DOI: 10.3724/SP.J.1118.2013.00481

长牡蛎糖原磷酸化酶基因 SNPs 与生长性状和糖原含量的 相关性分析

刘思玮,李琪,于红,孔令锋

中国海洋大学 海水养殖教育部重点实验室, 山东 青岛 266003

摘要:为研究糖原磷酸化酶基因多态性与长牡蛎(*Crassostrea gigas*)生长和糖原含量的相关性,本研究对长牡蛎糖 原磷酸化酶基因(*Cg-GPH*)编码区单核苷酸多态性(SNPs)与来自 5 个家系 322 个长牡蛎个体的生长性状(包括壳高、 壳长、壳宽、总体质量以及软体部质量)和糖原含量进行了关联分析。结果表明,在 1 940 bp 的长牡蛎糖原磷酸化 酶基因中共检测到 82 个 SNPs 位点,其中 63 个 SNPs 位点位于外显子区域,1 个 SNPs 位点位于 5'-UTR 区,18 个 SNPs 位点位于 3'-UTR 区,编码区 SNPs 平均密度为 1/25 bp;5 个 SNPs 位点与生长性状存在显著相关(*P*<0.05),未 检测到与糖原含量相关 SNPs。根据以上 5 个 SNPs 位点共构建得到 6 个 SNP 单倍型,其中,*Cg-GPH* 基因的 H6 (CTGAT)单倍型在总体质量性状方面均显著高于其他 5 种单倍型(*P*<0.05),表明 H6 单倍型可能是对长牡蛎体质量 增加最有利的单倍型。研究结果为今后长牡蛎生长性状的遗传改良提供了基础资料。

长牡蛎(*Crassostrea gigas*)也称太平洋牡蛎, 隶属于珍珠贝目(Pterioida)、牡蛎科(Ostridae)、巨 蛎属(Crassostrea),自然分布于韩国、日本和中国, 是世界上养殖范围最广、养殖产量最大的水产动 物。2010年中国牡蛎产量达 364 万 t,居海产贝类 养殖产量首位^[1]。以往的大多数遗传育种学研究 主要通过杂交育种、选择育种等传统育种方式来 提高牡蛎产量和进行良种培育^[2],但其育种周期 长、精准度偏低。近年来,随着分子遗传学的飞 速发展,分子标记辅助育种(marker assisted selection, MAS)开始应用于动植物的遗传改良,并在 稻米、小麦、菜豆、肉牛、奶牛等方面取得了重 要进展^[3-7]。关联分析是利用候选基因来分析表型 与功能等位基因之间的相关性,是实现分子标记 辅助育种的一种有效方法^[8]。目前,水产动物候选 基因与经济性状之间的关联分析,主要在虹鳟 (Oncorhynchus mykiss)、牙鲆(Paralichthys olivaceus)、罗氏沼虾(Macrobrachium rosenbergii)、长 牡蛎(Crassostrea gigas)等种类中围绕生长、抗病、 繁殖等性状开展了研究^[9-14]。

糖原是贝类生存、生长的主要供能物质,同时也是其性腺发育所需能量的主要来源。长牡蛎糖原含量的变化与繁殖周期密切相关,这已从生化分析^[15]、组织学^[16]及糖原代谢相关基因表达^[17]等方面得到证实。糖原磷酸化酶(Glycogen phosphorylase)是糖原分解代谢中的关键酶,通过切断α(1 4)连接将糖原分子上的葡萄糖分子移除,从而催化糖原的磷酸解反应,在糖原分解过程中起到了限速酶的作用^[18]。贝类糖原磷酸化酶的研究起步较晚,目前主要在紫贻贝(*Mytilus edulis*)、

通信作者: 李琪 , 教授. Tel: 0532-82031622; E-mail: qili66@ouc.edu.cn

收稿日期: 2012-11-20; 修订日期: 2013-01-26.

基金项目: 国家 973 计划项目(2010CB126406); 国家 863 计划项目(2012AA10A405-6); 国家海洋公益性行业科研专项(200905020). 作者简介: 刘思玮(1987-), 女, 硕士研究生, 从事水产动物遗传育种学研究. E-mail: liusiwei 07@163.com

虾夷扇贝(Patinopecten yessoensis)、虎斑乌贼 (Sepia pharaonis)和长牡蛎等种类上进行了该酶 纯化及其性质的研究^[19-22]。Bacca 等^[17]克隆了长 牡蛎糖原磷酸化酶基因(Cg-GPH),通过 RT-PCR 分析,发现其表达水平与长牡蛎糖原贮存和消耗 的季节性变化一致。

单核苷酸多态性(Single Nucleotide Polymorphisms, SNPs)作为第 3 代分子遗传标记, 在水产 动物群体遗传、分子标记辅助育种和生物进化等 研究领域都具有良好的应用前景^[23]。由于长牡蛎 是遗传多样性较高的物种之一, 编码区 SNPs 的 平均密度高达 1/60 bp^[24], 因此, 大量的 SNPs 标 记也为候选基因的多态性与长牡蛎经济性状之间 的关联分析提供了丰富的材料基础。在此基础上, 利用外显子区域以及其他控制区域的 SNPs 位点 信息, 特别是在一个基因座内多个 SNPs 位点所 构建的单倍型(Haplotype), 则更有助于建立起表 型性状与候选等位基因多态性之间的关联^[25]。

本研究以长牡蛎糖原磷酸化酶(Cg-GPH)基因作为候选基因,对长牡蛎生长性状及糖原含量性状进行关联分析,利用单链构象多态性(single-strand conformation polymorphism, SSCP)技术结合测序方法进行长牡蛎 SNPs 的分型和筛选,旨在探究Cg-GPH基因 SNPs 与长牡蛎生长性状和糖原含量之间的相关性。

1 材料与方法

1.1 实验材料

本实验所用长牡蛎亲本为威海本地的养殖群 体,于 2009 年 6 月选取性腺发育成熟、性状优良 的个体为亲本,采用平衡巢式设计方法和人工授 精技术,每 1 个雄体配 3 个雌体。采用解剖法辨 别雌雄后采集精卵,将适量精卵混合进行授精构 建而成 36 个全同胞家系。所构建的全同胞家系均 饲养于相同条件下。于 2011 年 3 月初随机选取 5 个全同胞家系的共 322 个 650 日龄长牡蛎样品[壳 高 (71.56±10.49) mm; 壳长(45.08±7.50) mm; 总 质量(36.92±14.58) g],其中家系 027、028、029、 032 和 034 取样个数分别为 70、67、61、58 和 66。 将牡蛎活体运输至实验室解剖,将闭壳肌组织于 -30℃保存用于 DNA 提取;其他组织置于-80℃ 冷冻保存,用于糖原含量测定。

1.2 糖原含量的测定

糖原含量的测定主要依据蒽酮比色法^[26],将 长牡蛎性腺组织经过冷冻干燥后研磨成粉末,取 30 mg粉末加入30% KOH溶液,加热至100°C 皂 化 30 min 后迅速冷却。取 5 μ L 冷却后样品皂化 液稀释至 0.5 mL,再加入 5 mL 冷的 0.2% 蒽酮-硫酸溶液处理 10 min,在 620 nm 波长下比色,测 其吸光度值。根据标准曲线(y=0.006 1x+0.001 1, R^2 =0.999 5)换算出糖原含量,进而得到 322 个个 体糖原含量百分比。

1.3 基因组 DNA 提取及引物设计与合成

利用苯酚-氯仿法^[27]提取长牡蛎闭壳肌组织 DNA,并以 0.8%的琼脂糖凝胶电泳检测 DNA 质 量和浓度, -20°C保存。依据 *Cg-GPH* 基因 cDNA 序列信息(GenBank 登录号 AY496065),利用 Primer Premier 5 软件(http://www.premierbiosoft. com/)在长牡蛎基因组范围内设计得到 8 对特异性 引物(GPH1–GPH8)用于 *Cg-GPH* 基因 SNPs 位点 的筛选(表 1)。

1.4 PCR 扩增和 SNP 分型

PCR 扩增反应体系为 10 µL, 包括 1× PCR buffer, 2 mmol/L MgCl₂, 0.2 mmol/L dNTP, 正反 引物 1 µmol/L, 0.25 U *Taq* DNA 聚合酶(TaKaRa) 和 100 ng DNA 模板。PCR 反应程序为 94℃预变 性 3 min; 94℃变性 45 s, 退火温度 52~65℃ 45 s, 72℃延伸 45 s, 共 35 个循环; 72℃延伸 5 min。

扩增产物与含有98%的去离子甲酰胺1 2混 合后,98℃变性10min后冷却。采用10%~12%的 非变性聚丙烯酰胺凝胶电泳,置于4℃以110V电 泳16~18h,用银染法显示电泳条带。将至少3个 具有相同电泳条带的个体进行测序,结合 SSCP 条带分型与测序结果确定各个个体的 SNP 基因型。

1.5 数据分析

1.5.1 单个 SNPs 位点与性状的关联分析 构建 一般线性模型:

 $Y = \mu + F + G + e$

引物	序列(5′-3′)	最适退火温度 T _m /℃	产物长度/bp	cDNA 扩增位置(区域)/bp
primer	sequence $(5'-3')$	annealing temperature	product length	location in cDNA (region)
GPH1F	GACGAGAAGGAAGCAGA	61	296	1-296 (5'-UTR+Exon)
GPH1R	TGGGTCCTTCTCATAGTAA			
GPH2F	TGTCATAGATTGGCCTTG	52	197	400-584 (Exon)
GPH2R	AACTACCTGCCAACCATC			
GPH3F	AAATATCTGTTGTAGGTGGC	63	256	1054-1296 (Exon)
GPH3R	CCTGGAGGAAGTTGTGG			
GPH4F	GCAGGCAGAATGCGACG	65	138	1323-1460 (Exon)
GPH4R	CGTTTCGCTCTTGATGAT			
GPH5F	CCGTGAGTTTTACGAGAT	63	212	1463-1674 (Exon)
GPH5R	GTTTGACTTTGATGATGTTCC			
GPH6F	ACAGGAAAACAAAATGAAG	56	164	1673-1836 (Exon)
GPH6R	CACGCTTGAGGCGGTTG			
GPH7F	GCAGCTCCTGGCTATCA	61	202	1884-2085 (Exon)
GPH7R	TTCCAGAAGCCTCGGT			
GPH8F	GATCCTCTGCAATGGGC	65	475	2436-2910 (Exon+3'-UTR)
GPH8R	TAAAAATGCTTAGACCAGGAC			

表 1 本研究所用引物序列 Tab. 1 Sequences of primers used in the study

其中, *Y* 是性状观察值; μ是群体表型均值; *F* 是家 系效应, 为固定效应; *G* 是个体基因型效应, 同为 固定效应; *e* 是随机误差。采用 SAS9.1 统计分析 软件 GLM 模块进行最小二乘法的线性拟合, 利 用上述模型对基因型效应进行显著性检验以及各 基因型的表型值最小二乘均值的 Bonferroni 多重 比较分析。

1.5.2 多位点 SNP 单倍型与性状的关联分析 利用 PHASE 2.1 软件将与性状相关联的 SNPs 构建 成单倍型。构建的单倍型依据以下一般线性模型 进行 GLM 分析统计,进行 *Cg-GPH* 基因 SNP 单 倍型与长牡蛎性状之间的关联分析:

$Y = \mu + H + e$

其中, *Y* 是性状观察值; μ是群体表型均值; *H* 是单 倍型效应, 为固定效应; *e* 是随机误差。

2 结果与分析

2.1 SNPs 鉴定

8 对特异性引物扩增获得的基因组 DNA 片段 覆盖 *Cg-GPH* 基因 cDNA (GenBank 登录号 AY496065)全长的 1 940 bp, 共检测到 82 个 SNPs 位点(图 1), 包括 50 bp 5'-UTR 中的 1 个 SNPs 位 点, 1 598 bp 外显子中的 63 个 SNPs 位点, 以及存 在于 292 bp 的 3'-UTR 区域的 18 个 SNPs 位点。 其中 *T1747A* 与 *T1966C* 位点引起氨基酸改变, 分 别由苯丙氨酸变为酪氨酸(Phe¹⁷⁴⁷ 变为 Tyr¹⁷⁴⁷)以 及由异亮氨酸变为苏氨酸(Ile¹⁹⁶⁶ 变为 Thr¹⁹⁶⁶)。其 他位点均为同义突变, 并未产生氨基酸的改变。 在大量 SNPs 位点之中, 存在连锁现象, 有 26 个 SNPs 位点共形成 10 组 100%连锁对应关系。 2.2 *Cg-GPH* 基因 **SNPs** 位点与长牡蛎生长性状的 关联分析

5 个 *Cg-GPH* 基因的 SNPs 位点(图 2)通过最 小二乘法线性拟合的 GLM 模型建立了与长牡蛎 生长性状的关联(表 2),其中,*T119C* 位点的 CC基 因型个体的壳高显著高于 CT 基因型个体(*P*<0.05), 而 *A1139G* 位点的 AG 基因型个体的壳高显著低 于 GG 基因型的个体(*P*<0.05)。*T470A* 位点的 AT 基因型个体在壳高、壳长、壳宽和软体部质量 4 个性状方面均显著高于 TT 基因型个体(*P*<0.05), 在总体质量方面前者则极显著高于后者(*P*<0.01), 然而二者与糖原含量未表现出显著关联(*P*>0.05)。 *A2798G* 位点的杂合子 AG 基因型个体在壳高、总 体质量、软体部质量 3 个性状方面均显著低于纯

404	4	8	4
-----	---	---	---

1	gacgagaaggaagcagacagccaaagaagtagatttcgtgcatcggaaccATGGCCACTTATAAACCCACAACT
75	GACCACGAGAAGCGAAAGCAAATCAGTATTCGTGGTATTGCTCCTGTGGAAAATGTTGTCGAATTCAAAAAGGCT T C C G
150	TTTAATCGCCATTTGCATTACACGATTGTGAAAGATAGAAATGTGGCGACACCGCGAGACTACTACCTCTCTCT
225	$\begin{array}{c} GCCCGCACCGT\underline{G}CGAGACTATTTGGGGGGGGGTTGGACCGAGGAGGACCAAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGGGGGGGGG$
300	AGAGTGTACTATCTGTCCCTGGAGTTTTACATGGGCAGGACCCTGTCCAACACCATGGTGAACCTGGGCATTCAG
375	$\begin{array}{ccc} \mbox{AGCGCCTGCGATGAGGCCCTCTATCAGATTGGCCTTGA\underline{C}\mbox{ATTGAGGAGGAGGAT\underline{T}\mbox{G}\mbox{G}\mbox{G}\mbox{AGCGCCTGCGATGAGGAGGAT\underline{T}\mbox{G}\mbox{G}\mbox{G}\mbox{G}\mbox{A}\mbox{G}\mbox{G}\mbox{A}\mbox{A}\mbox$
450	$CTGGGTAATGGAGGACTGGG\underline{T}CG\underline{G}CTGGCAGCCTGCTTCCT\underline{T}GACTCCATGGCAACGCTCGGACT\underline{G}GC\underline{A}GCATATATATATATATATATATATATATATATATATATAT$
525	GGATATGGTATCAGATACGACTATGGAATCTTTGCCCAGAAAATTGAAGATGGTTGGCAGGTTGAGGAACCTGAT T
600	GAGTGGCTGAGATATGGAAATCCATGGGAGAAGTCGAGACCAGAGTACGTAC
675	ACAGAGGACACTGGCTCGGGGGGTCAAGTGGGTGGACACTCAGGTTGTGTTTGCGATGCCCTTTGACAGTCCTATA
750	CCAGGGTACGGCAACAACACTGTCAACACCATGCGTCTGTGGTCAGCTAAAGCTCCCAACAGCTTCAATCTGCACACACGCTAAAGCTCCCAACAGCTTCAATCTGCACACACA
825	TTCTTCAACAATGGCGAGTATATCAATGCTGTCTGTGACAGAAACCAGGCGGAAAACATCTCCAGAGTCCTCTAC
900	CCCAATGATAACTTCTTTTCTGGCAAAGAGCTCCGCCTAAAGCAGGAGTACTTCCTGGTAGCAGCCACTCTCCAG
975	GACATCCTCAGGAGATTCAAGTCATCCAAGTTTGGTAGTCGGGATCCGGTCCGCAGGTCCTTCGAGTCGTTTCCA
1050	GACAAGGTGGCCATTCAGCTGAATGATACCCACCCCCTCCATGGCTATCCCGGAGTTACTGAGGATCTTTGTGGAC
1125	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1200	$\begin{array}{c} CC\underline{C}GAG\underline{G}CC\underline{T}T\underline{G}GA\underline{G}\underline{A}\underline{G}\underline{G}\underline{T}\underline{G}\underline{G}CC\underline{G}\underline{G}\underline{T}\underline{G}\underline{T}CCA\underline{T}\underline{G}C\underline{G}\underline{A}\underline{G}\underline{A}\underline{G}\underline{A}\underline{G}\underline{A}\underline{G}\underline{A}\underline{C}\underline{C}\underline{C}\underline{C}\underline{C}\underline{C}\underline{C}\underline{C}\underline{C}C$
1275	$\begin{array}{c} {\rm AT\underline{T}AACCACAAACTTCCTCCAGGAAGTAGCAAAAAAAATATCCAGGTGATGCAGGCAG$
1350	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
1425	GCAGC <u>G</u> TTACACTCAGAAATCATCAAGAGCGAAACGTTCCGTGAGTTTTACGAGATGTATCCAGAGCGCTTCCAA C
1500	$\begin{array}{ccc} \text{AACAAAACAAACGGGGATCAC\underline{A}CCACGTCGTTGGTTGGTTGTTACTGTG\underline{C}AATCCTGGACT\underline{G}TCTGACATTATCGCAGAGGTTGTTACTGTG\underline{C}AATCCTGGACT\underline{G}TCTGACATTATCGCAGAGGTTGTTACTGTG\underline{C}AATCCTGGACT\underline{G}TCTGACATTATCGCAGAGGTTGTTACTGTG\underline{C}AATCCTGGACT\underline{G}TCTGACATTATCGCAGAGGTTGTTACTGTG\underline{C}AATCCTGGACT\underline{G}TCTGACATTATCGCAGAGGTTGTTACTGTG\underline{C}AATCCTGGACT\underline{G}TCTGACATTATCGCAGAGGTTGTTACTGTG\underline{C}AATCCTGGACT\underline{G}TCTGACATTATCGCAGAGGTTGTTACTGTGCAGATGTTGTGTTGTTACTGTGGACTTGTTGTGTTGTGTTGTGTGTG$
1575	AAAATCGGGGAGGAATGGGTCACAGACTTGTACCAACTACAGAATCTCAAAAAGTTTGCTGATGATGAAAACTTC ${\rm G}$ T
1650	CTGAGGAACATCATCAAAGTCAAACAGGAAAACAAAATGAAGTTGGC <u>T</u> GA <u>G</u> TACATCCAGGAGAACTACAACATC C A
1725	$\begin{array}{cccc} AA\underline{G}GTCAACACGTCCTCCATCT\underline{T}TGACATCCATGTCAAGCGGATCCA\underline{C}GAGTA\underline{C}AAGAGACAGCTGCTCAA\underline{T}TGC\\ A & A & T & T & C \end{array}$
1800	TTCCACAT <u>C</u> ATCACGCTCTACAACCGCCTCAAGCGTGACCCAAACCAGGCCTTTGTTCCCAGGACTATCATGGTC T
1875	GGAGGAAAGGCAGCTCCTGGCTATCACATGGCCAAACTGATCATCAAGCTGATCAACAGTGTAGCCAAGGTCATC
1950	$\begin{array}{ccc} AACAACGATCCAATCA\underline{T}CGGGGACCGTCTCAAGGTGGTGTATCT\underline{G}GAGAACTACCGTGTCTC\underline{G}CTGGCTGAGAAG\\ C & A & A \end{array}$
2025	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2100	TTCATGTTGAACGGGGCACTGACTATCGGAACTCTGGACGGTGCTAATGTAGAGATGAGAGAGA
2175	GAAAATATCTTTATCTTTGGAATGAAGGTTGATGAAGTAGAGGAACTGAAGCGCAGTGGGTACCACCCAC
2250	${\tt TACTACGAGCGTAACACGGACTTAAAGCAGGGGCTTGACCAGATCTCAAGGGGGCTTCTTCTCCCCGAGGAGCCCC} {\tt Caccaccaccaccaccaccaccaccaccaccaccaccacc$
2325	GGCATGTTCACTGATATATACAACTCTGTGATGTACAACGACAGGTTCTNGCCTTCTAAAGATTATGAAGATTAC
2400	ATCAAGTGCCAAGACAGCGTCAGTGAAGTATTCAAGGATCCTCTGCAATGGGCCAAGATGTGTGTCCTCAACATT
2475	GCATCGTCGGTAAATTTCCAGCCGACAGAACAATTTCTGAATATGGCAAGGGACATCTGGGGGGGTGGAACCCAAT
2550	GATATTAAGCTGCCGCCCCACACGAGGGCCTAGACTCAATGGATAGCAAACCACCACAGAAGAAATGAgatctc

2625	$\verb agctgatagccactagaaacaatataacttttaaactttctgttgttgctttgttgtggaatttattaacatagg $
	CATA GA
2700	$tcttata \underline{tt} a a agtttag caatatta cat \underline{g} ta \underline{a} ctgg at g agg \underline{a} \underline{a} attg cagt agg ag attg a cat a ctgg t \underline{g} tt$
	CA A C A A
2775	$ttagttgaagtgaaattgttgtc\underline{a}ggcca\underline{t}tggacatactcagctctgtggtagcat\underline{c}acatt\underline{g}\underline{t}aagcatca$
	G C T A
2850	$ttgtaattaa\underline{t}attt\underline{g}gctggtctgtagagcatttgacttgtcctggtctaagcatttttagtgcttttattgat$
	A C
2925	${\tt gtgtcgttatgtgtgta} a at caa a ctatggt at taa a cagttt catt ca$
3000	tgaaaaaaaaaaaaaaaaa

-0-----

图 1 长牡蛎 Cg-GPH 基因 cDNA 上 82 个 SNPs 位点的分布

3'非编码区和 5'非编码区序列用小写字母表示,编码区序列用大写字母表示. SNPs 位点用下划线表示, 等位基因对应在 SNPs 位点之下.

Fig.1 Distribution of 82 SNPs in the Cg-GPH cDNA of Crassostrea gigas

3' untranslated region and 5' untranslated region are shown in lowercase letters, and coding sequences are in uppercase letters. SNPs are underlined, and the corresponding alleles are below.

图 2 与表型性状相关联的 5 个 SNPs 位点的测序峰图 Fig. 2 Sequences of five SNPs associated with the phenotypic traits

合子 AA 基因型个体(*P*<0.05),而前者的壳宽则极 显著低于后者(*P*<0.01),然而二者在壳长与糖原 含量方面均未表现出显著关联(*P*>0.05)。*T2804C* 位点的各性状差异的显著性与 *A2798G* 位点基本 相同,只是在具有差异的性状中,杂合子CT基因 型个体显著优于纯合子 TT 基因型个体。 2.3 *Cg-GPH* 基因 SNP 单倍型与长牡蛎生长性状的关联分析

利用 PHASE2.1 软件预测的 *Cg-GPH* 基因 SNP 单倍型共有 7 种,将其中频率大于 1%的 6 种 单倍型(表 3)与长牡蛎生长性状进行关联分析。最 小二乘法线性拟合结果表明,*Cg-GPH* 基因的 H6(CTGAT)单倍型在总体质量性状方面,与其他 5 种单倍型均表现出显著差异(*P*<0.05)。在软体部 质量方面 H6(CTGAT)单倍型除了与 H4(TAAAC) 单倍型未表现出统计学显著差异(*P*>0.05)外,与 其他 4 种单倍型均表现出极显著差异(*P*<0.01)。具 有 H6 (CTGAT)单倍型的长牡蛎个体总体质量与 软体部质量均显著高于具有其他单倍型的个体 (*P*<0.05),分别为(44.41±1.15)g和(5.95±0.17)g。 在其他4种性状的统计方面,6种单倍型之间虽然 存在不同程度的差异性,然而并未表现出统计学 显著差异(*P*>0.05)。

3 讨论

由于本研究选择的 5 个长牡蛎全同胞家系样 品,其遗传背景相对野生群体更为单纯且均在完 全相同的条件下养殖,所以更利于检测目标性状

表 2 Cg-GPH 基因 5 个 SNP 基因型与长牡蛎生长性状以及糖原含量的关联分析

Tab. 2Association of the 5 SNP genotypes of *Cg-GPH* gene with growth performance and glycogen content of *Crassostrea gigas* $\overline{x} \pm SE$

SNPs 位点 SNPs locus	基因型(样本量) genotype(n)	売高/mm shell height	壳长/mm shell length	壳宽/mm shell depth	总体质量/g total weight	软体部质量/g soft-tissue weight	糖原含量/%干重 glycogen content/ % dry weight
Т119С	CC (23)	77.28±2.60 ^a	46.37±1.85ª	26.14±1.09 ^a	44.19 ± 3.37^{a}	$5.74{\pm}0.48^{a}$	32.21±2.34 ^a
	CT (119)	70.77±1.33 ^b	45.14±0.95 ^a	24.34±0.56ª	36.32±1.73 ^a	4.88±0.25 ^a	32.17±1.20 ^a
	TT (180)	$71.33{\pm}1.08^{ab}$	44.91±0.77 ^a	23.34±0.45 ^a	36.56 ± 1.40^{a}	4.90±0.20ª	32.86±0.97ª
T470A	AT (25)	77.31±2.46 ^a	48.60±1.74 ^a	26.45±1.04 ^a	45.07±3.19 ^a	6.00±0.46ª	35.24±2.22ª
	TT (297)	$71.03{\pm}0.60^{b}$	44.81±0.43 ^b	23.69±0.25 ^b	36.31 ± 0.78^{b}	4.86±0.11 ^b	32.34±0.54ª
A1139G	AA (39)	71.73±1.85 ^{ab}	44.27±1.31ª	24.20±0.78 ^a	$37.54{\pm}2.40^{a}$	4.95±0.34ª	30.82±1.66ª
	AG (114)	69.13±1.10 ^a	44.49±0.78 ^a	23.05±0.46 ^a	34.37±1.42 ^a	4.61±0.20 ^a	32.15±0.99ª
	GG (169)	$72.97{\pm}0.90^{b}$	45.67±0.64 ^a	24.37±0.38ª	38.49±1.17 ^a	5.16±0.17 ^a	33.22±0.81ª
A2798G	AA (282)	72.31±0.65 ^a	45.49±0.46 ^a	24.25±0.27 ^a	$38.00{\pm}0.84^{a}$	5.09±0.12 ^a	32.83±0.59ª
	AG (40)	65.73 ± 2.33^{b}	42.19±1.65 ^a	21.41 ± 0.98^{b}	29.53 ± 3.02^{b}	$3.94{\pm}0.43^{b}$	30.59±2.10 ^a
T2804C	CT (26)	77.57±2.44 ^a	48.13±1.73 ^a	26.52±1.02 ^a	44.77±3.16 ^a	6.01±0.45 ^a	34.62±2.20ª
	TT (296)	70.99±0.61 ^b	44.83±0.43 ^a	23.68±0.25 ^b	36.30±0.78 ^b	4.86±0.11 ^b	32.38±0.55ª

注: 每个 SNPs 位点各性状同一列的不同上标字母表示差异显著(P<0.05).

Note: Trait values of every SNPs with different superscript letters within a column are significantly different at 0.05 level.

表 3 Cg-GPH 基因 6 个 SNP 单倍型与长牡蛎生长性状的关联分析 Tab. 3 Association of 6 SNP haplotypes of Cg-GPH gene with growth performance of Crassostrea gigas

						-	-				$\overline{x} \pm SE$
单倍型	SNPs 位点 SNPs locus				频率(样本量)	売高/mm	売长/mm	売宽/mm	总体质量/g	软体部质量/g	
haplotype	T119C	T470A	A1139G	A2798G	T2804C	frequency(n)	shell height	shell length	shell depth	total weight	soft-tissue weight
H1	Т	Т	А	А	Т	16.40% (107)	$69.45{\pm}1.00^a$	$43.88{\pm}0.71^{ab}$	$23.19{\pm}0.43^{ab}$	$35.51{\pm}1.34^{b}$	4.82±0.19 ^b
H2	Т	Т	А	G	Т	5.22% (40)	$68.57{\pm}1.64^a$	41.26±1.17 ^a	$21.20{\pm}0.70^{a}$	26.31±2.19 ^a	3.50±0.31 ^a
Н3	Т	Т	G	А	Т	48.95% (307)	$71.03{\pm}0.59^a$	$45.17{\pm}0.42^{bc}$	$23.64{\pm}0.25^{b}$	$35.78{\pm}0.79^{b}$	4.81 ± 0.11^{b}
H4	Т	А	А	А	С	3.75% (25)	$75.06{\pm}2.07^{ab}$	$44.92{\pm}1.47^{abc}$	$24.02{\pm}0.88^{abc}$	$35.08{\pm}2.77^{ab}$	$4.66{\pm}0.40^{abc}$
Н5	С	Т	А	А	Т	3.18% (19)	$71.53{\pm}2.37^{ab}$	$43.26{\pm}1.69^{abc}$	$23.30{\pm}1.01^{abc}$	31.37 ± 3.18^{ab}	4.19±0.46 ^{ab}
H6	С	Т	G	А	Т	21.23% (145)	$74.44{\pm}0.86^{b}$	47.17±0.61°	25.64±0.37 ^c	44.41±1.15°	5.95±0.17°

注: 同一列不同上标字母表示差异显著(P<0.05).

Note: Values with different superscript letters within a column are significantly different at 0.05 level.

的主效变异,也可以更有效地控制环境因素对于 关联分析的影响。本研究在共1940 bp 的长牡蛎 糖原磷酸化酶基因中共检测到82个 SNPs 位点, 其中,在1598 bp 外显子区域共发现63个 SNPs 位点, SNPs 平均密度达到1/25 bp。Sauvage等^[24] 得到长牡蛎编码区 SNPs 平均密度为1/60 bp; Cong 等^[12]在长牡蛎生长性状相关性研究中,得 到候选基因类胰岛素多肽基因外显子 SNPs 密度 约为1/45 bp。本研究得到的 SNPs 平均密度明显 高于前人的研究结果。导致如此显著的高多态性 的原因可能是由于各个基因间存在差异,此外, 还可能是由于长牡蛎基因组内存在大量相互连锁 的变异位点,仅在本研究候选基因中就出现了10 组共26个完全连锁的 SNPs 位点,并且这些连锁 位点与性状之间并无关联。

外显子是基因内包含合成蛋白质所需信息的 一段核苷酸序列,因此,测定外显子中能够直接 影响表型性状的 SNPs 将会更有效地发挥分子标 记辅助育种技术的作用。在所检测的 SNPs 位点 中,发现 *T1747A* 位点与 *T1966C* 位点有可能引起 氨基酸改变,分别由 Phe¹⁷⁴⁷ 变为 Tyr¹⁷⁴⁷ 以及 Ile¹⁹⁶⁶ 变为 Thr¹⁹⁶⁶。然而,在后续关联分析中并未 建立起与性状之间的显著性关联。其他位点均为 同义突变 SNPs 位点,并未引起氨基酸的改变。然 而,此类同义多态性还可能通过影响 mRNA 的拼 接、稳定性、结构和蛋白质折叠,从而间接影响 蛋白质的功能^[28]。同时,内含子和基因间区的 SNPs 可能影响到基因的表达水平,因此,有必要在 长牡蛎全基因组范围内进行新的 SNPs 位点筛查。

对长牡蛎 5 个家系共 322 个个体的生长性状 和糖原含量与在 *Cg-GPH* 基因范围内筛查到的 SNPs 位点相关性进行分析,获得 5 个与表型性状 相关联的 SNPs 位点。进一步将这 5 个 SNPs 位点 构建成 SNP 单倍型,结果表明,在总体质量和软 体部质量性状方面,除了与 H4 (TAAAC)单倍型 之间未表现出极显著差异(分别为 *P*=0.041 8 和 *P*=0.060 8)之外, *Cg-GPH* 基因的 H6 (CTGAT)单倍 型均极显著地高于其他 4 种单倍型(*P*<0.01),所对 应的总体质量和软体部质量分别为(44.41±1.15) g 和(5.95±0.17) g。然而, *Cg-GPH* 基因 SNPs 及 SNP 单倍型均未与糖原含量性状建立显著关联。这很 可能是由于糖原含量这一复杂性状并不是由单一 主效基因所决定的。在糖原代谢的过程中,糖原 的降解需要 3 种酶的作用才能完成,而且会受到 严格而复杂的别构调节和激素调节^[29]。而糖原磷 酸化酶所参与的只是糖原降解的第一步骤,接下 来还需要糖原脱支酶和磷酸葡萄糖变位酶的作用 将糖原降解为葡萄糖-6-磷酸盾,才有可能进入糖 酵解或者由葡萄糖-6-磷酸酶将其直接水解为游 离的葡萄糖分子^[30]。因此,长牡蛎糖原含量与功 能基因多态性的相关性研究,还需要进一步对参 与糖原代谢调节通路的其他酶基因进行探究。

长牡蛎体内糖原含量的周年变化与繁殖周期 密切相关,每年2月积累至最高值,3月之后随着 性腺开始发育及进入快速生长期逐渐下降,为牡 蛎生长、配子发育提供最重要的能量来源^[31]。在 山东沿海,随着春季水温的回升,浮游植物生物 量逐渐增大,牡蛎可以同时利用自身贮备的糖原 和来自水体环境的外源性营养进行生长与性腺发 育^[31]。因此,长牡蛎体内糖原含量的变化同时受 到自身代谢调节以及外源性能量供给的共同影 响。本研究中检测到 *Cg-GPH* 的 SNP 单倍型与生 长性状具有显著相关性,表明内在能源可能用于 体质量的增长。这也再次证实了在长牡蛎的性成 熟期体内积累的糖原对于长牡蛎生长发育具有极 为重要的作用。

本研究首次对 *Cg-GPH* 基因 SNPs 与长牡蛎 生长性状和糖原含量之间的相关性进行了研究。 所获得的与长牡蛎生长性状相关的标记、基因型 及单倍型为今后基因定位提供了有用工具。同时, 也为长牡蛎的分子标记辅助育种和生长性状的遗 传机制研究提供了基础资料。

参考文献:

- [1] 农业部渔业局. 中国渔业年鉴 [M]. 北京: 中国农业出版 社, 2011.
- Hulata G. Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies [J]. Genetica, 2001, 111: 155–173.

- [3] Jena K K, Mackill D J. Molecular markers and their use in marker-assisted selection in rice [J]. Crop Sci, 2008, 48: 1266–1276.
- [4] Kuchel H, Fox R, Reinbeimer J, et al. The successful application of a marker-assisted wheat breeding strategy [J]. Mol Breed, 2007, 20: 295–308.
- [5] Yu K, Park S J, Poysa V. Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics [J]. Plant Breed, 2000, 119: 411–415.
- [6] Wiener P, Woolliams J A, Frank-Lawale A, et al. The effects of a mutation in the myostatin gene on meat and carcass quality [J]. Meat Sci, 2009, 83: 127–134.
- Thaller G, Krämer W, Winter A, et al. Effects of DGAT1 variants on milk production traits in German cattle breeds [J]. J Anim Sci, 2003, 81(8): 1911–1918.
- [8] Lynch M, Walsh B. Genetics and analysis of quantitatative traits [M]. Sunderland, MA, USA: Sinauer Assoc Inc, 1998: 980.
- [9] Palti Y, Nichols K M, Waller K I, et al. Association between DNA polymorphisms tightly linked to MHC class genes and IHN virus resistance in backcrosses of rainbow and cutthroat trout [J]. Aquaculture, 2001, 194: 283–289.
- [10] Huvet A, Jeffroy F, Fabioux C, et al. Association among growth, food consumption-related traits and amylase gene polymorphism in the Pacific oyster *Crassostrea gigas* [J]. Anim Genet, 2008, 39: 662–665.
- [11] Thanh N M, Barnes A C, Mather P B, et al. Single nucleotide polymorphisms in the actin and crustacean hyperglycemic hormone genes and their correlation with individual growth performance in giant freshwater prawn *Macrobrachium rosenbergii* [J]. Aquaculture, 2010, 301: 7–15.
- [12] Cong R, Li Q, Kong L. Polymorphism in the insulin-related peptide gene and its association with growth traits in the Pacific oyster *Crassostrea gigas* [J]. Biochem Syst Ecol, 2013, 46: 36–43.
- [13] Kongchum P, Sandel E, Lutzky S, et al. Association between IL-10a single nucleotide polymorphisms and resistance to cyprinid herpesvirus-3 infection in common carp (*Cyprinus carpio*) [J]. Aquaculture, 2011, 315: 417–421.
- [14] He F, Wen H S, Dong S L, et al. Identification of single nucleotide polymorphism cytochrome P450-c19a and its relation to reproductive traits in Japanese flounder (*Paralichthys olivaceus*) [J]. Aquaculture, 2008, 279: 177–181.
- [15] Li Q, Osada M, Mori K. Seasonal biochemical variations in

Pacific oyster gonadal tissue during sexual maturation [J]. Fish Sci, 2000, 66: 502–508.

- [16] Berthelin C, Kellner K, Mathieu M. Histological characterization and glucose incorporation into glycogen of the Pacific oyster *Crassostrea gigas* storage cells [J]. Mar Biotechnol, 2000, 2: 136–145.
- [17] Bacca H, Huvet A, Fabioux C, et al. Molecular cloning and seasonal expression of oyster glycogen phosphorylase and glycogen synthase genes [J]. Comp Biochem Physiol, 2005, 140B: 635–646.
- [18] Palsamy P, Subramanian S. Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats [J]. Chem-Biol Interact, 2009, 179: 356–362.
- [19] Ebberink R H M, Salimans M. Control of glycogen phosphorylase activity in the posterior adductor muscle of the sea mussel *Mytilus edulis* [J]. J Comp Physiol, 1982, 148B: 27– 33.
- [20] Hata K, Yokoyama I, Suda M, et al. Purification and properties of glycogen phosphorylase from the adductor muscle of the scallop, *Patinopecten yessoensis* [J]. Comp Biochem Physiol, 1987, 87B: 747–753.
- [21] Thomas T P, Philip G. Purification and properties of glycogen phosphorylase a from mantle muscle of the cuttle fish, *Sepia pharaonis* [J]. Indian J Biochem Biophys, 1983, 20: 198–202.
- [22] Hata K, Hata M, Matsuda K. Purification and properties of glycogen phosphorylase from the adductor muscle of the oyster, *Crassostrea gigas* [J]. Comp Biochem Physiol, 1993, 105B: 481–486.
- [23] 刘福平,白俊杰.单核苷酸多态性及其在水产动物遗传育 种中的应用 [J].中国水产科学,2008,15(4):704-712.
- [24] Sauvage C, Bierne N, Lapègue S, et al. Single nucleotide polymorphisms and their relationship to codon usage bias in the Pacific oyster *Crassostrea gigas* [J]. Gene, 2007, 406: 13–22.
- [25] Vignal A, Milan D, SanCristobal M, et al. A review on SNP and other types of molecular markers and their use in animal genetics [J]. Genet Sel Evol, 2002, 34: 275–306.
- [26] Horikoshi H. Glycogen [J]. Chem Field, 1958, 34: 36-39.
- [27] Li Q, Yu H, Yu R. Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (*Crasso-strea gigas*) in China [J]. Aquaculture, 2006, 259: 95–102.
- [28] Hunt R, Sauna Z E, Ambudkar S V, et al. Silent (synonymous)

SNPs: should we care about them[J]. Methods Mol Biol, 2009, 578: 23-39.

- [29] Buschiazzo A, Ugalde J E, Guerin M E, et al. Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation [J]. EMBO J, 2004, 23: 3196–3205.
- [30] 王镜岩, 朱圣庚, 徐长法. 生物化学 [M]. 第 3 版. 北京: 高等教育出版社, 2002.
- [31] Li Q, Liu W, Shirasu K, et al. Reproductive cycle and biochemical composition of the Zhe oyster *Crassostrea pliocatula* Gmelin in an eastern coastal bay of China [J]. Aquaculture, 2006, 261: 752–759.

Single nucleotide polymorphisms in glycogen phosphorylase gene and their association with growth performance and glycogen content in Pacific oyster *Crassostrea gigas*

LIU Siwei, LI Qi, YU Hong, KONG Lingfeng

Key Laboratory of Mariculture, Ministry of Education, OceanUniversity of China, Qingdao 266003, China

Abstract: Glycogen phosphorylase plays a key role in the metabolism of glycogen, a molecule critical for the growth and development of oysters. We evaluated the effect of polymorphisms in the *Crassostrea gigas* glycogen phosphorylase gene (*Cg-GPH*) on growth and glycogen content. We tested the association between single nucleotide polymorphisms (SNPs) in coding regions of the gene and growth performance (shell height, shell length, shell depth, total weight and soft-tissue weight) and glycogen content using 322 oysters from five full-sib families. We identified 82 SNPs in the 1 940 bp *Cg-GPH* gene, including 63 SNPs in the exon region, one SNP locus located in the 5'-UTR, and 18 SNPs in the 3'-UTR. The average density of SNPs in the coding region was one per 25 bp. Five SNPs were significantly associated with growth performance (*P*<0.05), but there was no association between the SNPs and glycogen content. Furthermore, among the six SNP haplotypes constructed using the five SNPs above, the total weight of the individuals with haplotype H6 (CTGAT) of *Cg-GPH* was significantly higher than those with the other five haplotypes(*P*<0.05), suggesting this haplotype may be the most advantageous in terms of weight gain in *C.gigas*. Our results provide basic information for future genetic improvement of growth performance in *C.gigas*.

Key words: Crassostrea gigas; glycogen phosphorylase gene; growth performance; glycogen; SNPs Corresponding author: LI Qi. E-mail: qili66@ouc.edu.cn