反应鱼体的后驱干部分特征(表 8); 判别函数 1 与判别函数 2 可解释 100%的样本差异, 故以判别函数 1 为 x 轴,判别函数 2 为 y 轴绘制 散点图,结果表明除帕隆和察隅群体间有个别重 叠外,墨脱群体与前两者相对独立(图 3)。

利用 14 个贡献较大的形态变量建立判别方程 对 3 个群体的形态差异进行判定,判别公式如下:

 $F_{1(MT \text{ population})} = 11.243A_1 + 91.335A_2 +$

 $120.723A_3+94.869A_4+643.705A_5+3.080A_6-25.625A_7+723.842A_8+586.091A_9+143.031A_{10}+881.677A_{11}+353.403A_{12}+2163.578A_{13}+230.461A_{14}-567.229$

- $F_{1(\text{PL population})} = -37.903A_1 + 139.531A_2 +$ $75.839A_3 + 110.001A_4 + 517.703A_5 -$ $11.359A_6 + 8.122A_7 + 685.481A_8 + 432.030A_9 +$ $216.861A_{10} + 871.7491A_{11} + 261.347A_{12} +$ $2198.242A_{13} + 278.078A_{14} - 517.753$
- $F_{1(CY \text{ population})} = -68.198A_1 + 143.393A_2 +$ $34.804A_3 + 133.957A_4 + 536.748A_5 + 6.440A_6 +$ $10.460A_7 + 799.545A_8 + 303.520A_9 +$ $372.426A_{10} + 940.134A_{11} + 228.976A_{12} +$ $2443.268A_{13} + 237.593A_{14} - 568.377$

式中, *A*₁~*A*₁₄ 分别代表变量 X1、X3、X4、X5、 X7、X10、X11、X14、X15、X17、X20、X21、 X28、X32。需判定不同群体,即可将以上 14 个参 数分别带入判别公式, *F* 值最大者即为判定群体。

形态数据初始分组正确率为 94.70%, 墨脱群 体判别成功率最高, 无误判; 帕隆群体准确率为 92.20%; 而察隅群体成功率为 93.20%; 交叉验证 成功率为 87.00%, 墨脱群体只与帕隆群体互相 存在误判, 而帕隆和察隅群体均存在误判现象 (表 9)。

表 8	弧儿	唇裂胞	复鱼形	态参数	对判别	別函数的	贡献率
Tab	. 8	The	contril	bution	rate to	o discrimi	nant

functions of morphometric parameters of

Schizolno	rax curvitadiatus	
形态参数	判别函数1	判别函数 2
morphometric parameter	DF1	DF2
X1	0.467^{*}	0.023
X3	-0.230^{*}	0.061
X4	-0.067	0.126^{*}
X5	0.024	0.259^{*}
X6 ^b	-0.109	0.295^{*}
X7	0.419*	0.114
X8 ^b	0.011	0.232^{*}
X9 ^b	-0.052	0.248^{*}
X10	-0.026	0.412*
X11	-0.037	-0.090^{*}
X12 ^b	-0.105	0.220^{*}
X13 ^b	-0.137^{*}	0.060
X14	0.146	0.401^{*}
X15	0.082^*	0.060
X16 ^b	-0.120	0.241^{*}
X17	-0.159	0.171^{*}
X18 ^b	0.025	0.269^{*}
X19 ^b	0.108	-0.213^{*}
X20	-0.187	0.357^{*}
X21	0.437^{*}	0.181
X22 ^b	0.009	0.040^{*}
X23 ^b	0.280^{*}	0.083
X24 ^b	-0.108^{*}	0.061
X25 ^b	0.167	0.221*
X26 ^b	0.005	0.082^*
X27 ^b	0.119	0.155*
X28	-0.234^{*}	0.228
X29 ^b	0.314*	0.162
X30 ^b	-0.079	0.193*
X31 ^b	0.140^{*}	0.053
X32	-0.032	-0.135*

注:*表示每个参数与判别式函数的绝对相关性;b表示该参数不参与判别分析。

Note: * represents the absolute correlation of each parameter to the discriminant functions; b indicates that the parameter does not participate in discriminant.

22项框架数据特征值和Wilk²λ分析结果表明, 构建的前 2 个判别函数可解释 3 个群体间框架差 异;此外,构建的 2 个判别函数显著成立(*P*<0.05), 均具统计学意义(表 10)。

对框架参数进行判别分析,结果表明判别函数1中贡献率较高的为Y5、Y10和Y18参数,主要为鱼体背鳍与躯干部位;判别函数2中贡献率较高为Y8、Y25、Y27参数,反映躯干和尾柄的部分距离(表11)。以判别函数1和判别函数2绘散点图,结果表明,弧唇裂腹鱼3个不同地理群体的框架分析结果相对独立,其中帕隆群体与察隅群体相对较近(图4)。

利用 6 个贡献较大的框架变量建立判别方程 对 3 个群体的框架差异进行判定,判别公式如下:

$$\begin{split} F_{2(\text{MT population})} &= 454.832B_1 + 339.124B_2 + \\ & 772.235B_3 - 442.945B_4 + 126.896B_5 + \\ & 439.447B_6 - 182.033 \\ F_{2(\text{PL population})} &= 256.878B_1 + 549.692B_2 + \end{split}$$

 $377.613B_3 - 222.516B_4 + 127.495B_5 +$ $306.343B_6 - 156.482$ $-204.040B_4 + 615.627B_4 +$

$$F_{2(CY \text{ population})} = 204.940B_1 + 615.637B_2 + 544.928B_3 - 410.193B_4 + 208.951B_5 + 294.759B_6 - 177.786$$

式中, B1~B6分别代表参数 Y5、Y8、Y10、Y18、

Y25、Y27。需判定不同群体,即可将以上6个参数分别带入判别公式,F值最大者即为判定群体。

框架数据初始分组正确率为 86.40%, 其中墨

197

	•	•			
			预测组 forecast grou)	A 11
	判定组 judgment group	墨脱群体 MT population	帕隆群体 PL population	察隅群体 CY population	合计 total
初始分组/%(计数)	墨脱群体 MT population	100.00 (36)	0 (0)	0 (0)	100 (36)
initial grouping (count)	帕隆群体 PL population	0 (0)	92.20 (47)	7.80 (4)	100 (51)
	察隅群体 CY population	0 (0)	6.80 (3)	93.20 (41)	100 (44)
交叉验证/%(计数)	墨脱群体 MT population	91.70 (33)	8.30 (3)	0	100 (36)
cross-validation (count)	帕隆群体 PL population	3.90 (2)	86.30 (44)	9.80 (5)	100 (51)
	察隅群体 CY population	2.30(1)	13.60 (6)	84.10 (37)	100 (44)

表 9 弧唇裂腹鱼 3 个群体形态参数判别分析结果 Tab. 9 The DFA result of morphometric parameters of three populations of *Schizothorax curvilabiatus*

	parameters of Schizothorax curvilabiatus								
Tab. 10	The res	sults of discriminant functions eigenvalues and Wilks' λ tests of box-truss							
	表 10	弧唇裂腹鱼框架参数判别函数特征值和 Wilks'λ 检验结果							

特征值 Eigenvalues				Wilks' λ					
函数 function	特征值 eigenvalues	方差/% variance	累积/% cumulative	函数检验(s) test of function	Wilks' λ	Wilks'λ 卡方 Chi-square		Р	
判别函数1DF1	2.302	72.3	72.3	判别函数 1-2 DF1-DF2	0.161	190.972	12	0.000	
判别函数 2 DF2	0.883	27.7	100	判别函数 2 DF2	0.531	66.155	5	0.000	

表 11 弧唇裂腹鱼框架参数对判别函数的贡献率

Tab. 11The contribution rate to discriminantfunctions of box-truss parameters ofSchizothorax curvilabiatus

框架参数	判别函数1	判别函数 2
box-truss parameter	DF1	DF2
Y1 ^b	0.397^{*}	0.250
Y3 ^b	0.214	0.244*
Y4 ^b	0.171	0.190*
Y5	0.368^{*}	0.134
Y6 ^b	-0.011	0.483*
Y8	-0.038	0.464^{*}
Y10	0.527^{*}	0.417
Y12 ^b	0.352^{*}	0.281
Y14 ^b	-0.148	0.477^{*}
Y16 ^b	-0.168	0.357^{*}
Y18	0.377^{*}	0.054
Y20 ^b	0.316*	0.114
Y21 ^b	0.030	0.152*
Y22 ^b	0.068^{*}	0.006
Y23 ^b	0.087	0.313*
Y24 ^b	0.144*	-0.063
Y25	0.010	0.439*
Y26 ^b	0.053*	0.009
Y27	-0.027	-0.058^{*}
Y28 ^b	0.142	0.154*
Y29 ^b	0.092^{*}	0.069
Y30 ^b	0.184^{*}	0.102

图 4 弧唇裂腹鱼 3 个群体判别分类散点图(框架参数) Fig. 4 Discriminant analysis results of three populations of *Schizothorax curvilabiatus* (box-truss parameters)

脱群体准确率最高为 90.60%, 察隅群体次之, 帕 隆群体最低, 分别为 88.40%和 80.00%; 交叉验证 结果正确率为 83.60%, 趋势与初始分组相同。此 外, 墨脱群体和帕隆群体与其他群体均存在个别 误判现象(表 12)。

2.4 聚类分析

对弧唇裂腹鱼 3 个群体间形态和框架度量特 征值的平均值进行系统聚类分析,结果均表明墨 脱群体单独聚为 1 支,帕隆群体与察隅群体聚为 1 支(图 5a, 5b)。

		判定组 — judgment group			预测组 forecast group							
	ju				墨脱群体 MT population		帕隆群体 PL population		察隅群体 CY population		total	
初始分组/% (计数)	墨脱群	墨脱群体 MT population		90.60 (29)		3.10(1)		6.30 (2)			100 (32)	
initial grouping (count	帕隆郡	帕隆群体 PL population		2.90 (1)		80.00 (28)		17.10 (6)		100 (35)		
	察隅群	察隅群体 CY population		4.60 (2)		7.00 (3)		88.40 (38)		100 (43)		
交叉验证/%(计数)	墨脱群	墨脱群体 MT population		87.50 (28)		3.10(1)		9.40 (3)		100 (32)		
cross-validation (count) 帕隆郡	帕隆群体 PL population		2.90 (1)		77.10 (27)		20.00 (7)		100 (35)		
	察隅群	察隅群体 CY population		7.00 (3)		7.00 (3)		86.00 (37)		100 (43)		
0	5	10			墨脱群体 MT population 帕隆群体 PL population 察隅群体 CY populatio	0 b	2	4	6	8		
]	距离 distance						距离d	listance			

表 12 弧唇裂腹鱼 3 个群体框架参数判别分析结果 Tab. 12 The DFA result of box-truss parameters of three populations of *Schizothorax curvilabiatus*

> 图 5 基于欧式距离的弧唇裂腹鱼 3 个群体聚类分析图 a. 形态参数; b. 框架参数.

Fig. 5 Cluster analysis of three populations of *Schizothorax curvilabiatus* based on the Euclidean distance a. Morphometric parameters; b. Box-truss parameters.

3 讨论

3.1 弧唇裂腹鱼3个群体的形态差异

鱼类的形态性状作为分类的重要依据,是基 因和环境共同作用的结果,在自然选择的长期作 用下,不同水系的地理种群发生了适应性变异。 通过研究鱼类群体间形态特征上的异同程度,有 助于了解鱼类群体间的亲缘关系与分类系统,进 而探讨鱼类的起源、进化过程和趋向。

本研究采用传统形态学与框架形态学两种方 法比较弧唇裂腹鱼 3 个群体的形态差异。结果表 明,墨脱与帕隆、察隅群体形态差异较大,而帕隆 与察隅群体形态差异较小。从整体上看,3 个弧唇 裂腹鱼群体间的形态差异覆盖弧唇裂腹鱼全身多 个部位,包括头部、中轴部、尾柄部以及臀鳍和 尾鳍等;单因素方差分析结果表明,吻须长、颌须 长、眼径、背鳍硬刺长以及尾柄长和厚在各群体 间均存在极显著差异(P<0.01),同时在主成分分 析结果中对群体间形态差异的贡献率最高,因此 这6个参数可作为区分3个地理群体的主要依据。 由判别分析结果可知,3个弧唇裂腹鱼群体形态 和框架数据的判别准确率为94.70%和86.40%, 能够较准确地判别弧唇裂腹鱼3个群体的类群归 属;典型判别函数散点图呈现了明显的分类趋 势。聚类树形图显示帕隆和察隅群体聚为一支, 而墨脱群体单独呈一个分支,帕隆和察隅群体的 分类地位较近,亲缘关系也相对较近。

依据 75%亚种识别和鉴定的标准^[28], 同一物 种的不同分布种群间存在形态特征差异, 群体间 形态特征差异系数值应大于 1.28, 即表明可区分 开第一群体 75%的个体与第二群体 97%的个体, 则两个群体分属于不同的亚种; 反之, 则属于不 同地理种群间差异。本研究中统计 62 项形态参数 差异系数结果显示, 3 个群体间的形态差异系数值 均小于 1.28, 未达到亚种水平, 仍为种群间差异。

综上所述,3个弧唇裂腹鱼地理群体在外部形

态上存在差异,并未达到亚种分化程度。这一结 果与本课题组前期研究结果相一致(数据未发表), 弧唇裂腹鱼 3 个地理群体间存在一定程度的遗传 分化,仍属于一个物种。

3.2 弧唇裂腹鱼形态对生境的适应

鱼类在种群间^[22,32]和种群内部^[33-35]均可能存 在形态差异,不同生境产生各自独特的生态压力, 在塑造鱼体形态方面具有重要作用。如:蒋朝明^[36] 发现嘉陵江上、中、下游不同栖息生境塑造了蛇 鮈(*Saurogobio dabryi*)头部、躯干部和尾部差异特 征。王贺崐元等^[37]发现 5 个地理群体高原裸裂尻 (*Schizopygopsis stoliczkai*)的头部轮廓特征发生适 应性分化,可能是由栖息环境和食物差异所造成。

本研究选取的 3 个采样点具有较好的代表 性。在水文特征上,墨脱群体栖息于雅江干流,平 均海拔 500~800 m,河床落差大,水流湍急,流速 可达 2~3.5 m/s,全年水温 10~20 ℃^[38];帕隆群体 栖息于帕隆藏布内,平均海拔 2000~2300 m,水流 较为湍急,流速为 1~1.5 m/s,全年水温 1~14 ℃; 察隅群体生活于察隅河内,平均海拔 1500~1800 m, 水体流速为 1.2~1.8 m/s,河段内阶梯数量众多且落 差较大,呈现小阶梯式排布,全年水温 1~16 ℃^[39-40]; 综上,帕隆群体与察隅群体生境较为相似,均与 墨脱群体生境存在显著差异。

研究结果表明弧唇裂腹鱼在墨脱、帕隆和察 隅 3 个群体间存在形态上的分化,其中墨脱群体 具有更长的口角须、口裂、眼径、背鳍硬刺、尾 柄、胸鳍、腹鳍以及更厚的下颌角质层,而察隅 群体的眼后头长更长,尾柄更厚,更高。其中鱼类 的胸鳍、腹鳍主要发挥控制运动、转向和维持身 体平衡的作用^[41]。较小的头部可以减少鱼体与水 体的接触面积,降低游泳过程中的阻力,加快游 泳速度,尾柄越长则可提供足够的动力,具有很 强的加速能力,可在激流中维持正常游动^[42];较 长的口角须和较厚的下颌角质层能够辅助摄食和 刮食着生藻类^[43]。本研究样本采集地之一的墨脱 干流海拔落差大,流速快,着生藻类难以附着, 饵料丰度较低^[11],具有较高的环境和生存压力, 因此相较于帕隆和察隅群体,墨脱群体需要更强

的游动、平衡以及搜寻饵料的能力以适应雅江干 流的复杂水文情况,进而逐渐演化出瘦削的头 部、较长的尾柄、发达的胸鳍和腹鳍以及更长的 口角须和更厚的下颌角质层; 帕隆群体因长期处 于流速相对较缓、饵料丰度较高的栖息生境内, 其维持身体平衡和游动以及搜寻饵料的需求更小, 相应环境压力较小,因此具有相对较长的头部、 较短的尾柄和口角须以及较薄的下颌角质层;而 察隅群体同样没有演化出适应急流的头部特征, 但由于察隅河河道内存在众多阶梯, 察隅群体在 摄食和产卵的过程中需不断翻越,因此演化出厚 而粗壮的尾柄。综上, 弧唇裂腹鱼墨脱群体作为 雅江干流群体,与支流群体存在较大形态差异, 且差异主要集中在与游泳和摄食相关的性状上。 本研究推断, 弧唇裂腹鱼不同地理群体间的形态 差异是各群体对不同生境长期适应的结果。

4 结论

本研究通过对雅鲁藏布江下游弧唇裂腹鱼群体形态学的初步探究,发现雅江干流墨脱群体与支流帕隆、察隅群体的形态差异较大,而帕隆与察隅群体间形态差异较小,并认为差异是各群体对不同生境长期适应的结果,本文可为其他裂腹 鱼类的形态差异研究提供参考。

参考文献:

- Wu Y F, Wu C Z. The fishes of the Qinghai-Xizang Plateau[M]. Chengdu: Sichuan Science& Technology Press, 1992: 58. [武云飞, 吴翠珍. 青藏高原鱼类[M]. 成都: 四 川科学技术出版社, 1992: 58.]
- [2] Wu Y F. A preliminary analysis of fish fauna of Namjagbarwa region in Xizang, China[J]. Acta Biologica Plateau Sinica, 1985(4): 61-70. [武云飞. 南迦巴瓦峰地区 鱼类区系的初步分析[J]. 高原生物学集刊, 1985(4): 61-70.]
- [3] Liu F, Li M Z, Wang J, et al. Species composition and longitudinal patterns of fish assemblages in the middle and lower Yarlung Zangbo River, Tibetan Plateau, China[J]. Ecological Indicators, 2021, 125: 107542.
- [4] Wang J. Fish community structure in lower reach Yarlung Zangbo River and the biological trials of *Schizothorax curvilabiatus*[D]. Beijing: University of Chinese Academy of Sciences, 2018. [王健. 雅鲁藏布江下游鱼类群落结构及弧

唇裂腹鱼生物学特征[D]. 北京: 中国科学院大学, 2018.]

- [5] Zhang C, Wang W L, Zhou J S. Primary color map and mitochondrial genome of fish in Yarlung Zangbo River Basin[M]. Beijing: China Agriculture Press, 2023: 43. [张弛, 王万良,周建设. 雅鲁藏布江流域鱼类原色图鉴及其线粒 体基因组研究[M]. 北京:中国农业出版社, 2023: 43.]
- [6] Wang J, Zhang F B, Hu H M, et al. Characteristics of age and growth of *Schizothorax curvilabiatus* in the lower reaches of the Yarlung Zangbo River[J]. Acta Hydrobiologica Sinica, 2022, 46(12): 1770-1779. [王健, 张富斌, 胡 华明, 等. 雅鲁藏布江下游弧唇裂腹鱼的年龄结构与生长 特性[J]. 水生生物学报, 2022, 46(12): 1770-1779.]
- [7] Zhang J L, Huang J Q, Fang C, et al. Study on the biological characteristics of *Schizothorax curvilabiatus*[J]. Hebei Fisheries, 2021(1): 11-16. [张建禄,黄吉芹,方程,等. 弧 唇裂腹鱼生物学特征研究[J]. 河北渔业, 2021(1): 11-16.]
- [8] Chen F, Liu Y C, Wei C, et al. Study on the relationship between body length and body weight of larval and juvenile *Schizothorax curvilabiatus*[J]. Tibet Science and Technology, 2020(10): 11-12. [陈锋, 刘艳超, 魏聪, 等. 察隅弧唇裂腹 鱼仔稚鱼体长体重关系研究[J]. 西藏科技, 2020(10): 11-12.]
- [9] Liu Y C, Wei C. Age and growth characteristics of Schizothorax curilabiatus in the Chayu River, Tibet[J]. Hubei Agricultural Sciences, 2022, 61(12): 112-115. [刘艳超, 魏 聪. 西藏察隅河弧唇裂腹鱼年龄与生长特征[J]. 湖北农业 科学, 2022, 61(12): 112-115.]
- [10] Jin H Y, Li L, Qin D L, et al. Nutritional composition in muscle of *Schizothorax curvilabiatus*[J]. Biotic Resources, 2022, 44(2): 198-204. [金洪宇, 李雷, 覃东立, 等. 弧唇裂 腹鱼肌肉营养成分分析[J]. 生物资源, 2022, 44(2): 198-204.]
- [11] Ma H X. Development of SNP markers and population genetics analysis of *Schizothorax curvilabiatus* based on SLAF-seq technology[D]. Wuhan: Huazhong Agricultural University, 2019. [马海鑫. 基于 SLAF-seq 技术的弧唇裂 腹鱼 SNP 位点开发及群体遗传学分析[D]. 武汉: 华中农 业大学, 2019.]
- [12] Meng Q W, Miao X Z, Yu T J, et al. Ichthyology (morphological, classification)[M]. Shanghai: Shanghai Scientific and Technical Press, 1989: 41-42. [孟庆闻, 缪学祖, 俞泰济, 等. 鱼类学(形态・分类)[M]. 上海: 上海科学技术出版社, 1989: 41-42.]
- [13] Booke H E. The conundrum of the stock concept—Are nature and nurture definable in fishery science?[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38(12): 1479-1480.

- [14] Yang T Y, Meng W, Guo Y, et al. The multivariate morphometric analysis of *Schizothorax biddulphi* and *Schizothorax irregularis*[J]. Journal of Zhejiang Ocean University (Natural Science), 2018, 37(3): 221-227. [杨天燕, 孟玮, 郭焱, 等. 塔里木裂腹鱼和厚唇裂腹鱼多变量形态 学分析[J]. 浙江海洋大学学报(自然科学版), 2018, 37(3): 221-227.]
- [15] Liang S Q, Yang K, Li S, et al. Multivariate morphometric analysis of *Gymnocypris potanini* in different river drainages
 [J]. Sichuan Journal of Zoology, 2020, 39(5): 500-507. [梁思 倩,杨坤,黎树,等. 不同水系松潘裸鲤的形态特征分析
 [J]. 四川动物, 2020, 39(5): 500-507.]
- [16] Wang Y, Zhang Y, Zhang H F, et al. Comparison of morphology between two kinds of hybrid groupers and their parents[J]. Journal of Fisheries of China, 2014, 38(6): 778-785. [王燕, 张勇, 张海发, 等. 两种杂交石斑鱼及其 亲本的形态差异分析[J]. 水产学报, 2014, 38(6): 778-785.]
- [17] Li X H, Lai Z N, Yu Y M, et al. Ecology of fish community niche modeling based on fish morphological parameters[M]. Beijing: Science Press, 2022: 55-80. [李新辉, 赖子尼, 余 煜棉, 等. 鱼类形态学模型与群落研究[M]. 北京: 科学出 版社, 2022: 55-80.]
- [18] Yang M, Liu L, Wu Z, et al. Morphology and otolith morphology of *Chelon affinis* populations in the coastal waters of China[J]. Journal of Applied Oceanography, 2019, 38(3): 329-337. [阳敏, 刘璐, 吴桢, 等. 中国近海棱梭群 体形态学和耳石形态学研究[J]. 应用海洋学学报, 2019, 38(3): 329-337.]
- [19] Zhang Y H, Wang Y X, Liang H, et al. Morphological differences of five *Eleutheronema rhadinum* geographical stocks[J]. Journal of Fisheries of China, 2022, 46(8): 1334-1344. [章翊涵, 王咏雪, 梁海, 等. 多鳞四指马鲅 5个地理 群体的形态差异[J]. 水产学报, 2022, 46(8): 1334-1344.]
- [20] Chen Y F, Cao W X. Schinzothoracinae[A]//Yue P Q. Fauna Sinaica Osteichthyes Cypriniformes III[M]. Beijing: Science Press, 2000: 273-390. [陈毅峰,曹文宣. 裂腹鱼亚科[A]// 乐佩琦. 中国动物志:硬骨鱼纲,·鲤形目(下卷)[M]. 北京: 科学出版社, 2000: 273-390.]
- [21] Qinghai Biology Institute. The investigation report of animals and plants in Ngari Prefecture, Tibet[M]. Beijing: Science Press, 1979: 21-24. [青海省生物研究所. 西藏阿里地区动植物考察报告[M]. 北京:科学出版社, 1979: 12-24.]
- [22] Zhao K, Duan Z Y, Peng Z G, et al. The youngest split in sympatric schizothoracine fish (Cyprinidae) is shaped by ecological adaptations in a Tibetan Plateau glacier lake[J]. Molecular Ecology, 2009, 18(17): 3616-3628.

- [23] Liu H, Niu J G, Hu J W, et al. Comparative analysis of multivariate morphology of four species of Schizothoracinae in the Yarkand River Basin of Xinjiang[J]. Journal of Fisheries of China, 2023, 47(4): 049107. [刘鸿, 牛建功, 胡 江伟,等. 新疆叶尔羌河流域 4 种裂腹鱼多变量形态学对 比分析[J]. 水产学报, 2023, 47(4): 049107.]
- [24] Zhang J M, He Z H. Inland water fisheries natural resources survey manual[M]. Beijing: China Agricultural Press, 1991: 53-54. [张觉民,何志辉. 内陆水域渔业自然资源调查手册[M]. 北京:中国农业出版社, 1991: 53-54.]
- [25] Ma A J, Wang X A, Sun Z B, et al. Morphological variations among three different populations of *Takifuguru bripes*[J]. Oceanologia et Limnologia Sinica, 2016, 47(1):166-172. [马爱军, 王新安, 孙志宾, 等. 红鳍东方鲀(*Takifuguru bripes*) 三个不同群体的形态差异分析[J]. 海洋与湖沼, 2016, 47(1):166-172.]
- [26] Ling Q F, Li S F, Qiao D L. Morphological variation and random amplified polymorphic DNA (RAPD) analysis of different populations of *Tinca tinca*[J]. Acta Hydrobiologica Sinica, 2006, 30(5): 578-586. [凌去非,李思发,乔德亮.丁 鱥不同群体间形态学差异与随机扩增多态 DNA(RAPD)分 析[J]. 水生生物学报, 2006, 30(5): 578-586.]
- [27] Yang H R, Ouyang P H, Li G F, et al. Morphological differentiation among three wild populations of *Siniperca kneri* in Pearl River[J]. Journal of Fishery Sciences of China, 2016, 23(2): 447-457. [杨慧荣, 欧阳徘徊, 李桂峰, 等. 珠 江流域 3 个野生大眼鳜群体的形态差异[J]. 中国水产科学, 2016, 23(2): 447-457.]
- [28] Mayr E, Linsley E G, Usinger L R. Methods and principles of systematic zoology[M]. New York: McGraw-Hill Press, 1953: 202.
- [29] Samaee S M, Mojazi-Amiri B, Hosseini-Mazinani S M, et al. Comparison of *Capoeta capoeta gracilis* (Cyprinidae, Teleostei) populations in the South Caspian Sea River Basin, using morphometric ratios and genetic markers[J]. Folia Zoologica, 2006, 55(3): 323-335.
- [30] Hair J F, Anderson R E, Tatham R L, et al. Multivariate data analysis with readings[M]. The 4th editon. Upper Saddle River: Prentice-Hall Inc. Press, 1995: 105-106.
- [31] Wu X. Genetic diversity of rice flower carp in Guangxi based on morphology and molecular markers[D]. Guilin: Guangxi Normal University, 2022. [武霞. 基于形态学和分 子标记的广西禾花鲤群体遗传多样性研究[D]. 桂林: 广 西师范大学, 2022.]
- [32] Liu L, Zhou Y D, Gao T X. Comparison of morphological characteristics of marbled rockfish (*Sebastiscus marmoratus*) among different geographic populations[J]. Journal of

Hydroecology, 2023, 44(2): 81-88. [刘璐, 周永东, 高天翔. 褐菖鲉不同地理群体的形态学比较研究[J]. 水生态学杂 志, 2023, 44(2): 81-88.]

- [33] Yang Q, Zhao F, Song C, et al. Analysis of morphological variations among four different geographic populations of *Coilia mystus* in the Yangtze River Estuary and its adjacent waters[J]. Marine Fisheries, 2019, 41(3): 294-303. [杨琴, 赵峰, 宋超, 等. 长江口及邻近海域凤鲚 4 个不同地理群体的形态差异[J]. 海洋渔业, 2019, 41(3): 294-303.]
- [34] Ma K, Tong G X, Zhang L L, et al. Multivariate analysis of *Hucho taimen* and *Hucho bleekeri* populations based on morphological characteristics[J]. Journal of Fishery Sciences of China, 2023, 10(1): 1-10. [马凯, 佟广香, 张澜澜, 等. 哲罗鲑和川陕哲罗鲑群体多变量形态特征比较[J]. 中国 水产科学, 2023, 10(1): 1-10.]
- [35] Cao X Q. Preliminary study on Morphological comparison of *Schizothorax eurystomus* from different populations and biological characteristics of Weigan River population[D]. Alar: Tarim University, 2019. [曹希全. 宽口裂腹鱼群体形 态学比较及渭干河群体生物学特性初步研究[D]. 阿拉尔: 塔里木大学, 2019.]
- [36] Jiang Z M. The differential comparison of biological characteristics of *Saurogobio dabryi* in the Jialing River[D]. Nanchong: China West Normal University, 2017: 8-20. [蒋 朝明. 嘉陵江不同江段蛇鮈(*Saurogobio dabryi*)的生物学 特征差异比较[D]. 南充: 西华师范大学, 2017: 8-20.]
- [37] Wang H K Y, Tang Y T, Li G G, et al. Geometric morphometrics of the cephalic contour and its morphological variations among *Schizopygopsis stoliczkai* (Teleostei: Cyprinidae)[J]. Acta Hydrobiologica Sinica, 2017, 41(1): 182-193. [王贺崐元, 汤永涛, 李国刚, 等. 高原裸裂尻鱼 头部轮廓形状及其变异的几何形态测量分析[J]. 水生生物学报, 2017, 41(1): 182-193.]
- [38] Chao X, Yang S X, Liu H Q, et al. Mechanism and driving factors of phytoplankton community construction in the lower reaches of Yarlung Zangbo River[J]. Journal of Lake Sciences, 2024, 37: 1-18. [巢欣,杨胜娴,刘慧秋,等. 雅 鲁藏布江下游浮游植物群落构建机制及驱动因素[J]. 湖 泊科学, 2024, 37: 1-18.]
- [39] Tibetan Plateau Comprehensive Scientific Expedition Team of Chinese Academy of Sciences. Rivers and lakes of Tibet[M]. Beijing: Science Press, 1984: 26-27. [中国科学院 青藏高原综合科学考察队. 西藏河流与湖泊[M]. 北京: 科学出版社, 1984: 26-27.]
- [40] Wu Y F, Wu C Z. A preliminary study of the fishery resources and the countermeasures of fishery development in the region of the Karakorum-Kunlun Mountains, China[J].

Journal of Natural Resources, 1990, 5(4): 354-364. [武云飞, 吴翠珍. 喀喇昆仑山-昆仑山地区渔业资源及渔业资源发 展 对策的初步研究 [J]. 自然资源学报, 1990, 5(4): 354-364.]

- [41] Xie C X. Ichthyology[M]. Beijing: China Agriculture Press,
 2010: 26-27. [谢从新. 鱼类学[M]. 北京: 中国农业出版社,
 2010: 26-27.]
- [42] Kang Z P, Liu Y, Li C H, et al. A morphological study on ten

parrotfish species from Xisha Islands, China[J]. South China Fisheries Science, 2024, 20(2): 27-37. [康志鹏, 刘永, 李纯 厚, 等. 西沙群岛 10 种鹦嘴鱼鱼体形态学研究[J]. 南方水 产科学, 2024, 20(2): 27-37.]

[43] Yang X F. Feeding habits and selectivity of Schizopygopsis younghusbandi younghusbandi regan[D]. Wuhan: Huazhong Agricultural University, 2011. [杨学峰. 拉萨裸裂尻鱼的食 性及食物选择的研究[D]. 武汉: 华中农业大学, 2011.]

Morphological difference analysis of different geographic populations of *Schizothorax curvilabiatus* in the Yarlung Zangbo River

SU Qi¹, LI Hongchi², YANG Nana³, XIONG Dongmei¹, ZHANG Chi²

- 1. Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
- 2. Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;

3. Animal Husbandry and Veterinary Station of Agricultural and Rural Bureau of Linzhi city, Linzhi 860000, China

Abstract: In this study, we integrated two data systems (morphological analysis and box-truss analysis) to investigate the morphological differences of Schizothorax curvilabiatus among different geographic populations. Multivariate statistical analyses were conducted on 62 morphological parameters collected from three geographic populations in the Yarlung Zangbo River (specifically the Motuo region), Palong River, and Chayu River. The analysis of morphological data revealed that the primary differences among the three populations were evident in several traits, including beard length, head length behind the eye, body height, tail stalk length and thickness, dorsal spine length, and anal fin length. Principal component analysis indicated significant differences in principal component 1 between the Motuo (MT) and Chayu (CY) populations, primarily reflecting characteristics of the head, dorsal fin spine, and tail stalk. Furthermore, box-truss analysis demonstrated significant differences in principal component 1 between the MT and Palong (PL) populations, specifically regarding the head, dorsal fin, central axis, and caudal stalk. In total, 14 and 6 key parameters were selected from the morphological and box-truss data, respectively, to establish discrimination formulas, resulting in initial discrimination success rates of 94.70% and 86.40%. Scatter plots generated from both data systems showed separation by centroid, with the MT population being relatively independent, while the PL and CY populations exhibited some overlap. The cluster analysis revealed that the MT population formed a distinct branch, while the PL and CY populations were clustered. Ultimately, these findings indicated that the morphological characteristics of the MT population are significantly distinct from those of the PL and CY populations, which exhibit minor differences but do not qualify as subspecies.

Key words: *Schizothorax curvilabiatus*; geographical stocks; morphological differences; the Yarlung Zangbo River Corresponding author: ZHANG Chi, E-mail: zc0891@163.com; XIONG Dongmei, E-mail: xiongdongmei@nwsuaf. edu.cn