DOI: 10.3724/SP.J.1118.2016.15144

盐碱胁迫对尼罗罗非鱼鳃 Na⁺/HCO₃共转运子、碳酸酐酶基因 表达的影响

梁从飞,赵金良,甘远迪,王飞,Thammaratsuntorn Jeerawat,伍勇,李传阳, 罗明坤

上海海洋大学 农业部淡水水产种质资源重点实验室, 上海 201306

摘要:为了探讨盐碱胁迫条件下鱼类渗透生理调节机制,以尼罗罗非鱼(*Oreochromis niloticus*)为实验材料, PCR 扩 增得到了 Na⁺/ HCO₃ 共转运子(*NBCe1*)基因 cDNA 部分序列,比较了单盐(盐度 10、盐度 15)、单碱(1.5 g/L、3 g/L NaHCO₃)、盐碱混合(盐度 10,碱度 1.5 g/L;盐度 15,碱度 3 g/L)胁迫后不同时间(0 h、6 h、12 h、24 h、48 h、72 h、 96 h)血清渗透压、离子浓度(Na⁺、K⁺、Cl⁻、Ca²⁺)以及鳃碳酸酐酶(CA)活性、*CA*与 *NBCe1*基因 mRNA 表达变化。 结果显示,不同胁迫条件下,血清渗透压、离子浓度、鳃组织 CA 酶活、*CA*与 *NBCe1*基因 mRNA 表达变化均与 胁迫强度呈正相关。随时间推移,血清渗透压、离子浓度呈现先上升后下降的变化趋势,单盐、盐碱混合组血清渗 透压值较单碱组高。单盐、单碱、盐碱混合组中,*NBCe1*基因 mRNA 在鳃中均呈略微上调,但不显著(P>0.05)。单 碱组和盐碱混合组鳃 CA 活性较单盐组高,低盐碱胁迫(盐度 10,碱度 1.5 g/L)下 CA 活性较晚达最高值;不同胁迫 条件下,*CA*基因 mRNA 表达均表现上调,单碱、盐碱混合组更为显著(P<0.05),推测 CA 较 NBCe1 对体内 HCO₃ 转 运作用更为显著。研究结果为尼罗罗非鱼盐碱适应生理调节提供了基础资料。

关键词:尼罗罗非鱼;盐碱胁迫;Na⁺/HCO₃ 共转运子;碳酸酐酶;酶活性;mRNA 表达 中图分类号:S965 文献标志码:A 文章编号:1005-8737-(2016)02-0274-10

广盐性硬骨鱼类具有较强的离子与渗透压调 节能力,可以适应更广的水环境,渗透调节机能 主要依靠鳃、肠道、肾等器官的共同作用实现的。 鳃是鱼类特有的渗透调节器官,鳃上皮组织中含 有大量的离子细胞,内含有许多膜结构,其顶部、 基底部装配有不同离子通道、转运子以及转运酶 等,共同参与离子的转运过程^[1-3]。目前,有关鱼 类耐盐的细胞与分子机理相对成熟,参与的主要 转运子包括 Na⁺-K⁺-ATPase (NKA)、Na⁺-K⁺-2Cl⁻ 共转运蛋白(NKCC)和囊性纤维化跨膜传导调节 因子(CTFR)等^[4-7]。 盐碱水域是内陆水域的一种特殊类型,不仅 盐度高、离子复杂,同时具有高碱、高 pH 等特点, 不利于鱼类等水生生物生存^[8]。在碳酸盐型碱水 中,HCO₃不仅引起体内离子浓度过高、还会引起 酸碱平衡,导致碱中毒^[9],因此,HCO₃离子转运 对鱼类碱环境适应至关重要。现有研究资料表明, 参与HCO₃离子转运的蛋白包括 Na⁺/HCO₃ 共转 运蛋白(NBCe1)、碳酸酐酶(CA)^[10–11]等。NBCe1 是 SLC4 家族中最主要的HCO₃ 跨膜转运体之一, 在各种组织中有着广泛表达,在细胞内 pH 调控 以及上皮细胞对HCO₃ 吸收或分泌过程中起着重

收稿日期: 2015-04-09; 修订日期: 2015-06-02.

基金项目:国家科技支撑计划项目(2012BAD16B03);现代农业产业技术体系专项(CARS-49);水产动物遗传育种中心上海市 协同创新中心项目(ZF1206).

作者简介:梁从飞(1989-),男,硕士研究生,从事动物遗传育种与繁殖研究. E-mail: lcf_2012@163.com

通信作者:赵金良,博士,教授,从事水产动物遗传与育种研究. E-mail: jlzhao@shou.edu.cn

要作用,在人肾脏近端肾小管中,NBCe1 负责 85%以上的HCO₃的重吸收,以维持机体的酸碱 平衡^[12-13]。在酸性水体中,未观察到莫桑比克罗 非鱼(*Oreochromis mossambicus*)鳃*NBCe1* mRNA 表达水平明显变化^[14];而在呼吸性酸中毒期间, 虹鳟(*Oncorhynchus mykiss*)鳃、肾*NBCe1* mRNA 均呈现高表达,这与鳃中 pH 调节、肾脏 HCO₃ 重 吸收活动相关^[15]。CA 是一组含锌金属酶,广泛分布 机体各组织中,主要参与胞内 CO₂ 水合过程的可逆催 化反应(CO₂+H₂O \rightleftharpoons H⁺+ HCO₃),还可为 CI⁻/HCO₃、 Na⁺/H⁺离子交换子及 Na⁺/HCO₃离子共转运子等提 供 H⁺和 HCO₃^{-[16-17]},在离子转运、酸碱平衡、维持内 环境稳定方面发挥重要作用^[18-20]。目前,有关鱼类在 碱、盐碱环境中 HCO₃ 转运机制的研究尚不充分。

尼罗罗非鱼(*Oreochromis niloticus*)为广盐性 种类,不仅对盐度有一定的耐受性^[21],还具有耐 高 pH 和高碱度的能力^[22-23],可作为鱼类耐盐碱 研究的重要对象。为此,本研究选取了尼罗罗非 鱼作为实验材料,比较观察了单盐、单碱及盐碱 混合胁迫 96 h 内血清渗透压、血清离子浓度的变 化特征, 鳃 CA 活性变化以及鳃中 *NBCe1、CA* mRNA 表达水平变化,旨在为鱼类碱相环境适应 中 HCO₃离子转运机理提供基础资料。

1 材料与方法

1.1 实验材料及实验用水

尼罗罗非鱼于 2014 年 9 月取自上海海洋大学 罗非鱼种质资源试验站,运回实验室后,在养殖 中心控温循环水族箱中淡水暂养 1 周以适应新环 境(25.0±0.8)℃。暂养期间,每天投喂充足饵料, 及时清理残饵和粪便。选取规格均匀(47.8±3.5)g、 健康的个体进行盐碱胁迫实验。

单盐组配制是在淡水中加入相应量的海水晶, 单碱组直接在淡水中加入相应质量的 NaHCO₃(分 析纯),盐碱混合组则是先在淡水中加入相应量的 海水晶,配置成盐碱梯度所需的盐度,再加入相 应质量的 NaHCO₃(分析纯)配置而成。各组实验用 水配制后曝气 48 h 以上备用。各组盐、碱度测定 调节时所用仪器分别为 SG7 便携式盐度计和 HI 83200 多参数水质分析仪。

1.2 实验方法

1.2.1 实验设置及采样步骤 根据预实验不同浓 度水体中鱼体死亡结果,设置了 6 个实验组:单 盐(盐度 10、15),单碱(碱度 1.5 g/L, 3 g/L),盐碱 混合[(盐度 10,碱度 1.5 g/L)、(盐度 15,碱度 3 g/L)],对照组为淡水组。实验前一天停止喂食,实 验开始时将鱼从淡水中直接移至各浓度实验组中, 每组放鱼 30 尾,设 3 个重复。试验期间水温保持 在 (25.0 ± 0.8) °C,溶解氧 (5.7 ± 0.5) mg/L, pH 8.4±0.3。胁迫后 0 h、6 h、12 h、24 h、48 h、72 h、 96 h 分别采样,每组随机选取 6 尾。

用无菌注射器从尾静脉处抽血,放入 1.5 mL 离心管,4℃冰箱中静置 12 h 左右,分层后离心 (5000 r/min,4℃,10 min),取上清液保存于--20℃ 冰箱中。抽血结束后,快速解剖取出鳃,放入 -80℃超低温冰箱保存。

1.2.2 *NBCe1* 基因片段扩增与测序 将鳃放在液 氮中研成粉末,用 Trizol (Invitrogen)提取总 RNA, 用 RNase free ddH₂O 溶解,检测 RNA 浓度和 A_{260}/A_{280} 值。按 PrimeScript RTreagent Kit With gDNA Eraser 说明书操作,取1 μ L总 RNA 为模板, 反转录合成第一链 cDNA。参照 GenBank 中莫桑 比克罗非鱼的 *NBCe1* 基因 cDNA 序列,用 Primer Premier 5.0 软件设计特异扩增引物,由生工生物 工程(上海)有限公司合成(表 1)。以鳃 cDNA 为模 板,参照 Premix TaqTM (TaKaRa TaqTM Version 2.0 plus dye)说明书进行 *NBCe1* 基因片段 PCR 扩增。 扩增产物回收纯化后送生工生物工程(上海)有限 公司进行测序。

1.2.3 血清渗透压和血清 Na⁺、K⁺、CF、Ca²⁺浓 度测定 取 10 μ L 血清样品,采用 WESCORV APRO5520 渗透压仪(Logan, USA)测定血清渗透 压值。血清 Na⁺、K⁺、CF、Ca²⁺浓度采用南京建 成生物公司的相应离子检测试剂盒测定,具体操 作参照说明书进行,使用 Synergy H1 酶标仪 (Bio-tek, USA)检测其吸光值。

1.2.4 CA 酶活测定 CA 活性采用上海研谨生物 公司的酶联免疫(ELISA)检测试剂盒(Fish CA

Tab. 1Primers used for NBCe1 cDNA sequencing and NBCe1, CA qRT-PCR			
引物 primer	引物序列(5'-3') primer sequence (5'-3')	用途 usage	
NBCe1-dF2	TGGCAACTCGTCAGAACTCT	cDNA 部分序列扩增	
NBCe1-dR2	AATGATGGCAGCAACAGTAGAT	cDNA partial sequence amplification	
reNBCe1-F	CGCTCAATGGTGTCCAGTTC	NBCel 基因荧光定量 PCR	
reNBCe1-R	CCTGGATGAAAGTAAAGAGGTG	NBCel qRT-PCR	
CA-4 F	AGCATACAGTGGATGGAAAGCG	CA 基因荧光定量 PCR	
CA-4 R	GACCAGTTGAGTTGCCTGACATT	CA qRT-PCR	
β -actin F	CAGCAGATGTGGATCAGCAAGC	内参引物	
β -actin R	TGAAGTTGTTGGGCGTTTGG	internal control primers	

表1 NBCel 基因扩增引物及 NBCe1、CA 基因荧光定量 PCR 引物

ELISA Kit)测定, 使用 Synergy H1 酶标仪读取 450 nm 波长的吸光值,并计算其含量。

1.2.5 鳃中 NBCe1、CA 基因 mRNA 表达 各实 验组不同时间样品 cDNA 转录合成同上. 产物干 -20℃冰箱中保存备用。引物设计分别参照莫桑比 克罗非鱼 NBCel(GenBank 登录号: AB562944), CA-4(XM 003460163) cDNA 序列, 合成步骤同 **1.2.2**(表 1)。cDNA 用 RNase free ddH₂O 做 5 个 3 倍梯度稀释、各设 3 个重复、参照 SYBR Premix ExTaq 说明书进行实时荧光定量 PCR 扩增, 扩增 程序为: 95℃ 30 s; 95℃ 5 s, 60℃ 30 s, 39 个循 环;95℃ 10 s。根据结果调整扩增体系,使目的基 因和内参基因扩增效率都接近100%。标准曲线扩 增与上述扩增程序相同。结果采用 2^{-ΔΔC}t 法对不 同基因的表达量进行比较分析。

1.2.6 数据分析 实验数据利用 SPSS 19.0 统 计软件分析、单因素方差分析进行显著性检验、 Duncan 多重比较检测各测量指标的差异、以 P<0.05 为差异显著。

2 结果与分析

2.1 NBCel 基因 cDNA 部分序列

PCR 扩增得到 NBCel 基因 cDNA 片段长度为 1000 bp(图 1), 与莫桑比克罗非鱼的 NBCel 基因 序列同源性达 99.9%以上。用 DNAMAN 软件推 导氨基酸序列, 共编码 333 个氨基酸, Blastp 检索 其与斑马鱼(Danio rerio)、伯氏朴丽鱼(Haplo*chromis burtoni*) Na⁺/HCO₃协同转运蛋白的氨基 酸序列同源性均达到 99%。

2.2 血清渗透压

单盐组中, 血清渗透压变化随盐度增加而升 高、随时间推移呈现先上升后下降的趋势、24 h 时达到最高值。单碱组中血清渗透压随碱度、胁 迫时间变化趋势不明显。盐碱混合组中血清渗透 压随盐碱浓度增加而升高、随时间推移也呈现先 上升后下降的趋势, 24 h 达到最高值。盐碱混合组 中血清渗透压值较单盐组和单碱组高(P<0.05)。各 实验组 96 h 血清渗透压值均高于其初始值(图 2)。 2.3 血清离子浓度

单盐组中、血清 Na⁺、K⁺、Cl⁻浓度随盐度增 加而上升,随时间推移呈先上升后下降的趋势, 24 h 时达到最高值, Ca^{2+} 浓度变化不明显。单碱组 中 Ca²⁺、Na⁺浓度随随时间推移呈先上升后下降趋 势, 24 h 达最高值, K^+ 、 Cl⁻浓度变化趋势不明显。 盐碱混合组 Na⁺、K⁺、Cl⁻、Ca²⁺浓度均随盐碱混 合浓度增加而上升,随时间推移呈先上升后下降 的趋势, 24 h 时达最高值(图 3)。

2.4 鳃 CA 活性

单盐组中、鳃组织 CA 活性变化趋势不明显。 单碱组鳃 CA 活性随碱度上升而增大, 随时间推 移呈先上升后下降的趋势。盐碱混合组鳃 CA 活 性随盐碱浓度增加而升高、随时间推移呈现先上 升后下降的趋势, 12 h 达最高值(图 4)。

2.5 NBCel 和 CA 基因 mRNA 表达变化

单盐组、单碱组和盐碱混合组中, NBCel 基因 mRNA 表达均随水体浓度升高而上调,随时间推 移、均呈先上调、后下调的趋势、但变化趋势不明 显(P>0.05)(图 5)。

1	TGGEAACTEGTEAGAACTETTTGATETATETGEEETGAEAAACAGTAETGGTETGEEAGT
1	G N S S E L F D L S A L T N S T G L P V
61	A & A TGET AFET GGE A TETET GALE A AGGAGE AGTGT AT GA AGT AT GGAGGAE AGTT AGT
21	N A T W A S L T K E Q C M K Y G G Q L V
121	TGGACAAAGCTGTGGCTACATGCCTGACATCACCCTGATGTCTTTCATTTTGTTCCTTGG
41	G Q S C G Y M P D I T L M S F I L F L G
181	GACCTACACCTGCTCCATGTCTCTGAAGAAGTTCAAGACCAGCCGCTTCTTCCCCACCCA
61	TYTCSMSLKKFKTSRFFPTQ
241	AGTGAGGAAGETCATCAGTGACTTTGEGATCATCTTGGECATCCTCCTCTTCTGEGGEGT
81	V K K L I S D F A I I L A I L L F C G V
301	GGATGCCTTAGTTGGTGTGGAGACTCCAAAGCTCTTAGTGCCAAGTGAATTCAAGCCCAC
101	D A L V G V E T P K L L V P S E F K P T
261	
361 121	
121	51 2 1 6 1 7 1 1 1 6 6 4 1 1 1 7 1 2
421	AGCAGCTGCACTTCCTGCTCTGGTTGTCACCATTCTGATATTCATGGACCAACAGATCAC
141	A A A L P A L V V T I L I F M D Q Q I T
491	COLTAT & ATTATC & A CAGA & A GAGE A CA & A A CTT & A GA & A GGGGE & A CTT A TC A CTT GGA
161	A V I V N R K E H K L K K G A G Y H L D
541	CCTGTTCTGGGTGGCCATCCTGATAGTGATCTGCTCTTTCATGGGCCTGCCATGGTATGT
181	LFWVAILIVICSFMGLPWYV
601	GGCTGCCACTGTCATTTCCATCGCCCACATCGACTCTCTGAAAATGGAGACTCAGACTTC
201	A A T V I S I A H I D S L K M E T Q T S
661 221	TGETECEGGAGAGEAGECTAAATTECEGGGTGTEAGGGAAEAGEGAGECACTGGTATETT
221	ALGEGLVLFGAVEGVAIGTL
721	CGTGTTCATCTTGACGGGACTCTCTGTCTTCATGGCTCCTATCCTCAAGTTCATTCCCAT
241	V F I L T G L S V F M A P I L K F I P M
781 261	CULAGIGUTUTATGGIGIGITUTUTALAIGGGIGIGGUATUGUTUAAIGGIGIUUAGIT
201	
841	CATGGATCGCTTGCAGCTGCTCCTCATGCCTGCCAAGCACCAGCCGGACCTGATCTACCT
281	M D R L Q L L L M P A K H Q P D L I Y L
001	
901 201	R H V P O R R T H T R T R T O A T C T A
301	anrigaain biiii gabo ba
961	CTTCCTGTGGGTCCTCAAATCTACTGTTGCTGCCATCATT
321	FLWVLKSTVAAII

图 1 尼罗罗非鱼 NBCel 基因 cDNA 部分序列及其推导氨基酸序列

Fig. 1 cDNA and deduced amino acid sequences of Oreochromis niloticus NBCe1 gene

单盐组 CA 基因 mRNA 表达随盐度、时间推移变化均不明显(P>0.05)。单碱组 CA mRNA 表达随碱度升高而升高,随时间推移呈先上升后下降

的趋势, 24 h 达最高值。盐碱混合组 *CA* mRNA 表达随盐碱度升高而升高,随时间推移呈先上升后下降的趋势, 24 h 达最高值(图 6)。

SW 表示单盐组、AW 表示单碱组、SW&AW 表示盐碱混合组、*表示组间差异显著(P<0.05).

Fig. 2 Effects of salinity and alkalinity on serum osmolality of Oreochromis niloticus SW refers to the saline water group; AW refers to the alkaline water group; SW&AW refers to the saline-alkaline water group; * means significant difference (P < 0.05) among different groups.

图 3 盐碱度对尼罗罗非鱼血清离子浓度影响

SW 表示单盐组, AW 表示单碱组, SW&AW 表示盐碱混合组.*表示组间差异显著(P<0.05).

Fig. 3 Effects of salinity and alkalinity on serum ion concentrations of Oreochromis niloticus

SW refers to the saline water group; AW refers to the alkaline water group; SW&AW refers to the saline-alkaline water group. * means significant difference (P<0.05) among different groups.

SW 表示单盐组, AW 表示单碱组, SW&AW 表示盐碱混合组.*表示组间差异显著(P<0.05).

Fig. 4 Effects of salinity and alkalinity on gill carbonic anhydrase activity of *Oreochromis niloticus* SW refers to the saline water group; AW refers to the alkaline water group; SW&AW refers to the saline-alkaline water group. * means significant difference (P<0.05) among different groups.

Fig. 5 Effects of salinity and alkalinity on gill *NBCe1* relative expression level of *Oreochromis niloticus* SW refers to the saline water group; AW refers to the alkaline water group; SW&AW refers to the saline-alkaline water group.

SW 表示单盐组, AW 表示单碱组, SW&AW 表示盐碱混合组.*表示组间差异显著(P<0.05).

Fig. 6 Effects of salinity and alkalinity on gill CA relative expression level of Oreochromis niloticus SW refers to the saline water group; AW refers to the alkaline water group; SW&AW refers to the saline-alkaline water group. * means significant difference (P<0.05) among different groups.

3 讨论

3.1 不同环境胁迫对血清渗透压及离子浓度变化的影响

本研究中, 单盐、单碱、盐碱混合胁迫条件 下, 尼罗罗非鱼血清渗透压值均随胁迫浓度上升 而增加,这主要是由于随着浓度升高,水环境中 离子浓度增高,相应地进入鱼体内的离子增加累 积所造成的。由于不同环境中的离子组成不同, 单盐、单碱、盐碱混合组中血清渗透压变化趋势 也不相同。由于硬骨鱼类渗透压维持主要涉及 Na⁺、K⁺和 Cl⁻等离子流^[24],与大多数鱼类一致, 盐度增加引起尼罗罗非鱼血清渗透压的显著变化; 单碱组中,血清渗透压变化趋势不甚明显,推测 碱度对鱼类影响不完全是影响鱼类体内血清渗透 压平衡, HCO₃ 进入鱼体内,还可能通过破坏体 内酸碱平衡来影响鱼类;盐碱混合组中血清渗透 压变化较单盐、单碱组高,这可能由于盐、碱中 不同离子间存在协同作用,导致渗透压变化更为 显著^[9]。

在单盐、单碱、盐碱混合组中, Na^+ 、 K^+ 、 Cl^- 、 Ca²⁺浓度变化趋势有所不同。单盐组中、血清 Na^+ 、 Cl^- 、 K^+ 浓度均随盐度升高而升高、呈现正 相关变化。这与在其他鱼类盐度渗透调节中, Na⁺、 Cl^{-} 浓度与渗透压变化间明显关联一致^[25], K⁺浓度 是否明显关联渗透压变化,不同研究者的结论并 不一致^[26-29]。单碱组中, 血清 Na⁺、Ca²⁺浓度随碱 度升高而升高、由于单碱水体中主要离子是 Na⁺、 HCO₃,胁迫后会引起血清 Na⁺浓度累积升高, Ca²⁺浓度升高的原因尚不清楚。盐碱混合组中、 Na^+ 、 Cl^- 、 K^+ 、 Ca^{2+} 变化也随浓度升高而升高,随 时间推移先上升后下降的趋势,这与赵丽慧等^[25] 的研究结果基本一致。在不同环境(单盐、单碱、 盐碱混合)胁迫下、尼罗罗非鱼血清离子变化与渗 透压变化呈现正相关、但不同离子(Na^+ 、 Cl^- 、 K^+ 、 Ca²⁺)浓度应答变化表现并不一致,表明它们在不 同环境胁迫中对血清渗透压变化的影响作用并不 相同。

3.2 不同环境胁迫对鳃 CA 活性的影响

本研究中, 鳃 CA 活性在单盐下变化不明显, 而在碱度组(3 g/L NaHCO₃)、盐碱混合组下变化 明显,因此,认为 CA 在碱、盐碱混合水体中发挥 重要离子调控作用。单盐组中,鱼体内的主要负 荷离子为 Na⁺、Cl⁻,可通过 NKA、NKCC、CRTR 等离子通道进行有效转运^[4–5,7]。碱度组中,水体 中均含有较高的 HCO₃⁻,导致鱼体内摄入过多 HCO₃⁻。由于 CA 主要催化可逆反应 H⁺+ HCO₃⁻ \rightleftharpoons CO₂+H₂O^[16],鳃中 CA 酶活性增强可将 HCO₃⁻ 迅 速转化为 CO₂,并从鳃中直接排出,可防止体内 HCO₃⁻积累引起酸碱平衡失调,产生碱中毒。研究 表明,盐碱混合组中盐度提升会导致 CO₃⁻ + HCO₃ 显著增加,碱度同时升高^[9],本实验中盐碱 混合组 CA 活性较单碱组变化更高,推测盐碱混 合组中 HCO₃ 浓度高于单碱组 HCO₃ 浓度,因此 导致 CA 酶活需求最高。

3.3 不同环境胁迫对 *NBCe1、CA* 基因 mRNA 表达的影响

单盐组中、尼罗罗非鱼鳃 NBCel 基因 mRNA 表达随盐度、时间增加表现上调、表明 NBCel 基 因参与了盐度胁迫下的离子转运。研究发现、在 淡水 + NaCl、酸性淡水 + NaCl 中、莫桑比克罗 非鱼鳃 NBCel 基因表达有上调但并不显著 (P>0.05)^[14],这可能是鱼类盐度适应过程中,Na⁺ 及 CI⁻转运主要是依靠其他途径如 NKA、NKCC 及 CFTR 等进行的^[4-5,7], NBCe1 不是主要的离子 转运蛋白、可能在离子转运中起一定的协同作 用。在单碱、盐碱混合组中, NBCel 基因 mRNA 随浓度增加、时间推移、表达水平也有上调。研 究发现, 斑马鱼在 5% CO₂/HCO₃ 浓度碱水体中, 鳃部 NBCel 基因 mRNA 表达上调^[30]; 虹鳟在酸性 碳酸盐环境中鳃 NBCel 基因 mRNA 表达在前 3 h 显著上调, 6 h 后恢复到对照组水平^[15], 表明 NBCe1参与体内 Na^+ 、 HCO₃ 的转运过程。由于 NBCel 在 碱、盐碱混合组中表达上调均不显著(P>0.05), 推测 在碱、盐碱混合条件下,鱼体内 HCO₃ 的转运可能 主要通过其他离子转运通道实现^[17,31]。

本研究中,单盐组鳃 *CA* mRNA 表达变化不 明显,单碱、盐碱混合组中表达变化趋势显著,盐 碱组 *CA* mRNA 表达变化趋势与前期研究结果一 致^[25]。由于盐、碱、盐碱混合组中鳃 *CA* mRNA 表达与 CA 活性变化规律一致,这也从基因表达 水平验证了 CA 在碱、盐碱混合水体中离子调控 发挥重要作用。碱、盐碱混合组中,鳃 *CA* mRNA 表达最高值出现时间(24 h)较 CA 酶活最高值时间 (12 h)滞后,推测胁迫前期,机体可能利用先前自 身合成存储的 CA,随着体内 CA 不断消耗,*CA* 基 因进行转录、翻译,因而 mRNA 水平响应出现延 迟现象。鳃 *CA* mRNA 表达最高量时间与血清中 Na⁺、CI⁻、K⁺离子浓度达到峰值时间点一致,表 明盐碱胁迫后 24 h 时,尼罗罗非鱼体内的离子压 第2期

力与转运能力均处于高峰状态[32-33]。

上述结果表明,碱度胁迫的产生机理与盐度 胁迫不同,表现在血清渗透压、离子浓度变化趋 势不一。在单碱、盐碱混合胁迫下,尼罗罗非鱼 鳃 *NBCe1、CA*均参与了HCO₃的转运过程,但应 答程度不一,*NBCe1*转运作用可能相对较弱,而 *CA*在HCO₃代谢与转运过程中作用更为明显。

参考文献:

- Marshall W S, Grosell M. Ion transport, osmoregulation, and acid-base balance[M]//Evans D H, Claiborne J B. The Physiology of Fishes. Boca Raton: CRC Taylor and Franis, 2006: 177–230.
- [2] Kaneko T, Watanabe S, Lee K M. Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts[J]. Aqua-Biosci Monogr, 2008, 1(1): 1–62.
- [3] Hiroi J, McCormick S D. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish[J]. Respir Physiol Neuro, 2012, 184(3): 257–268.
- [4] Hirose S, Kaneko T, Naito N, et al. Molecular biology of major components of chloride cells[J]. Comp Biochem Physiol B, 2003, 136(4): 593–620.
- [5] Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiol Rev, 2005, 85(1): 97–177.
- [6] Cutler C P, Cramb G. Two isoforms of the Na⁺/K⁺/2Cl⁻ cotransporter are expressed in the European eel (*Anguilla anguilla*)[J]. Biochim Biophys Acta-Biomembr, 2002, 1566(1–2): 92–103.
- [7] Bodinier C, Boulo V, Lorin-Nebel C, et al. Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of *Dicentrarchus labrax* during ontogeny[J]. J Anat, 2009, 214(3): 318–329.
- [8] Wang H, Geng L K, Fang W H, et al. Studies on the commercially experimental culture of penaeid shrimp, *Peneaus chinensis*, transplanted to the northwest inland salt waters[J]. Marine Fisheries, 1997, 19(1): 9–12. [王慧, 耿隆坤, 房文 红,等. 中国对虾往西北内陆咸水水域移植的生产性试养研究[J]. 海洋渔业, 1997, 19(1): 9–12.]
- [9] Yang F Y, Li X J, Zhao C S, et al. Composition feature of CO₃²⁻, HCO₃⁻ and their toxic effect on shrimp in Jilin western waters[J]. Modern Agricultural Science and Technology, 2007, 113(3): 107–109. [杨富亿, 李秀军, 赵春生, 等. 吉林西部盐碱水域 CO₃²⁻、HCO₃⁻ 组成特征及其对对虾的毒 性效应[J]. 现代农业科技, 2007, 113(3): 107–109.]

- [10] Romero M F, Fulton C M, Boron W F. The SLC4 family of HCO₃⁻ transporters[J]. Pflügers Arch, 2004, 447(5): 495–509.
- [11] Purkerson J M, Schwartz G J. The role of carbonic anhydrases in renal physiology[J]. Kidney Int, 2007, 71(2): 103–115.
- [12] Liu Y, Lu Q W, Chen L M. Physiology and pathophysiology of Na⁺/HCO₃⁻ cotransporter NBCe1[J]. Acta Physiologica Sinica, 2012, 64(6): 729–740. [刘颖, 卢群伟, 陈历明. Na⁺/HCO₃⁻ 共转运体 NBCe1 的生理及病理学作用[J]. 生理学报, 2012, 64(6): 729–740.]
- [13] Romero M F, Boron W F. Electrogenic Na⁺/ HCO₃⁻ cotransporters: cloning and physiology[J]. Annu Rev Physiol, 1999, 61(1): 699–723.
- [14] Furukawa F, Watanabe S, Inokuchi M, et al. Responses of gill mitochondria-rich cells in Mozambique tilapia exposed to acidic environments (pH 4.0) in combination with different salinities[J]. Comp Biochem Physiol A, 2011, 158(4): 468–476.
- [15] Perry S F, Furimsky M, Bayaa M, et al. Integrated Responses of Na⁺/HCO₃⁻ cotransporters and V-type H⁺-ATPases in the fish gill and kidney during respiratory acidosis[J]. Biochim Biophys Acta-Biomembr, 2003, 1618(2): 175–184.
- [16] Marshall W S. Na⁺, Cl⁻, Ca²⁺ and Zn²⁺ transport by fish gills: retrospective review and prospective synthesis[J]. J Exp Zool, 2002, 293(3): 264–283.
- [17] Hwang P P, Lee T H, Lin L Y. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms[J]. Am J Physiol-Regul Integr Comp Physiol, 2011, 301(1): R28–R47.
- [18] Hwang P P, Lee T H. New insights into fish ion regulation and mitochondrion-rich cells[J]. Comp Biochem Physiol A, 2007, 148(3): 479–497.
- [19] Roy L A, Davis D A, Saoud I P, et al. Branchial carbonic anhydrase activity and ninhydrin positive substances in the Pacific white shrimp, *Litopenaeus vannamei*, acclimated to low and high salinities[J]. Comp Biochem Physiol A, 2007, 147(2): 404–411.
- [20] Zimmera A M, Barcarolli I F, Wood C M, et al. Waterborne copper exposure inhibits ammonia excretion and branchial carbonic anhydrase activity in euryhaline guppies acclimated to both freshwater and seawater[J]. Aquat Toxicol, 2012, 122: 172–180.
- [21] Suresh A V, Lin C K. Tilapia culture in saline waters: a review[J]. Aquaculture, 1992, 106(3): 201–226.
- [22] Lei Y Z, Dong S L, Shen C G. Study on the toxicity of carbonate-alkaline to fishes[J]. Journal of Fisheries of China, 1985, 9(2): 171–183. [雷衍之,董双林, 沈成钢. 碳酸盐碱

度对鱼类毒性作用的研究[J]. 水产学报, 1985, 9(2): 171-183.]

- [23] Zhao L H, Jia J H, Zhao J L, et al. Growth comparison among three strains of Oreochromis niloticus juvenile in net cage under different salinity-alkalinity waters[J]. South China Fisheries Science, 2013, 9(4): 1–7. [赵丽慧, 筴金华, 赵金良, 等. 不同盐、碱度下 3 品系尼罗罗非鱼幼鱼网箱 养殖的生长比较[J]. 南方水产科学, 2013, 9(4): 1–7.]
- [24] Zhang C J, Shi Z H. On salinity-related effects on osmo-regulation mechanism in marine teleost[J]. Marine Fisheries, 2013, 35(1): 108–116. [张晨捷, 施兆鸿. 盐度影响海水硬 骨鱼类渗透压调节机理的研究与展望[J]. 海洋渔业, 2013, 35(1): 108–116.]
- [25] Zhao L H, Zhao J L, Zhao Y, et al. Effects of salinity-alkalinity on serum osmolality, ion concentration and mRNA expression of ion transport enzymes of *Oreochromis niloticus*[J]. Jounal of Fisheries of China, 2014, 38(10): 1696–1704. [赵丽慧,赵金良,赵岩,等. 盐碱胁迫对尼罗 罗非鱼血清渗透压、离子浓度及离子转运酶基因表达的影 响[J]. 水产学报, 2014, 38(10): 1696–1704.]
- [26] Wang X H, Lin Y H, Jiang Q L, et al. Effects of NaCl on concentration of serum ions, cortisol and activities of Na⁺, K⁺-ATPase on tissue in *Chalcalburnus chalcoides aralensis*[J]. Journal of Jilin Agricultural University, 2007, 29(5): 576–580. [王信海, 蔺玉华, 姜秋俚, 等. NaCl 对咸海卡拉白鱼血清离子、皮质醇和组织 Na⁺/K⁺-ATP 酶活性的影响 [J]. 吉林农业大学学报, 2007, 29(5): 576–580.]
- [27] Zhao F, Zhuang P, Zhang L Z, et al. The influence of salinity acclimation on activity of Na⁺/K⁺-ATPase in branchial epithelium, concentration of ions and osmolality in serum of

Acipenser schrenckii[J]. Journal of Fisheries of China, 2006, 30(4): 444–449. [赵峰, 庄平, 章龙珍, 等. 盐度驯化对史 氏鲟鳃丝 Na⁺/K⁺-ATP 酶活力、血清渗透压及离子浓度的 影响[J]. 水产学报, 2006, 30(4): 444–449.]

- [28] Sampaio L A, Bianchinia A. Salinity effects on osmoregulation and growth of the euryhaline flounder *Paralichthys orbignyanus*[J]. J Exp Mar Biol Ecol, 2002, 269(2): 187–196.
- [29] Geng L W, Xu W, Li C T, et al. Influence of salinity and alkalinity on serum ion concentrations, serum osmosis and gill Na⁺/K⁺-ATPase activity of *Barbus capito*[J]. Journal of Fishery Sciences of China, 2011, 18(2): 458–465. [耿龙武, 徐伟, 李池陶, 等. 盐碱对大鳞鲃血清渗透压、离子含量 及鳃丝 Na⁺/K⁺-ATP 酶活力的影响[J]. 中国水产科学, 2011, 18(2): 458–465.]
- [30] Sussman C R, Zhao J H, Plata C, et al. Cloning, localization, and functional expression of the electrogenic Na⁺ bicarbonate cotransporter (*NBCe1*) from zebrafish[J]. Am J Physiol-Cell Physiol, 2009, 297(4): C865–C875.
- [31] Tresguerres M, Katoh F, Orr E, et al. Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon?[J]. Physiol Biochem Zool, 2006, 79(6): 981–996.
- [32] Gilmour K M. New insights into the many functions of carbonic anhydrase in fish gills[J]. Respir Physiol Neuro, 2012, 184(3): 223–230.
- [33] Velan A, Hulata G, Ron M, et al. Comparative time course study on pituitary and branchial response to salinity challenge in Mozambique tilapia (*Oreochromis mossambicus*) and Nile tilapia (*O. niloticus*)[J]. Fish Physiol Biochem, 2011, 37(4): 863–873.

Effects of salinity and alkalinity on mRNA expression of Na⁺/HCO₃⁻ cotransporter and carbonic anhydrase genes from *Oreochromis niloticus*

LIANG Congfei, ZHAO Jinliang, GAN Yuandi, WANG Fei, Thammaratsuntorn Jeerawat, WU Yong, LI Chuanyang, LUO Mingkun

Laboratory of Freshwater Fisheries Germplasm Resource, Ministry of Agriculture; Shanghai Ocean University, Shanghai 201306, China

Abstract: To understand fish osmotic adjustment mechanisms in saline and alkaline water, the partial cDNA sequence was obtained from gills of *Oreochromis niloticus*. Physiological changes in serum osmolality, ion concentration (Na⁺, K⁺, Cl⁻ and Ca²⁺), and gill carbonic anhydrase (CA) activities were determined, and *CA* and *NBCe1* mRNA gene expressions under saline (10 g/L, 15 g/L NaCl), alkaline (1.5 g/L and 3 g/L NaHCO₃), and saline-alkaline (salinity 10, 15 g/L NaCl; salinity 1.5, 3 g/L NaHCO₃) conditions at different times (0 h, 6 h, 12 h, 24 h, 48 h, 72 h and 96 h) were compared. The results showed that serum osmolality, ion concentration, gill CA activity, *CA* and *NBCe1* mRNA gene expression correlated positively with the strength of saline, alkaline and saline-alkaline stress. Over time, serum osmolality and ion concentration trends increased and then decreased. Osmotic pressure insaline and saline-alkaline water was higher than that in saline water. Under low concentrations of stressors, CA activity reached its highest level at a later time. Slightly higher *NBCe1* gene mRNA expression was detected in gills under high concentrations of stressors (*P*>0.05). Gill *CA* mRNA expression in saline, alkaline and saline-alkaline water (*P*<0.05). The results showed that CA and NBCe1 in Nile tilapia are involved in salinity and alkalinity regulation under osmotic stress. The results provide a basic understanding of the physiological regulation during salinity-alkalinity adaptation.

Key words: *Oreochromis niloticus*; salt and alkline stress; Na^+/HCO_3^- cotransporter; carbonic anhydrase; enzyme activity; mRNA expression

Corresponding author: ZHAO Jinliang. E-mail: jlzhao@shou.edu.cn