DOI: 10.3724/SP.J.1118.2013.00217

苏氏尾鳃蚓寄生放射孢子虫的形态描述

顾伟¹, 习丙文^{1,2}, 谢骏^{1,2}, 戈贤平^{1,2}, 潘良坤²

1. 南京农业大学 无锡渔业学院, 江苏 无锡 210095;

2. 中国水产科学研究院 淡水渔业研究中心, 农业部淡水渔业和种质资源利用重点实验室, 江苏 无锡 214081

摘要: 笔者在江苏省溧阳某鲫养殖塘底泥采集的苏氏尾鳃蚓(*Branchiura sowerbyi*)中检测到一种放射孢子虫, 经形态特征观察和比较分析, 鉴定其隶属于棘放射孢子虫(Echinactinomyxon)类群。该放射孢子虫孢体呈圆柱形, 长 18.95 μ m(18.5~19.4 μ m), 宽 9.55 μ m; 极囊长 6.11 μ m(5.97~6.26), 宽 2.98 μ m(2.38~3.58); 尾柄长 161.2 μ m(161.2~167.16), 宽 3.24 μ m(2.98~3.58), 孢体与尾柄的夹角约为 160°。将其与国内外文献中已记述的放射孢子 虫作比较研究,发现其在寄生宿主、形态大小、尾柄特征等方面有明显差异。本文描述的该类放射孢子虫为国内 外首次报道。

自从 Stolc^[1]首次从寡毛类中发现放射孢子中 Synactinomyxon tubificis, Triactinomyxon ignotum, Hexactinomyxon psammoryctis 以来, 目前文献报 道了约 200 多种类型放射孢子, 它们大多来自淡 水和海水环节动物^[2-5]。放射孢子虫在很长的一段 时间被普遍认为是一个独立生物类群、隶属黏体 动物门放射孢子虫纲(Myxozoan: Actinosporea)。 然而, Markiw 等^[6-7]在 20 世纪 80 年代对鲑鳟旋转 病病原——脑碘泡虫(Myxobolus cerebralis)生活 史的研究过程中发现、脑碘泡虫的发育需要 2 个 替换宿主(alternative host)、其在正颤蚓肠道黏膜 内发育成放射孢子(Actinosporea)、放射孢子与鱼 体接触后、放射孢子感染鲑鳟并在鱼体内发育为 成熟脑碘泡虫。该发现在黏体动物的研究过程中 具有里程碑意义。它彻底改变了此前将寡毛类寄 生放射孢子虫和鱼类寄生黏孢子虫看作 2 个完全 不同生物类群的观点。Kent 等^[8]在对黏体动物门 的分类系统进行重新修定时建议废除放射孢子虫 纲,将其看作黏孢子虫纲的同物异名;同时建议 将原放射孢子虫纲 17 个属名看作集合群(collective group)名用以描述不同类群放射孢子虫的形 态特征。该建议被 Lom 等^[3]、El-Mansy 等^[9]、 Negredo 等^[10]诸多鱼类寄生虫学家普遍接受。此 后,El-Matbouli 等^[11-12]通过对脑碘泡虫在正颤蚓 (*Tubifex tubifex*)和鲑鳟体内发育过程的细胞透射 电镜(TEM)观察和 DNA 含量的进一步分析,发现 脑碘泡虫仅在正颤蚓体内发育过程中存在有性生 殖现象。该研究再次改变此前将鲑鳟认为是脑碘 泡虫终末宿主的推论。因此,在黏孢子虫生活史 中放射孢子虫寄生的寡毛类宿主是其终末宿主, 而黏孢子虫寄生的鱼类为其中间宿主。

对放射孢子虫的研究不仅在寄生虫学方面有 重要的理论意义,而且在鱼类黏孢子虫病防控方 面也有重要实践意义。例如,针对在欧美地区严 重危害鲑鳟类的脑碘泡虫,通过对其放射孢子虫 的发育过程、放射孢子由正颤蚓释放到水体的时

收稿日期: 2012-02-21;修订日期: 2012-04-09.

基金项目:现代农业产业技术体系建设专项(CARS-46-10); 江苏省自然基金(BK2011182); 中央级公益性科研院所基本科研业 务费专项资金项目(2011JBFA07).

作者简介: 顾伟(1987-), 男, 硕士研究生, 主要研究方向为水产动物疾病防控. E-mail: guwei20062007@126.com

通信作者: 谢骏, E-mail: xiej@ffrc.cn. 戈贤平, E-mail: gexp@ffrc.cn

空动态变化和放射孢子虫对不同品系鲑鳟易感染 的差异性研究成果,制定出了有效的生态防控措施^[13]。在中国水产养殖中,黏孢子虫也是鱼类养 殖中重要的病原之一。黏孢子虫可以寄生在鱼的 体表、鳍、鳃、肌肉、脑以及内脏各个器官和神 经系统,对渔业养殖造成了严重的危害。如寄生 在鳗肾的两极虫(*Myxidium* sp.),鲤肠壁的吉陶单 极虫(*Thelohanellus kitauei*)和鳃部的野鲤碘泡虫 (*Myxobolus koi*),草鱼肠道的饼形碘泡虫(*M. artus*) 等。在江苏地区,自 20 世纪 90 年代起该地区的鲫 养殖一直遭受黏孢子虫病的困扰,每年都有鲫大量 死亡的报告。其中以鲫"喉部"寄生的洪湖碘泡虫 (*Myxobolus honghuensis* Liu *et al*, 2011)和肝胰脏寄 生的吴李碘泡虫(*M. wulii*)的危害最为严重^[14-15]。 然而,国内关于放射孢子虫的研究几乎处于空白。

本文描述了在鲫黏孢子虫病流行病学调查过 程发现的一种放射孢子虫。其形态特征与国内王 桂堂等^[16]所报道的三突放射孢子虫(Triactinosporean),以及国外已报道的放射孢子虫在形态 上有明显的差异^[17]。

1 材料与方法

1.1 样品采集

2011 年 9 月 2 号, 在江苏省溧阳市某多年鲫 养殖塘口, 用采泥器取塘底淤泥, 40 目网筛筛除 淤泥, 收集水蚯蚓。

1.2 放射孢子虫检查

将收集到的水蚯蚓带回实验室,将水蚯蚓分 别转移到称量瓶中,每个称量瓶中 3~5 条,并加 入约4mL曝过气的自来水,室温培养。每天在显 微镜下观察水体中是否有水蚯蚓释放的放射孢子 虫,连续1周。一旦检测到有放射孢子虫释放,立 即将该组水蚯蚓放在称量瓶中单个培养,以确定 释放放射孢子虫的蚯蚓个体数,并收集有放射孢 子虫的水样,在显微镜下观察和记录。

1.3 放射孢子虫鉴定

在光学显微镜下观察该放射孢子虫的形态, 并用图森 TAC-9.0C 900 万像素显微摄像头进行 拍照,同时绘图;用显微镜测微尺对该放射孢子 虫进行测量,通过轻压盖玻片来挤破孢子,使次级细胞得到释放,以便观察次级细胞的数目。孢子的鉴定运用 Janiszewska^[18–19]、Marques^[20]、Lom 等^[21]的方法测量,并将结果与文献中已报道的放射孢子虫进行形态特征比较。

2 结果与分析

2.1 放射孢子虫检测

在采集到的大量水蚯蚓中,仅检查到 1%(2/200)苏氏尾鳃蚓中释放出放射孢子虫。在连续 1 周的观察收集过程中,每天从培养苏氏尾鳃蚓的 称量瓶内检查到约 50 个左右漂浮在水体中的放 射孢子虫。

2.2 放射孢子虫的形态描述

孢子的形态特征描述和测量基于 30 个水体 中漂浮的新鲜放射孢子。其整体形似三角架, 具 圆柱状孢体(spore body)和 3 个长而直的尾柄 (caudal process), 孢柄(style)不明显(图 1、2)。孢 体长 18.95 μ m(18.5 ~ 19.4), 宽 9.55 μ m; 孢质 (sporoplasm)内次生细胞(secondary cells)数目不详 (图 3)。极囊(polar capsule)瓜子型, 呈三角形排列 于孢子的顶部, 前部微微向外扩张; 极囊长 6.11 μ m (5.97 ~ 6.26), 宽 2.98 μ m(2.38 ~ 3.58)。尾柄近邻 孢体后端, 向孢体后侧方延伸, 逐渐变细, 尾柄 的前端具圆形的核, 每个尾柄末端具 4 个细小刺状 分叉; 尾柄长 161.2 μ m(161.2 ~ 167.16), 宽 3.24 μ m (2.98 ~ 3.58), 孢体与尾柄的夹角约为 161°(图 4)。 放射性孢子虫形态示意图如图 5 所示。

图 1 Echinactinomyxon 放射孢子虫的整体顶面观 Fig. 1 Apical view of the Echinactinomyxon type

图 2 水体中 Echinactinomyxon 放射孢子虫的整体形态 Fig. 2 Morphology of the Echinactinomyxon type

图 3 Echinactinomyxon 放射孢子虫孢体的形态 Fig. 3 Spore body of the Echinactinomyxon type

图 4 Echinactinomyxon 放射孢子虫尾柄的形态 Fig. 4 Caudal morphology of the Echinactinomyxon type showing the branch on the distal end of caudal morphology

图 5 Echinactinomyxon 放射孢子虫示意图 Fig. 5 Line drawing of the Echinactinomyxon type

3 讨论

放射孢子虫是黏孢子虫生活史中的一个发育 阶段、这一观点已被国内外研究者广泛认可。目 前报道的放射孢子虫已经有 200 多种类型。在放 射孢子虫类群的鉴定中,孢体的形状、孢柄的有 无、尾柄在胞体后发生位置和尾柄形状都是非常 重要的鉴定特征。本文描述的放射孢子虫孢体呈 圆柱状, 孢柄不明显, 尾柄近邻孢体后端向后侧 笔直延伸。这些形态特征均为棘放射孢子虫 (Echinactinomyxon)类群的典型特征,因此将该放 射孢子虫划归为该集合类群。通过形态特征比较, 本研究发现的放射孢子虫与已报道棘放射孢子虫 (Echinactinomyxon)类群的放射孢子虫存在以下 形态差异: (1)寄生宿主不同, 已报道的放射孢子 虫的宿主多为正颤蚓、霍甫水丝蚓(Limnodrilus hoffmeisteri)、夹杂带丝蚓(Lumbriculus variegatus) 和鳃尾盘虫(Dero digitata)4 种寡毛类动物, 而本 文报道的放射孢子虫的宿主为苏氏尾鳃蚓(Branchiura sowerbyi)。(2)形态大小有差异, 如与 Janiszewska^[19]报道的放射孢子虫虽然尾柄长度相似, 但孢体大小差异很大(18.95 µm vs 25~30 µm); 与 Özer 等^[17]报道的 Echinactinomyxon type 1 比较, 虽然两者极囊占孢体的比例都为 1/3, 但前者孢 体的长宽比为 1.13, 后者为 1.98, 两者差异较大。 (3)该放射孢子虫的尾柄末端形成 4 个相等的分叉, 这与已报道的其他放射孢子虫有明显的差异(表 1)。

目前,国内关于黏孢子虫的放射孢子虫的研 究较为匮乏。王桂堂等^[16]在国内首次报道和描述

表 1 本文所描述放射孢子虫与文献报道的相似种类的形态特征对比

Tab.1 Comparison of measurements of Echinactinomyxon type spores detected during the present study and those found in the scientific literature

						μm
种和类型 species and type	寄主 host	尾柄大小 dimensions of caudal processe	孢体大小 dimensions of spore body	极囊大小 dimensions of polar capsule	次级细胞数目 numberof secondary cell	参考文献 reference
Echinactinomyxon, radiatum	Tubifex tubifex	100-25	25-30	5	32	[19]
Echinactinomyxon, D	Limnodrilus hoffmeisteri	100(85-105)	11.5(11-12.5)	3.9×2.4	32	[22]
Echinactinomyxon, E	Limnodrilus hoffmeisteri	90(85-95)	9(8-9)	3.8×2.7	16	[22]
Echinactinomyxon, A	Limnodrilus hoffmeisteri	75(65-85)	9.5(8.5–11)	5×3.5	16	[22]
Echinactinomyxon, B	Limnodrilus hoffmeisteri	50(45-55)	9.5(8.5-10.5)	3.8×2.7	16	[22]
Echinactinomyxon, C	Limnodrilus hoffmeisteri	83(70-95)	10(8.5–12)	3.8×2.2	16	[22]
Echinactinomyxon, E1	Lumbriculus variegatus	126±9.2	22.4×19.9	7.3×5.8	-	[23]
Echinactinomyxon, E2	Lumbriculus variegatus	82.2±6.6	19.6×13	6.6×4.7	_	[23]
Echinactinomyxon, E3	Lumbriculus variegatus	91±0	21.7×17.7	5.2×5.2	-	[23]
Echinactinomyxon, type 1	Lumbriculus variegatus	114.9(103.9–124.7)	22.4 (20.8–23.4) × 18.3 (18.2–19.7)	7.8×5	64	[17]
Echinactinomyxon, type 2	Tubifex tubifex	96.2(85-114)	21.4(20.7–23.3)× 14.1(12–15)	8×5	64	[17]
Echinactinomyxon, type3	Tubifex tubifex	93.3(82.7-99.8)	25.9(24.9–28)× 14.5(14–15.6)	7×3.6	16	[17]
Echinactinomyxon, type 4	Tubifex tubifex	122.2 (106.8–135.7)	27.3 (24.9–28.4) × 15.5 (14–16.8)	6.5 × 4.5	128	[17]
Echinactinomyxon,major	Dero digitata	138×5	24×13	5×2.5	-	[24]
Echinactinomyxon, type	Branchiura sowerbyi	161.2(161.2–167.16)× 3.24(2.98–3.58)	18.95(18.5–19.4)× 9.55	6.11×2.98	-	本研究 this study

了一种从东湖苏氏尾鳃蚓中发现的三突放射孢子 虫。本文报道的放射孢子虫与王桂堂等报道的三 突放射孢子虫比较,首先在整体形状上不同,该 放射孢子虫整体形似三脚架,而后者外形呈锚形, 具明显的孢柄和向上弯曲的尾柄;其次尾柄的形 态不同,前者的尾柄末端形成分叉,而后者的尾 柄末端无分叉,两者在形态上有明显差异。

作者在进行放射孢子虫的分类鉴定时发现, 即使同一物种也存在个体差异,所以孢体、尾柄 的大小不能作为放射孢子形态学分类的可靠标 准。Székely等^[25]学者认为虽然孢质中的次级细胞 不易观察,但次级细胞的数目可以作为一种鉴定 放射孢子虫类型的有力依据。此外笔者认为,放 射孢子虫的尾柄末端是否形成分叉以及形成分叉 的数目和形态也可以作为放射孢子虫形态学分类

的一个重要依据。本研究通过对放射孢子虫的形 态描述,以期能为放射孢子虫的分类和黏孢子虫 病的检测及防治提供理论依据。

参考文献:

- Stolc A. Actinomyxidies, nouveau groupe de Mesozoaires parent des Myxosporidies [J]. Bull Intl Acad Sci Bohem, 1899, 22: 1–12.
- [2] Hallett S L, Atkinson S D, Erséus C, et al. Molecular methods clarify morphometric variation in triactinomyxon spores (Myxozoa) released from different oligochaete hosts [J]. Syst Parasitol, 2004, 57: 1–14.
- [3] Lom J, Dyková I. Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species [J].
 Folia Parasitol, 2006, 53: 1–36.
- [4] Marcucci C, Caffara M, Goretti E. Occurrence of actinosporean stages (Myxozoa) in the Nera River system (Umbria,

central Italy) [J]. Parasitol Res, 2009, 105: 1517-1530.

- [5] Luís F R, Cech G, Székely C, et al. A new actinospore type Unicapsulactinomyxon (Myxozoa), infecting the marine polychaete, *Diopatra neapolitana* (Polychaeta: Onuphidae) in the Aveiro Estuary (Portugal) [J]. Parasitology, 2011, 138: 698–712.
- [6] Markiw M E, Wolf K. Myxosoma cerebralis (Myxozoa: Myxosporea) etiologic agent of salmonid whirling disease requires Tubificid worm (Ammelida: Oligochaeta) in its life cycle [J]. J Protozool, 1983, 30 (3): 561–564.
- [7] Wolf K, Markiw M E. Biology contravenes taxonomy in the Myxozoa: new discoveries show alternation of Invertebrate and Vertebrate hosts [J]. Science, 1984, 225: 1449–1452.
- [8] Kent M, Margolis L, Corliss J. The demise of a class of protists: taxonomic and nomenclatural revisions proposed for the protist phylum Myxozoa Grasse, 1970 [J]. Zool, 1994, 72: 932–937.
- [9] EL-Mansy A, Székely C, Molnár K. Studies on the occurrence of actinosporean stages of fish myxosporeans in a fish farm of Hungary, with the description of triactinomyxon, raabeia, aurantiactinomyxon and neoactinomyxumtypes [J]. Acta Vet Hung, 1998, 46 (4): 437–450.
- [10] Negredo C, Mulcahy M F. Actinosporean infections in oligochaetes in a river system in southwest Ireland with descriptions of three new forms [J]. Dis Aquat Org, 2001, 46: 67– 77.
- [11] El-Matbouli M, Hoffmann R W. Light and electron microscopic studies on the chronological development of Myxobolus cerebralis to the actinosporean stage in *Tubifex tubifex* [J]. J Parasitol, 1998, 28: 195–217.
- [12] El-Matbouli M, Holstein T W, Hoffmann R W. Determination of nuclear DNA concentration in cells of *Myxobolus cerebralis* and triactinomyxon spores, the causative agent of whirling disease [J]. Parasitol Res, 1998, 84: 694–699.
- [13] Gilbert M A, Granath Jr W O. Whirling disease of salmonid fish: life cycle, biology and disease [J]. J Parasitol, 2003, 89 (4): 658–667.
- [14] Xi B W, Xie J, Zhou Q L, et al. Mass mortality of pondreared *Carassius gibelio* caused by *Myxobolus ampullicapsulatus* in China [J]. Dis Aquat Org, 2011, 93 (3): 257–260.

- [15] Liu Y, Christopher M W, Gu Z M, et al. *Myxobolus honghuensis n.* sp. (Myxosporea: Bivalvulida) parasitizing the pharynx of allogynogenetic gibel carp *Carassius auratus gibelio* (Block) from Honghu Lake, China [J]. Parasitol Res, 2012, 110: 1331–1336.
- [16] 王桂堂,姚卫建. 放射孢子虫在中国的首次发现[J]. 水生 生物学报, 2000, 24 (2): 199–200.
- [17] Özer A, Wootten R, et al. Survey of actinosporean types (Myxozoa) belonging to seven collective groups found in a freshwater salmon farm in Northern Scotland [J]. Folia Parasitol, 2002, 49: 189–210.
- [18] Janiszewska J. Actinomyxidia. Morphology, ecology, history of investigation, systematic, development [J]. Acta Parasitol Pol, 1955, 2: 405–443.
- [19] Janiszewska J. Actinomyxidia. II. New systematics, sexual cycle, description of new genera and species [J]. Zool Pol, 1957, 8: 3–34.
- [20] Marques A. Contribution á la connaissance des Actinomyxidies: ultrastructure, cycle biologique, systematique[Z]. These D'etat. Univ des Sciences et Techniques du Languedoc, Montpellier,1984.
- [21] Lom J, Mcgeorge J, Feist S W, et al. Guidelines for the uniform characterization of the actinosporean stages of parasites of the phylum Myxozoa [J]. Dis Aquat Org, 1997, 30: 1–9.
- [22] Xiao C, Desser S S. Actinosporean stage of myxozoan parasites of oligochaetes from Lake Sasajewun, Algonquin, Ontario: new forms of echinactinomyxon, neoactinomyxum, aurantiactinomyxon, guyenotia, synactinomyxon and antonactinomyxon [J]. J Parasitiol, 1998, 84: 1010–1019.
- [23] Negredo C, Mulcahy M F. Actinosporean infections in oligochaetes in a river system in southwest Ireland with descriptions of three new forms [J]. Dis Aquat Org, 2001, 46: 67–77.
- [24] Styer E L, Harrison L R, Burtle G J. Six new species of actinomyxids from Dero digitata. International Workshop on Myxosporea [Z]. České Budějovice, Czech Republic (abstract only), 1992: 6–8.
- [25] Székely C, Molnár K. Description of a new actinosporean type from South African freshwaters [J]. Dis Aquat Org, 2004, 61: 95–102.

Morphological characterization of a novel Echinactinomyxon type collected from *Branchiura sowerbyi*

GU Wei¹, XI Bingwen^{1, 2}, XIE Jun², GE Xianping^{1, 2}, PAN Liangkun²

1. Wuxi Fishery College, Nanjing Agricultural University, Wuxi 210095, China;

2. Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China

Abstract: There is a very high diversity of myxosporeans in China. Outbreaks of some myxosporan species have resulted in significant economic loss to the aquaculture industry. Despite this, little is known about the myxosporean life cycle. We describe a new Echinactinomyxon type collected from oligochaetes (*Branchiura sowerbyi*) that were isolated from a crucian carp (*Carassius auratus gibelio*) fry pond in Liyang City, Jiangsu Province in September, 2011. Two of the 200 *B. sowerbyi* (1%) we examined were found to release actinospores. The actinospore possesses a barrel-shaped spore body and 3 caudal processes with four-branched tips. Spore body 8.95 μ m (18.5–19.4) long and 9.55 μ m wide. Sporoplasm cells not determined. Three pyriform polar capsules located at the apex, 6.11 μ m (5.97–6.26) long and 2.98 μ m (2.38–3.58) wide. Caudal processes originating just below the spore body, equal in size, straight, 161.2 μ m (161.2–167.16) long and 3.24 μ m (2.98–3.58) wide.

Key words: *Branchiura sowerbyi*; Actinosporean; morphology discription; toxonology Corresponding author: XIE Jun. E-mail: xiej@ffrc.cn; Ge XianPing. E-mail: gexp@ffrc.cn