DOI: 10.3724/SP.J.1118.2016.15397

研究论文

长江上游铜鱼体内全氟辛烷磺酸(PFOS)残留分布特征

沈子伟¹, 茹辉军¹, 李云峰¹, 张燕¹, 吴湘香¹, 李荣¹, 李爱华², 郭丽², 倪朝辉¹

1. 中国水产科学研究院 长江水产研究所, 湖北 武汉 430223;

2. 湖北省环境监测中心站, 湖北 武汉 430072

摘要:为阐明长江上游鱼类全氟辛烷磺酸(PFOS)的残留分布,本研究于 2013 年分 3 次在长江上游不同江段,采集 该地主要经济鱼类铜鱼(*Coreius heterokon*)。采用超高效液相色谱-质谱联用法分析铜鱼肌肉、肝和性腺 3 种不同组 织全氟辛烷磺酸(PFOS)含量。结果表明,铜鱼组织内PFOS检出率为100%,总体均值为2.72 ng/g (0.33~10.14 ng/g)。 PFOS 含量水平在肝最高(5.56 ng/g),肌肉次之(1.39 ng/g),性腺最低(0.62 ng/g)。不同组织间差异极显著(*K-W* test, *P*<0.01),表明鱼类肝比肌肉和性腺更易于积累 PFOS。在不同采集江段,PFOS 含量仅在肌肉组织差异显著(ANOVA, *P*<0.05);在不同年龄组,PFOS 含量有随鱼类年龄增长而增高的趋势,且在各组织中差异显著(ANOVA,*P* 0.05), 该结果表明 PFOS 含量可能与鱼类摄食内容及生理参数不同有关。与已有研究相比,长江上游铜鱼 PFOS 暴露水平 低于国内外淡水、海水鱼类,目前仍处于一个较低水平。

关键词:铜鱼;全氟辛烷磺酸(PFOS);残留分布;长江上游 中图分类号:S94 文献标志码:A 文章编号:1005-8737-(2016)04-0924-07

全氟化合物(perfluorinated compounds, PFCs) 作为较为新型持久性有机污染物,自 20 世纪 50 年代初开始被大量人工合成,已广泛应用于诸多 工业生产和生活用品中。全氟化合物具有良好的 表面活性和化学稳定性,在一般环境条件下极抗 水解,具有热稳定性,难以生物、化学和光化学降 解。全氟辛烷磺酸(perfluorooctane sulfonate, PFOS) 作为重要的表面活性剂,是目前环境中较为常见 的全氟化合物之一,已在水体、土壤、大气、沉 积物等多项环境介质和多种生物体中被检出,被 认为是引起全球环境污染的新型化学污染物,对 生态环境及人群健康存在潜在威胁^[1-3]。

PFOS 等全氟化合物在水生生物体内广泛存在, 可对无脊椎动物、鱼类等水生生物产生急性和慢性 毒性作用及致癌作用^[4-7]。研究表明, PFOS 等全氟 化合物可以通过食物链的传递,在高营养级水生 生物体内进行富集和放大^[8-9],最终通过人类食物 链进入人体,是人类吸收持久性有机污染物的重 要来源之一,且已形成全球普遍性存在的特性^[8]。 因此, PFOS 作为持久性环境污染物家族的新成员, 其环境污染现状及生态风险评价,以及人体负荷 调查及健康影响评价已引起研究者普遍关注^[10]。

国外有关 PFOS 污染水平及分布的研究开展 较早,内容涉及不同环境介质和生物^[11-13]。目前, 国内有关 PFOS 污染报道主要集中于水环境^[14], 对于水生生物 PFOS 污染水平及现状研究主要见 于海产品^[15-17],自然环境下野生淡水鱼类污染水 平仅见少量报道^[18-19]。长江上游地区作为我国珍 稀、特有鱼类分布的最集中河段,分布特有鱼类 多达 112 种^[20],而其野生鱼类 PFOS 污染状况尚

收稿日期: 2015-12-04; 修订日期: 2016-01-11.

基金项目:中央级公益性科研院所基本科研业务费专项资金项目(2013JBFM18).

作者简介: 沈子伟(1981-), 男, 博士研究生, 主要从事渔业生态环境保护研究. E-mail: cq_szw@126.com 并列第一作者: 茹辉军(1980-), 男, 博士, 主要从事渔业生态环境保护研究. E-mail: h.jru@163.com 通信作者: 倪朝辉, 研究员. E-mail: nizhaoh@yfi.ac.cn

不明确。因此,对该区域鱼类 PFOS 污染状况展 开研究十分必要。

铜鱼作为长江上游特有鱼类,分布于金沙江 下游、长江上游干流、嘉陵江中下游、沱江、岷 江下游、乌江下游等水系。其肉味鲜美,广为人 们喜爱,是长江上游江段的重要经济鱼类和优势 特有鱼类^[21],在上游渔获物占比可达 15.3%~ 22.1%^[22]。本研究于 2013 年 4 月、9 月和 12 月在 长江上游柏溪、宜宾、泸州和重庆四地展开铜鱼 PFOS 调查采集,阐明不同区域和年龄铜鱼 PFOS 浓度的污染特征,目的为揭示长江上游鱼类 PFOS 的污染现状,以期为区域 PFOS 的生态风险 评估及特有鱼类保护提供科学依据。 1 材料与方法

1.1 样本采集及保存

于 2013 年 4 月、9 月和 12 月在长江上游柏 溪、宜宾、泸州和重庆江段进行实验样本鱼类采 集(图 1), 共采集铜鱼样本 36 尾。样本冷藏保存 运至实验室后分别测量体长、体重、年龄等数据。 测得体长均值 15.9 cm, 范围 9.8~26.4 cm; 体重均 值 66.0 g, 范围 17.2~232.6 g; 样本鱼类年龄由 1~ 3 龄组成, 各年龄组所占比例分别为 44.44%、 41.67%和 13.89%。其后取背部肌肉、肝和性腺 组织共计 98 例, 包裹于锡箔纸内, -20 冷冻保 存待测。

S1, 柏溪; S2, 宜宾; S3, 泸州; S4, 重庆. Fig. 1 Location of brass gudgeon sampling sites in the upper of the Yangtze River

S1, Baixi; S2, Yibin; S3, Luzhou; S4, Chongqing.

1.2 样品处理与测定

1.2.1 样品前处理 取适量组织样品冷冻后置于 冷冻干燥机内冻干,用石英研钵或搅碎机研磨成 粉末后,称取约 0.2 g 样品置于 15 mL 聚丙烯管中, 加入内标(C-PFOS) 2 ng,老化 30 min,加入 8 mL 10 mmol/L KOH/甲醇溶液,在涡轮混匀器中混 匀。在 60℃水洛条件下,超声萃取 30 min,在室温 下以 250 r/min 震荡 10 h,以 2000 r/min 离心 5 min, 将溶液全部转移至另一离心管中,氮吹,定容为 1 mL。 加入 100 μL 1mol/L HCI 后在-20℃中冷冻 1~2 h, 在 5000 r/min 下离心 5 min。将离心管内的所有溶 液转移定容至 50 mL PET 药用透明塑料瓶中。过 已经活化的 Wax 柱子, 氮吹, 定容为 1 mL, 以 12000 r/min 离心 15 min, 取上清液 1 mL 转移至 样品瓶中待测。

1.2.2 样品测定 利用超高效液相色谱质谱联用 法测定 PFOS, 仪器型号分别为 1290 UPLC-6460 QQQ MSD(美国 Agilent 公司); 色谱柱为 C₁₈(美国 Waters 公司), 柱温 30℃, 流速 0.3 mL/min, 进样 体积为 10 μL。采用二元梯度洗脱的方式进行洗 脱。质谱条件为电喷雾离子源(ESI), 采用负离子模 式; 检测方式: 多反应检测(MRM); 雾化器: 40 psi; 干燥气流速: 8 L/min; 干燥气温度: 350℃; 毛细 管电压: 4000 eV。

采用 STATISTICA8.0及 Excel 2010进行数据

的整理及统计分析,数据用平均值表示。使用非 参数通过 Kruskal-Wallis 检验了解不同组织间 PFOS 含量差异,利用主效应方差分析(main effects ANOVA)检验不同区域及不同年龄的各组织 中 PFOS 含量差异。当 $P \leq 0.05$ 时,认为差异显著; 当 $P \leq 0.01$ 时,认为差异极显著。

2 结果与分析

2.1 铜鱼 PFOS 含量总体特征

长江上游铜鱼 98 例组织样本 PFOS 的检出率为 100%, 含量总体特征见表 1。PFOS 均值为 2.72 ng/g, 范围 0.33~10.14 ng/g。不同组织中,性腺 PFOS 含 量最低, 0.62 ng/g; 肝组织含量最高, 5.56 ng/g。从 变异来看,性腺中变异最大,在肌肉中变异最小。 Kruskal-Wallis 检验显示,不同组织间 PFOS 含量 具极显著差异(*P*<0.01)。

表 1 长江上游铜鱼 PFOS 含量(湿重)总体特征

Tab. 1	General characteristics of PFOS	concentrations (wet weight) in bras	s gudgeon from the upper Yangtze River
		concentrations (net neight) in stas	gaageon nom the apper rangese in the

组织 tissue	样本量 sample number	均值/(ng·g ⁻¹) mean	范围/(ng·g ⁻¹) range	变异系数 C.V.
总体 total	98	2.72	0.33~10.14	86.98
肌肉 muscle	36	1.39 ^a	0.76~3.78	23.77
肝 liver	36	5.56 ^b	3.44~10.14	39.62
性腺 gonad	26	0.62°	0.33~1.23	41.36

注: 不同字母代表铜鱼不同组织间差异具显著性(P≤0.05).

Note: Values with different letters mean significant differences between different tissues ($P \le 0.05$).

2.2 不同江段 PFOS 含量特征

1.3 数据分析

不同采集江段铜鱼各组织 PFOS 含量如图 2 所示。所检测的 3 种不同组织中,以肝组织含量 最高,肌肉次之,性腺最低。以采集江段为主效应 条件的方差分析显示(表 2), PFOS 含量在肌肉组 织中差异显著,柏溪段极显著地高于其他 3 个江 段(*P*<0.01),而在肝和性腺中,各江段则无显著 差异。

2.3 不同年龄组 PFOS 含量特征

不同年龄组铜鱼各组织 PFOS 含量如图 3 所 示。3 种组织中,均表现出随年龄增加而含量增高 的趋势。以年龄为主效应条件的方差分析显示(表 2), PFOS 含量在各组织中均差异显著,3 龄鱼显著 高于 1 龄鱼($P \leq 0.05$)。

图 2 长江上游不同江段铜鱼 PFOS 含量特征 不同字母表示不同江段铜鱼相同组织间差异具显著性

(*P*≤0.05).

Fig. 2 PFOS concentrations in brass gudgeon from different reaches of the upper Yangtze River

Different letters indicate significant difference among the same tissues in brass gudgeon from different reaches of the upper Yangtze River ($P \leq 0.05$).

组织	江段 river reach			年龄 age				
tissue	df	MS	F	Р	df	MS	F	Р
肌肉 muscle	3	0.09	7.49	0.00	2	0.06	4.82	0.02
肝 liver	3	0.01	1.02	0.40	2	0.03	3.27	0.05
性腺 gonad	3	0.01	0.79	0.51	2	0.07	4.17	0.03

Fig. 3 PFOS concentrations in different age classes of brass gudgeon from the upper Yangtze River Different letters indicate significant difference among the same tissues in different age classes of brass gudgeon from the upper Yangtze River ($P \leq 0.05$). wet weight. 3 讨论

PFOS 是继有机磷、二噁英等污染物后,又一 类普遍存在于环境和生物体内的持久性有机物。 本研究就长江上游主要经济鱼类铜鱼的 PFOS 污 染特征作出分析。研究结果与其他淡水鱼类和海 水鱼类相关研究结果相比(表 3),长江上游铜鱼肌 肉中 PFOS 的含量水平(0.33~10.14 ng/g,湿重)高 于广州水产品市场淡水鱼类(0.05~0.41 ng/g,湿重) 手广州水产品市场淡水鱼类(0.05~0.41 ng/g,湿重) [^{17]},低于太湖(4.13~18.62 ng/g,湿重)和珠江 流域野生鱼类(5.3~14 ng/g,湿重)^[19, 25],亦远低 于美国密歇根水域(<6~190 ng/g,湿重)和德国罗 特美因河(13.0±3.0~295±80 ng/g,湿重)鱼类^[13, 26];

表 3 不同鱼类中 PFOS 含量水平

	Tab. 3 PFOS concentration levels in different fish species				
区域 region	鱼类	PFOS/(ng-	参考文献		
	fish species	肌肉 muscle	肌肉 muscle 肝 liver		
	鮟鱇鱼 Lophius litulon	1.91	3.14	[16]	
-L`*	许氏平鲉 Sebastods schlegelii	0.19	0.74	[16]	
大连	大泷六线鱼 Hexagrammos otakii	0.37	0.53	[16]	
Dalian	褐牙鲆 Paralichthys olivaceus	0.29	0.51	[16]	
	海鲶 Synechogobius hasta	0.18	0.54	[16]	
	鳙 Aristichthys nobilis	0.15	1.19	[17]	
广州	尼罗罗非鱼 Oreochromis niloticus	$0.05 {\pm} 0.01$	$1.00{\pm}0.37$	[17]	
Guangzhou	鲫 Carassius auratus	$0.10{\pm}0.03$	0.47 ± 0.20	[17]	
	鲤 Cyprinus carpio	0.41±0.30	3.18 ± 2.85	[17]	
太湖	黄颡鱼 Pelteobagrus fulvidraco	18.62	-	[25]	
Taihu Lake	鳙 Aristichthys nobilis	4.13	-	[25]	
ᄴᅚᆖᅀᄥ	鲫 Carassius auratus	5.3	37	[19]	
ホルニ用/m Deam Direm Delta	鲤 Cyprinus carpio	8.7	150	[19]	
Pearl River Della	尼罗罗非鱼 Oreochromis niloticus	14	230	[19]	
关团应即担心状	大鳞大麻哈鱼 Oncorhynchus tshawytscha	7-190	33-170	[13]	
美国密歇根水域	鲱型白鲑 Coregonus clupeaformis	97-170	33-81	[13]	
Michigan waters, USA	斑鳟 Salmo trutta	<17-26	<6-46	[13]	
德国罗特美因河	Leuciscus cephalus	13±3	123±15	[26]	
Roter Main River, Germany	Gobio gobio	80±17	295±80	[26]	
长江上游 Upper Yangtze River	铜鱼 Coreius heterokon	1.39±0.58	5.56±1.32	本研究	

与海水鱼类相比,长江上游铜鱼样品肌肉 PFOS 含量高于大连海水中除鮟鱇外(1.91 ng/g,ww)的 其他各鱼类^[16]。肝 PFOS 的含量水平对比结果表 现出与肌肉相同的规律。以上研究结果表明,长 江上游铜鱼中 PFOS 的含量水平在目前已知淡水 鱼类中尚处于较低水平。这可能与采集鱼类所处 区域为长江上游珍稀特有鱼类国家级保护区,水 域生态环境要求较高(执行地表水 II 类标准),且 严格要求工业化工的生产排放,尚无大量使用 PFOS 的污染源有关。

从 PFOS 在不同组织的检测结果可以看出, 本研究与以前的研究具有较为一致的结果,即鱼 类肝比肌肉和性腺更易于积累 PFOS(表 3)。已有 研究表明, PFOS 进入有机体后,区别于有机氯农 药和二噁英等常见持久性有机污染物蓄积在生物 体的脂肪组织中,而是黏附在血清、肝等的蛋白 分子上,在各个组织和器官中以肝浓度最高,其 次富集在血清、肾、性腺和肌肉等组织^[23-24]。本 研究中,不同江段铜鱼组织 PFOS 含量比较结果 表明,各采集江段铜鱼组织 PFOS 污染状况较为 一致,这可能与各江段环境、水文条件较为一致 有关。

在关于全氟化合物的生物富集效应研究中,不 同生物及同种生物的不同生理特征下表现出对持 久性有机污染物的不同生物富集能力^[27-28]。已有对 水鸟和哺乳动物体内 PFOS 浓度的研究表明, PFOS 浓度与年龄、性别未有明显关系^[29-30]。而 对中国珠江三角洲野生鱼类 PFOS 蓄积研究显示, 罗非鱼 PFOS 含量随鱼体长度和重量的增加而增 加^[19]。本研究测定的 3 种组织中, PFOS 含量均表 现出随年龄增长而增高的趋势, PFOS 含量水平差 异显著(*P* 0.05),这可能与不同年龄鱼类摄食内 容及生理参数不同有关。影响 PFCs 生物富集的 因素很多,其中 PFCs 的理化性质、生物的种类、 生态位及其生理参数(体长、体重和性别等)、环 境条件(地理区域、生态系统组成、水温、污染物 含量等)是最主要的影响因素^[31]。

本研究结果表明,长江上游铜鱼受到 PFOS 暴露污染,3 种组织的检出率为 100%,在不同江 段并未表现出明显差异;在不同组织中含量水平 为肝>肌肉>性腺,并且 PFOS 含量水平有随鱼类 年龄增长而增高的趋势。通过比较发现,长江上 游铜鱼暴露水平低于国内外淡水以及海水水域鱼 类,处于一个较低水平范围。虽然目前监测到的 暴露水平还较低,但全氟化合物的生物富集和生 物放大作用已是目前不容忽视的生态环境问题。

致谢:中国水产科学研究院长江水产研究所环境 保护研究组杨晓江、刘晓娟和刘清兰协助采集样 品,湖北省环境监测中心站贺小敏老师在样品分 析中给予帮助,武汉大学资源与环境学院宋碧玉 老师在文章修改中给予宝贵意见,谨至谢忱。

参考文献:

- [1] Cao Y, Zhang Y H, Lei C W, et al. Environmental pollution and ecological toxicity of perfluorinated chemicals[J]. Journal of Environment Health, 2012, 29(6): 561–567. [曹莹,张 亚辉, 雷昌文,等.环境中全氟化合物污染状况及生态毒 性评估[J]. 环境与健康杂志, 2012, 29(6): 561–567.]
- [2] So M K, Miyake Y, Yeung W Y, et al. Perfluorinated compounds in the Pearl River and Yangtze river of China[J]. Chemosphere, 2007, 68(11): 2085–2095.
- [3] Yang L P, Zhu L Y, Liu Z T. Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China[J]. Chemosphere, 2011, 83(6): 806–814.
- [4] Drottar K R, Krueger H O. PFOS: An early life-stage toxicity test with the fathead minnow (*Pimephales promelas*)[R]. Wildlife Int, Ltd., 2000.
- [5] Ji K, Kim Y, Oh S, et al. Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid on freshwater macroinvertebrates (*Daphnia magna* and *Moina macrocopa*) and fish (*Oryzias latipes*)[J]. Environ Toxicol Chem, 2008, 27(10): 2159–2168.
- [6] Li M H. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates[J]. Environ Toxicol, 2009, 24(1): 95–101.
- [7] Wei R G, Zhang Y F, Qin Z F. Research progress in developmental neurotoxicity of perfluorinated compound[J]. Asian Journal of Ecotoxicology, 2012, 5(5): 483–490. [韦荣国,张银凤,秦占芬. 全氟化合物发育神经毒性研究进展[J]. 生态毒理学报, 2012, 5(5): 483–490.]
- [8] Kannan K, Tao L, Sinclair E, et al. Perfluorinated compounds in aquatic organisms at various trophic levels in a

Great Lakes food chain[J]. Arch Environ Contam Toxicol, 2005, 48(4): 559–566.

- [9] de Vos M G, Huijbregts M A J, van den Heuvel-Greve M J, et al. Accumulation of perfluorooctane sulfonate (PFOS) in the food chain of the Western Scheldt estuary: Comparing field measurements with kinetic modeling[J]. Chemosphere, 2008, 70(10): 1766–1773.
- [10] Lv G, Wang L B, Liu J, et al. Ecological and human health risk assessment of perfluorooctane sulfonate (PFOS)[J]. Resources and Environment in the Yangtze Basin, 2008, 17(6): 904–908. [吕刚, 王利兵, 刘军, 等. 全氟辛烷磺酰基化合 物水生生态风险和人体健康风险评价[J]. 长江流域资源 与环境, 2008, 17(6): 904–908.]
- [11] Giesy J P, Kannan K. Perfluorochemical surfactants in the environment[J]. Environ Sci Technol, 2002, 36(7): 146A– 152A.
- [12] Seung-Kyu K, Kurunthachalam K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes[J]. Environ Sci Technol, 2007, 41(24): 8328–8334.
- [13] Giesy J P, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife[J]. Environ Sci Technol, 2001, 35(7): 1339–1342.
- [14] Yang L Q, Feng L Y, Chen Y G. Pollution status and control strategies of perfluorinated compounds in water environments over China: A review[J]. Chemical Industry and Enegineering Progress, 2012, 31(10): 2304–2312. [杨兰琴, 冯雷雨,陈银广.中国水环境中全氟化合物的污染水平及 控制策略[J]. 化工进展, 2012, 31(10): 2304–2312.]
- [15] Wang Y X, Li J G, Guo F F, et al. Investigation of perfluorinated compounds in seafood from six coastal provinces of China[C]. Proceedings of the Fifth National Symposium on Persistent Organic Pollutants, 2010: 78-80. [王雨昕,李敬 光,郭斐斐,等. 中国沿海省份海产品中全氟有机化合物 的污染研究[C]. 持久性有机污染物论坛暨第五届持久性 有机污染物全国学术研讨会论文集, 2010: 78-80.]
- [16] Zhang X, Liu W, Jin Y H. Investigation of exposure level of PFOS and PFOA in the body of marine animals in Dalian coastal waters[J]. Environmental Science & Technology, 2012, 35(8): 104–106. [张新, 刘薇, 金一和. 大连沿海常 见海产品 PFOS 和 PFOA 的暴露水平调查[J]. 环境科 学与技术, 2012, 35(8): 104–106.]
- [17] Zhang L J, Hu G C, He L F, et al. Contamination characteristics of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in aquaticproducts from Guangzhou[J]. China Environmental Science, 2013, 33(S1): 198–202. [张丽 娟, 胡国成, 何连芳, 等. 广州水产品中全氟辛烷磺酸和

全氟辛酸的污染特征[J]. 中国环境科学, 2013, 33(S1): 198-202.]

- [18] Shi Y L, Pan Y Y, Yang R Q, et al. Occurrence of perfluorinated compounds in fish from Qinghai-Tibetan Plateau[J]. Environ Int, 2010, 36(1): 46–50.
- [19] Pan C G, Zhao J L, Liu Y S, et al. Bioaccumulation and risk assessment of per- and polyfluoroalkyl substances in wild freshwater fish from rivers in the Pearl River Delta region, South China[J]. Ecotox Environ Safe, 2014, 107: 192–199.
- [20] Cao W X. Construction of national nature reserve for the rare and endemic fishes in the upper reaches of the Yangtze River and the consideration of related issues[J]. Resources and Environment in the Yangtze Basin, 2000, 2(2): 131–132. [曹 文宣. 长江上游特有鱼类自然保护区的建设及相关问题 的思考[J]. 长江流域资源与环境, 2000, 2(2): 131–132.]
- [21] Zhuang P, Cao W X. Growth characteristics of coreiusheterodon in the middle and upper reaches of the Yangtze River[J]. Acta Hydrobiologica Sinica, 1999, 23(6): 577–583.
 [庄平,曹文宣. 长江中、上游铜鱼的生长特性[J]. 水生生物学报, 1999, 23(6): 577–583.]
- [22] Gao T H, Tian H W, Ye C, et al. Diversity and composition of fish in the mainstream of national nature reserve of rare and endemic fish in the upper Yangtze River[J]. Freshwater Fisheries, 2013, 43(2): 36–42. [高天珩, 田辉伍, 叶超, 等. 长江上游珍稀特有鱼类国家级自然保护区干流段鱼类组成及其多样性[J]. 淡水渔业, 2013, 43(2): 36–42.]
- [23] Ahrens L, Siebert U, Ebinghaus R. Total body burden and tissue distribution of polyfluorinated compounds in harbor seals (*Phoca vitulina*) from the German Bight[J]. Mar Pollut Bull, 2009, 58(4): 520–525.
- [24] Guo W H. Research advances in ecotoxicity of PFOS[C]. Proceedings of Academic Annual Meeting of the Society of Environmental Science in China, 2013: 6365–6369. [郭文慧. PFOS 毒性研究进展[C]. 中国环境科学学会学术年会论文 集, 2013: 6365–6369.]
- [25] Xu J, Guo C S, Zhang Y, et al. Bioaccumulation and trophic transfer of perfluorinated compounds in a eutrophic freshwater food web[J]. Environ Pollut, 2014, 184(1): 254–261.
- [26] Becker A M, Gerstmann S, Frank H. Perfluorooctanoic acid and perfluorooctane sulfonate in two fish species collected from the Roter Main River, Bayreuth, Germany[J]. Bull Environ Contam Toxicol, 2010, 84(1): 132–135.
- [27] Kelly B C, Ikonomou M G, Blair J D, et al. Perfluoroalkyl contaminants in an Arctic marine food web: trophic magnification and wildlife exposure[J]. Environ Sci Technol, 2009, 43(11): 4037–4043.
- [28] Houde M, De Silva A O, Muir D C G, et al. Monitoring of

perfluorinated compounds in aquatic biota: An updated review[J]. Environ Sci Technol, 2011, 45(19): 7962–7973.

- [29] Kannan K, Choi J W, Iseki N, et al. Concentrations of perfluorinated acids in livers of birds from Japan and Korea[J]. Chemosphere, 2002, 49(3): 225–231.
- [30] Dai J Y, Li M, Jin Y H, et al. Perfluorooctanesulfonate and perfluorooctanoate in red panda and giant panda from

China[J]. Environ Sci Technol, 2006, 40(18): 5647-5652.

[31] Wu J P, Guan Y T, Li M Y, et al. Recent research advances on the bioaccumulation potentials of perfluorinated compounds[J]. Ecology and Environmental Sciences, 2010, 19(5): 1246–1252. [吴江平, 管运涛, 李明远, 等. 全氟化合物的 生物富集效应研究进展[J]. 生态环境学报, 2010, 19(5): 1246–1252.]

Residual characteristics of perfluorinated sulfonate in *Coreiusheterodon* from the upper Yangtze River

SHEN Ziwei¹, RU Huijun¹, LI Yunfeng¹, ZHANG Yan¹, WU Xiangxiang¹, LI RONG¹, LI Aihua², GUO Li², NI Zhaohui¹

1. Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China;

2. Hubei Provincial Environmental Monitoring Center, Wuhan 430072, China

Abstract: Perfluorooctane sulfonate (PFOS) is a typical perfluorinated compound and a new environmental chemical pollutant found worldwide. PFOS is a potential threat to the environment and public health. Studies on PFOS pollution in China have focused on the aquatic environment and some aquatic marine organisms, but little attention has been given to wild populations of freshwater fish. The upper Yangtze River is inhabited by 112 endemic and several rare fish species. However, the effect of PFOS pollution on fish in this area remains unclear. Brass gudgeon (Coreius heterodon), the main commercial fish species in this area, was sampled at Baixi, Yibin, Luzhou, and Chongqing cities in April, September, and December 2013, respectively, to clarify the status of PFOS residues in fish inhabiting the upper Yangtze River. A total of 36 brass gudgeon individuals were sampled, and PFOS content in 98 tissue samples, including three different fish tissues, were detected by ultra-performance liquid chromatography-tandem mass spectrometry. A mean value of 2.72 ng/g PFOS (range, 0.33-10.14 ng/g) was detected in all fish samples. The highest mean PFOS concentration was found in liver (5.56 ng/g), followed by muscle (1.39 ng/g), and the lowest concentration was detected in gonad (0.62 ng/g). A highly significant difference in PFOS concentration was observed among different tissues (K-W test, P < 0.01). These results are consistent with some previous studies on PFOS concentrations in wildlife; that is, PFOS concentrates more easily in the liver than other tissues, which may be explained by the high binding affinity of PFOS for liver fatty-acid proteins. In addition, muscle PFOS concentrations were significantly different among different river reaches (main effects ANOVA, P < 0.05). The PFOS concentrations in all detected tissues increased significantly with increasing fish age (main effects ANOVA, $P \leq 0.05$), indicating that tissue PFOS concentrations may be related to food items or physiological parameters of different age groups of fish. The PFOS concentrations detected in brass gudgeon were lower compared with levels measured in species worldwide, indicating a relatively low level of PFOS pollution in fish species in the upper Yangtze River.

Key words: brass gudgeon; *Coreius heterodon*; PFOS; residual; upper Yangtze River Corresponding author: NI Zhaohui. E-mail: nizhaoh@yfi.ac.cn