DOI: 10.3724/SP.J.1118.2017.17018

脊尾白虾 GAPDH 基因的克隆及其内参基因稳定性分析

薛蓓^{1,2,3},张培^{1,2,3},李志辉^{1,2,3},赵莲^{1,2,3},赖晓芳^{1,2,3},高焕^{1,2,3},李健⁴, 阎斌伦^{1,2,3}

1. 淮海工学院 海洋生命与水产学院, 江苏省海洋生物技术重点实验室, 江苏 连云港 222005;

2. 江苏省海洋生物产业技术协同创新中心, 江苏 连云港 222001;

3. 江苏省农业种质资源保护与利用平台, 江苏 南京 210014;

4. 中国水产科学研究院 黄海水产研究所, 山东 青岛 266071

摘要:为比较甘油醛-3-磷酸脱氢酶(glyceraldehyde 3-phosphate dehydrogenase, GAPDH)、18S rRNA 和 β-actin 基因 在脊尾白虾(*Exopalaemon carinicauda*)作内参基因的优劣,本研究采用同源克隆和 RACE 技术,克隆了脊尾白虾 *GAPDH* 基因全长 cDNA 序列(GenBank 登录号: KX893516),通过实时荧光定量 PCR(quantative real-time PCR, qPT-PCR)技术,检测 3 种基因在脊尾白虾不同组织及不同蜕壳后时间点的表达量变化,在此基础上进行内参稳定 性分析。结果显示,脊尾白虾 *GAPDH* 基因全长 1514 bp,开放读码框 1002 bp,编码 333 个氨基酸,二级结构预测 显示 GAPDH 蛋白具有一个高度保守的 NAD⁺结合功能域(NAD binding domain)和行使糖运输和代谢的催化功能 域。分析 qRT-PCR 结果并结合 geNorm、NormFinder 和 BestKeeper 3 种软件的分析发现,在不同组织和不同蜕壳 后时间点,3 种内参基因的稳定性由高到低依次为 18S rRNA、*GAPDH、β*-actin。因此,在脊尾白虾不同组织和不同蜕壳后时间点的定量分析中,选取单内参基因时,推荐使用 18S rRNA 为内参基因,双内参时推荐 18S rRNA 和 *GAPDH*,而 18S rRNA、β-actin 和 *GAPDH* 在其他生理条件下作内参基因的稳定性还有待进一步研究。

脊尾白虾(Exopalaemon carinicauda)是广泛 分布于黄、渤海区域的中国特有的养殖经济虾类^[1], 具有繁殖能力强、适应性广和生长速度快等优点^[2]。 近年来,养殖规模不断扩大,产量可占中国东部 沿海混养池塘总产量的 1/3^[3]。该虾的基础生物学 研究也日益受到重视,尤其是在繁殖发育及免疫 相关基因研究方面^[4-6]。为阐释不同生理条件下基 因调控特征和机理,需要分析大量的基因表达特 征,这些基因表达的定量分析需要以一个内参基 因(reference gene)作为参考,因此内参基因表达 稳定性的好坏直接决定了定量是否准确。内参基 因通常是各种管家基因(housekeeping genes),是 指其表达水平不受研究条件的影响,且可以在多 种样本间恒定表达的已知参照基因^[7]。然而,大 量的研究结果表明,在所有组织、发育时期、生 理条件下均稳定表达的理想的内参基因是不存在 的^[8]。目前常用的内参基因主要是 18S rRNA、 β-actin、GAPDH 和转录延伸因子(elongation factors, EF)等^[9]。

甘油醛-3-磷酸脱氢酶(GAPDH)是糖酵解过 程的一种重要的能量代谢酶,参与第 6 步反应, 在 NAD⁺和无机磷酸(Pi)的参与下将甘油醛-3-磷

收稿日期: 2017-01-13; 修订日期: 2017-03-02.

基金项目: 江苏省农业科技支撑计划项目(BE2013363); 江苏省高校"青蓝工程"培养基金项目; 江苏省 2015 年度普通高校研究 生科研创新计划项目(KYLX15_1486); 连云港市产学研合作项目(CXY1517); 淮海工学院江苏省海洋生物技术重点 实验室研究基金项目(2015HS001).

作者简介: 薛蓓(1992-), 女, 硕士研究生, 研究方向为海洋生物繁殖与遗传育种学. E-mail: malvsy@163.com

通信作者: 阎斌伦(1962--), 男, 教授, 研究方向为甲壳类种质资源开发及利用. E-mail: yanbl@hhit.edu.cn

酸的醛基氧化为羧基并将氧化过程产生的能量贮 存到 ATP 分子中, 具有高度保守性, 常作为内参 基因用于基因表达定量的研究中[10]。但近几年随 着对其研究的深入,发现 GAPDH 参与到细胞凋 亡^[11]、基因转录^[12]以及氧化应激下的代谢过程^[13] 等生理活动中,基因的表达水平并不稳定,作为 内参基因存在一定的争议^[14-15]。为了比较 GAPDH 与其他两种内参基因(18S rRNA、β-actin)在脊尾 白虾生长发育过程中的表达稳定性,以便筛选适 合脊尾白虾生长发育过程中基因表达定量更稳定 的内参基因,本研究通过 RACE 技术从脊尾白虾 中克隆得到 GAPDH 的 cDNA 全序列,结合已知的 2种内参基因 18S rRNA 和 β -actin, 评估 3 种基因 在脊尾白虾不同组织和不同蜕壳后时间点作为内 参基因的稳定性,旨在为在脊尾白虾中进行功能基 因的表达分析和调控机制的研究时,选择最适内参 基因提供依据。

1 材料与方法

1.1 实验动物

实验所用脊尾白虾均为连云港赣榆养殖池塘 繁而来的个体,体长:(6.67±0.61) cm,体重:(1.61± 0.42)g,实验前在实验室暂养 1 周,暂养期间保持 连续充气,水温维持在 26℃左右,盐度 28,pH 8.0, 每日早晚各投喂饵料(虾类专用配合饲料)1 次, 定时吸污换水1次。

1.2 实验方法

1.2.1 脊尾白虾不同组织样品的获取 选取 3 只 脊尾白虾,分别取其眼柄、鳃、心脏、肝胰腺、 卵巢、胃、肠和肌肉共 8 个组织迅速用液氮冷冻 后,置于-80℃保存,用于后续 RNA 的提取。

1.2.2 不同蜕壳后时间点脊尾白虾样品的获取

每 2 个个体作为一组放入规格为 28 cm× 18 cm×20 cm (长×宽×高)的透明塑料箱中进行养 殖,全天 24 h 不间断观察各养殖水箱中脊尾白虾 活动状况,分别在蜕壳后的第 0 min (对照)、 1 min、5 min、10 min、15 min 取样,每个时间点 各取 3 次(3 次重复)。同时以同一养殖水箱中与蜕 壳个体共同养殖的未发生蜕壳的脊尾白虾个体作 为对照。取各脊尾白虾肌肉组织约 50 mg 用于提 取总 RNA。

1.2.3 总 RNA 的提取及 cDNA 的合成 将各组 织样品经液氮研磨为粉末后,转入液氮预冷过的 无 RNase 的 Eppendorf 管中,利用 Trizol 试剂盒(生 工生物工程有限公司)提取总 RNA (包括 mRNA 及 rRNA),提取后的 RNA 置于-80℃保存。用琼脂 糖凝胶电泳验证 RNA 的完整性,并用第一链 cDNA 合成试剂盒(PrimeScriptTM RT Master Mix, TaKaRa,中国)逆转录获得 cDNA,试剂盒中所用 反转录引物为 Random 6 mers 和 Oligo dT Primer 两种,能够保证 18S rRNA 在 PCR 反应中被逆转录,并作为后续定量实验中的模板。将 cDNA 浓 度统一稀释至 50 ng/µL,置于-20℃保存。8 个组 织各取 10 µL 组成混合 cDNA,作为基因克隆及引物验证的模板。

1.2.4 脊尾白虾 GAPDH 基因的克隆 根据已知 中华绒螯蟹(Eriocheir sinensis, HM053701.1)、三 疣梭子蟹(Portunus trituberculatus, EU919707.1) 和拟穴青蟹(Scylla paramamosain, JX268543.1)的 GAPDH基因序列,以Primer premier 5.0软件设计 得到兼并引物(表 1)。以脊尾白虾各组织混合 cDNA 为模板,利用 GAPDH-F/R 为引物,以 30 μL PCR 反应体系扩增 GAPDH 基因的保守片段, 其中包括 3 µL 10×PCR buffer, 1.8 µL MgCl₂ (25 mmol/L), 0.6 μL dNTP(10 mmol/L), 0.6 μL Taq DNA 聚合酶(5 U/µL), 0.6 µL 混合 cDNA 模板, 1.2 µL GAPDH-F, 1.2 µL GAPDH-R 和 21 µL 灭 菌水。PCR 反应条件为: 94℃预变性 3min; 94℃ 变性 30 s, 52℃退火 30 s, 72℃延伸 1 min, 35 个循 环; 72℃延伸 10 min; 4℃保存。将扩增产物以 1% 琼脂糖凝胶验证后,参照 SanPrep 柱式 DNA 胶回 收试剂盒(生工生物工程有限公司)说明回收纯化扩 增产物,并连接至 pEASY-T3 载体,重组质粒转 化至大肠杆菌 Trans-T1, 经蓝白斑筛选后选取白 色菌落送至上海生工生物工程有限公司进行测序。

针对测序得到的核心序列片段设计 cDNA 末端快速扩增技术(RACE)所用引物(表 1),利用 SMARTTM RACE cDNA amplification kit 试剂盒进行 5'和 3'RACE。将克隆测序得到的 5'和 3'端序列 与核心序列拼接即可获得 *GAPDH* 基因的 cDNA

全长序列。

1.2.5 脊尾白虾 GAPDH 基因的序列分析 利用 DNAStar lasergene v7.1 将 3 次测序获得的 cDNA 序列进行拼接;利用 NCBI BLAST 进行核苷酸序 列及预测氨基酸序列的比对;利用 SignalP 软件 (http://www.cbs.dtu.dk/services/SignalP/)进行信号 肽预测;利用 Compute pI/Mw 软件(http://web. expasy.org/compute_pi/)计算理论等电点(pI)和分 子量;利用 protparam 软件(http://web.expasy.org/ protparam/)进行蛋白质理化性质预测;用 SMART 软件(http://smart.embl-heidelberg.de/)分析蛋白结 构域;利用 Clustal W 软件对脊尾白虾 GAPDH 基 因及其他物种的 GAPDH 基因所翻译的氨基酸序 列进行多重比对;用 MEGA 6.0 软件进行 NJ 系统 进化树的构建,重复 1000 次计算 Bootstrap 值。

1.2.6 脊尾白虾 3 种内参基因的荧光定量引物扩 增效率的验证 将脊尾白虾各组织混合 cDNA 按 照 1:5梯度依次稀释成 5个梯度,并以此为模板 进行 qRT-PCR 扩增。qRT-PCR 的扩增体系为 20 µL, 其中包括 2×SYBR[®] Premix Ex TaqTM II 10 µL, 正 反向引物(10 µmol/L)各 0.8 µL, ROX Reference Dye (50×) 0.4 µL, cDNA 模板 4 µL, 灭菌水 4 µL。 采用 StepOnePlusTM型荧光定量 PCR 仪(Applied Biosystems Inc.)进行扩增,反应程序为:先 95℃ 预变性 30 s,再以 95℃变性 5 s、60℃复性 31 s 进行 40 个循环,最后是一个熔解曲线程序(95℃ 进行 15 s, 60℃进行 60 s, 再 95℃ 15 s)。通过熔 解曲线验证引物扩增的专一性,并以 cDNA 浓度 的(log₅)值为横坐标,以测得的 C_t 值为纵坐标,绘 制标准曲线。根据公式 $E=(5^{(-1/slope)}-1)\times100\%计算$ 各个内参基因的扩增效率(E)。

1.2.7 脊尾白虾 3 种内参基因的荧光定量分析

以上述不同组织和不同蜕壳后时间点的脊尾 白虾 cDNA 样品为模板,分别进行针对 18S rRNA (GenBank 登录号: HQ172894.1)、β-actin (GenBank 登录号: JQ045354.1)和 *GAPDH* 基因的 qRT-PCR, 荧光定量引物见表 1。qRT-PCR 的扩增体系及程 序同 **1.2.6**。

1.2.8 数据处理和分析 分别用原始 *C*_t 值以及 geNorm (ver. 3.5)、NormFinder (ver. 0953)和 Best-Keeper (ver. 1.0)软件分析 3 个基因的表达稳定值。

2 结果与分析

2.1 GAPDH 基因全长 cDNA 克隆和序列分析

利用同源克隆和 RACE 技术获得的脊尾白虾 GAPDH 基因 cDNA 序列全长 1514 bp (GenBank 登录号: KX893516)(图1),其中开放读码框 1002 bp, 5'非编码区 69 bp, 3'非编码区 443 bp,编码一个由 333 个氨基酸残基组成的蛋白质,包括带负电荷 氨基酸残基(Asp,Glu)38 个,带正电荷氨基酸残 基(Arg,Lys) 37 个,其分子量为 35.71 kD,理论等 电点为 6.61,不稳定指数(instability index)为 22.26,

引物名称 primer name	引物序列(5'-3') primer sequence (5'-3')	用途 usage
GAPDH-F	GGTTGTGGCBGTGAATGA	简并引物
GAPDH-R	AATGACACGGTTGGARTAG	degenerate primers
GAPDH-GSP1	GGTAAGCTTGCCGTTGAGTTCAGGGA	5' RACE 特异引物
GAPDH-GSP1-1	AAGTTTTCGTGCAGGACCTTGGCAAC	5' RACE primers
GAPDH-GSP1-2	GCCGTTGACCACCAGAGCACCGTCCT	
GAPDH-GSP2	CCCCGTTGCCAAGGTCCTGCACGAAA	3' RACE 特异引物
GAPDH-GSP2-1	TCCCTGAACTCAACGGCAAGCTTACC	3' RACE primers
GAPDH-GSP2-2	CATCCAGCTCAGCAAAACCTTCGTGA	
GAPDH-Q-F	GCTGGTGCCGAATACATTGTTG	荧光定量引物
GAPDH-Q-R	TTACCTTCTTAGCACCACCCTG	real-time PCR primers
18S-Q-F	TATACGCTAGTGGAGCTGGAA	
18S-Q-R	GGGGAGGTAGTGACGAAAAAT	
β-actin-Q-F	AACTTTCAACACCCCAGCCA	
β-actin-Q-R	TCTCCAGAGTCCAGCACGAT	

表 1 脊尾白虾 GAPDH 基因克隆及表达分析引物序列 Tab. 1 Primer sequences used in GAPDH cloning and characterizing in Exopalaemon carinicauda

1	1 ATGGGCTAGTCAGACCAGAGTGAAGTTCTCTCTCGACACCTCGCCCCGACTTCCACCAACTCA	ACCACC	69
70	70 ATGTCTAAGATCGGAATCAACGGTTTTGGCCGCATTGGTCGTCTTTGTCCTTCGTGCTGCTCTTCTTGAAGGGCGCCGAGGTTGTTGCTGTAAATGATCCCTTCATTGCTCTTGAA	TACATG	189
1	1 M S K I G I N G F G R I G R L V L R A A L L K G A E V V A V N D P F I A L D	YM	40
190 41	90 gtttacatgttcaagtatgactccacaatggtgtgtgtgt	CCCGAG	309 80
310	310 AACATTCCATGGAGCAAGGCTGGTGCCGAATACATTGTTGAATCAACTGGTGTATTCACCACCATTGAGAAAGCCTCTGCCCACTTCCAGGGTGGTGCTAAGAAGGTAATCATC	ICTGCT	429
81	81 <u>N I P W S K A G A E Y I V E S T G V F T T I E K A S A H F Q G G A K K V I I</u>	SA	120
430	130 CCATCTGCTGATGCCCCCATGTTTGTCGTGGTGTCAACCTGGAAAAGTACTCCCAGGACATGAAAGTAGTTTCAAATGCTTCCTGCACAACCAAC	AAGGTC	549
121		K_V	160
550	50 CTGCACGAAAACTTCGAGATTGTTGAAGGTCTCATGACCACTGTCCCATGCTGTTACTGCTACTGAAGACTGTTGATGGACCCTCCGCCAAGGACTGGCGTGGTGGCCGTGGT	CTGCC	669
161	61 L H E N F E J V E G L M T T V H A V T A T Q K T V D G P S A K D W R G G R G		200
670 201	770 CAGAACATCATTCCCTCATCTACTGGTGCTGCTAAGGCTGTGGGTAAGGTTATCCCTGAACTCAACGGCAAGCTTACCGGCATGGCCTTCCCGTGTACCTACC	ATTGTA	789 240
790	/90 GATCTCACAGTCCGTCTTGGCAAGGAGTGCTCGTACGATGACATTAAGGCTGCCATGAAGGCTCCTGAGGGTCCATTGAATGGCGTCTTGGGATACACTGAGGATGATGTT	TCTCC	909
241	/41 <u>D_L_T_V_R_L_G_K_E_C_S_Y_D_D_L_K_A_A_M_K_A_A_E_G_P_L_N_G_V_L_G_Y_T_E_D_D_V</u>		280
910	010 tgtgacttcactggtgatgagaggtcttccatctttgatgccaaggctggcatccagctagcaaaaccttcgtgaaggttgtctcctggtatgacaacgagttcggctactct.	AACCGT	1029
281	¹ 81 <u>c_d_f_t_g_d_e_r_s_s_i_f_d_a_k_a_g_i_q_l_s_k_t_f_y_k_y_s_wy</u> d n e f g y s	N R	320
1030)30 gtcattgatctcttgaagcacatgcagaaagtagatgcctaa		1071
321)21 V I D L L K H M Q K V D A *		333
1072 1192 1312 1432	D72 AGAGTGATACTCTTCAGTATTCCTTGAATATGTCTGAAAGGTTTTTGTTTAAGGGGGGGG	ITGTAA AAGTTT IGTCTT	1191 1311 1431 1514

图 1 脊尾白虾 GAPDH 基因的 cDNA 序列及预测的氨基酸序列

ATG 为起始密码子, TAA 为终止密码子, AATAAA 为多聚腺苷酸加尾信号, 实线下划线部分为 Gp-dh-N 区,

虚线下划线部分为 Gp-dh-C 区.

Fig. 1 The nucleotide sequence and the deduced amino acid sequence of *Exopalaemon carinicauda GAPDH* gene ATG indicates start codon. TAA indicate stop codon. AATAAA indicates putative polyadenylation signals. The underline sequence is the domain Gp-dh-N (full line) and the domain Gp-dh-C (imaginary line).

在体外为较稳定蛋白质。应用 SignalP 软件对 GAPDH 预测蛋白进行信号肽分析,显示该蛋白 不含有信号肽序列。运用 SMART 在线程序对 GAPDH 蛋白保守结构域预测,结果显示该蛋白 具有一个高度保守的 NAD⁺结合功能域(NAD binding domain)Gp-dh-N 区,位于 3~149 aa;以及行使 糖运输和代谢的催化功能域 Gp-dh-C 区,位于 154~311aa。

2.2 GAPDH 基因同源性分析

利用 NCBI BLASTP 软件,将获得的脊尾白 虾 GAPDH 基因编码的氨基酸序列与其他甲壳动 物,如中华绒螯蟹、日本大眼蟹(Macrophthalmus japonicus)、三疣梭子蟹、克氏原螯虾(Procambarus clarkii)、拟穴青蟹、红螯螯虾(Cherax quadricarinatus)和胡钩虾(Gammarus locusta)的氨基酸序 列进行同源比对,结果显示,GAPDH 蛋白在甲壳 类动物中具有很高的同源性,与日本大眼蟹同源 性最高(95.50%),其他依次为拟穴青蟹(95.21%)、红 螯螯虾(95.21%)、中华绒螯蟹(94.59%)、三疣梭子 蟹(94.91%)和克氏原螯虾(94.91%),与胡钩虾相 似度最低为 87.13%。

使用 MEGA6.0 软件(Neighbor-Joining 法)对 脊尾白虾 GAPDH 进行聚类分析,构建进化树(图 2)。从图 2 中可以看出脊尾白虾 GAPDH 与其他 甲壳纲聚为一支,之后与昆虫纲聚为一支,最后 与鱼类、鼠和人等脊椎动物聚为一支。同时发现 脊尾白虾 GAPDH 在进化上与拟穴青蟹和三疣梭 子蟹亲缘关系最近,而与同为虾类的克氏原螯虾 和红螯螯虾的亲缘关系略远。

2.3 3种内参基因 qRT-PCR 引物扩增特异性与 扩增效率分析

对 18S rRNA、β-actin 和 *GAPDH* 基因进行 qRT-PCR 分析,结果显示,各内参基因的熔解曲 线为显著的单一信号蜂,曲线重复性好,表明 qRT-PCR 反应专一性高,结果准确可信(图 3)。 根据测定的 C_t 值,以 cDNA 浓度稀释倍数的 logs 的值为横坐标,以测得的 C_t 值为纵坐标,绘制标 准曲线(图 4)。其中,18S rRNA 基因的标准曲线 回归方程为: y=-2.4047x+5.1960, $R^2=0.9998$, 扩 增效率为 95.285%; β-actin 基因的标准曲线回归方

图 2 脊尾白虾 GAPDH NJ 系统进化树

程为: *y*=-2.3782*x*+16.5590, *R*²=0.9998, 扩增效率为 96.747%; *GAPDH* 基因的标准曲线回归方程为: *y*= -2.2498*x*+16.5240, *R*²=0.9982, 扩增效率为 104.494%。 各内参基因的相关系数 *R*² 均大于 0.9980, 扩增 效率在 95%~105%, 符合 qRT-PCR 对扩增效率的 要求。

2.4 3种内参基因稳定性的比较

18S rRNA、β-actin 和 GAPDH 基因在脊尾白 虾不同组织及蜕壳后不同时间点的原始 C_i值数据 见表 2。可以发现,在不同组织或者不同蜕壳后时 间点,脊尾白虾 18S rRNA、β-actin 和 GAPDH 基 因的表达水平均存在差异。在不同组织中, C_i值变

Fig. 4 Standard curves of three reference genes of Exopalaemon carinicauda by real-time PCR

表 2 内参基因的原始 C_t值数据

Fig. 2 The original C_t value of reference genes					
样品 sample	内参基因 reference gene	C _t 值范围 C _t range	平均 C_t 值 average C_t value	$\Delta C_{\rm t}$ ($\Delta C_{\rm t}$ value	
不同组织	18S rRNA	8.45-14.64	10.36	6.19	
different tissues	β-actin	19.39–28.24	24.27	8.85	
	GAPDH	19.03-27.34	22.44	8.31	
不同蜕壳后时间点 different post-molt time	18S rRNA	8.44-14.11	10.98	5.67	
	β-actin	24.55-34.75	29.58	10.20	
	GAPDH	19.19-31.53	24.24	12.34	

化范围较小的内参基因是 18S rRNA, 变化范围最 大的为 β-actin; 在不同蜕壳后时间点, 18S rRNA 的 C_t 值变化范围依旧最小, *GAPDH* 变化范围最 大。由此可见, 各内参基因在不同组织或者不同 蜕壳后时间的 C_t 值是有波动的, 并不是一个固定 值。因此, 在具体实验条件下进行内参基因的筛 选是必要的。

geNorm 软件是通过在给定的生物样本和内 参基因的矩阵内进行成对比较和几何平均算法来 确定基因表达稳定性的 *M* 值,进而分析内参基因 的表达稳定性,*M* 值越大,稳定性越差;反之稳定 性越好;系统默认 *M* 值为 $1.5^{[16]}$ 。与 geNorm 软件 相似, NormFinder 软件同样是内参基因的稳定值, 其越低说明该基因越稳定,不过 NormFinder 是通 过各内参基因的组合和组间方差相结合来对内参 基因的稳定性进行评价^[17]。利用 geNorm 和 Norm-Finder 软件分别对不同组织和不同蜕壳后时间点 的脊尾白虾 3 种内参基因表达稳定性进行分析, 具体数值见表 3。分析发现,在不同组织中 geNorm 分析的稳定性最高的内参基因为 18S rRNA,其 次为 β -actin, *GAPDH* 稳定性最差; NormFinder 中 同样是 18S rRNA 的稳定性最高,其次是 *GAPDH*,

表 3 内参基因表达差异的 geNorm 和 NormFinder 分析 Fig. 3 Analysis of reference genes by geNorm and NormFinder

样品 sample	内参基因 reference gene	geNorm-M 值 M value of geNorm	NormFinder 稳定值 stable value of NormFinder
不同组织	18S rRNA	1.470	0.067
different tissues	β -actin	2.064	0.078
	GAPDH	2.369	0.069
不同蜕壳	18S rRNA	1.030	0.031
后时间点	β -actin	1.819	0.060
different post- molt time	GAPDH	1.357	0.030

β-actin 稳定性最差。在不同蜕壳后时间点的内参 基因稳定性分析中发现, geNorm 中 18S rRNA 的 稳定性最高, 而 NormFinder 中 *GAPDH* 的稳定性 最高, 稳定性最差的内参基因均为 β-actin。

BestKeeper 软件是通过对各内参基因 C_t值的 比对产生配对的相关系数(r)、标准偏差(SD)和变 异系数(CV),根据其值的大小进行比较,相关系 数越高,标准偏差和变异系数越小,稳定性则越 好^[18]。利用 BestKeeper 对不同组织和不同蜕壳后 时间点的脊尾白虾 3 个内参基因的表达量进行分 析,分析结果见表 4。不论是不同组织还是不同蜕 壳后时间点, 18S rRNA 的相关系数均最高, 且标准偏差最低, 但其变异系数相对略高。鉴于 Bes-tKeeper综合多因素, 故而无法给出具体内参基因

F

稳定性的排序。综合 ΔC_t 值及 geNorm 和 Norm-Finder 的分析结果,各内参基因的稳定度排序见 表 5。

rig. + minipus of reference genes by Destrecepti				
样品 sample	内参基因 reference gene	相关系数 co-efficient of correlation	标准偏差 standard deviation	变异系数/% coefficient of variation
不同组织	18S rRNA	0.969	1.25	12.07
different tissues	β-actin	0.862	1.98	8.16
	GAPDH	0.904	2.07	9.22
不同蜕壳后时间点 different post-molt time	18S rRNA	0.983	0.90	8.21
	β -actin	0.946	1.34	4.54
	GAPDH	0.976	2.09	8.61

表 4	内参基因表达差异的 BestKeeper 分析
iσ 4	Analysis of reference genes by RestKeener

表 5 内参基因稳定度排序

Fig. 5	Ranking of	the reference	genes according	to their stability	value
			aa		

样品 sample	内参基因 reference gene	$\Delta C_{\mathfrak{t}}$ 值排序 ranking by $\Delta C_{\mathfrak{t}}$ value	geNorm 排序 ranking by geNorm	NormFinder 排序 ranking by NormFinder
不同组织	18S rRNA	1	1	1
different tissues	β -actin	3	2	3
	GAPDH	2	3	2
不同蜕壳后时间点 different post-molt times	18S rRNA	1	1	2
	β -actin	2	3	3
	GAPDH	3	2	1

3 讨论

qRT-PCR 作为分析基因表达特征的一种重要 的生物学手段,目前被广泛应用于分子生物学实 验中。为了获得准确可信的结果,在对特定条件 下目的基因的表达特征进行分析时,通常需要引 人一个或多个内参基因作为标准以保证实验结果 的准确性^[9]。然而,常用的内参基因在不同条件下 的表达可能是不稳定的, Ponton 等^[19]发现在黑腹 果蝇(Drosophila melanogaster)中雄果蝇和雌果蝇 不同组织基因表达分析的最佳内参基因并不相同; 在现代月季中的研究同样发现需根据不同情况选 择最优内参基因^[20]。因此,在基因表达分析中进 行合适内参基因的选择尤为重要。筛选最优的内 参一般用 delta C_t法及软件如 geNorm、NormFinder 和 BestKeeper。Sliver 等^[21]通过 delta C_t法比较不 同的内参基因在 31 个样本间表达量的可重复性, 认为 GAPDH 是网织红细胞中最稳定的内参基因。

而在不同条件下最适内参基因的选择过程中,人 们一般选取两种及以上算法相结合来确定内参基 因。武志娟等^[22]采用 delta C_t值分析法、geNorm 和 NormFinder 软件分析法综合比较发现, 在大针 茅(Stipa grandis)根中最稳定的内参基因组合为 18S rRNA 和 EF-1a, 在叶中最稳定的内参基因组 合为 18S rRNA 和 TLF; 姜琼等^[23]综合上述 4 种 算法分析发现 ELF1B 和 CYP2 适合作为大豆根系 盐胁迫响应基因研究的内参基因; Lin 等^[24]通过对 不同温度下龙眼树(Dimocarpus longan)体细胞胚 发生过程中各内参基因的表达分析发现,不同 算法得出的结果存在很大差异,并最终综合 geNorm, BestKeeper 和 NormFinder 的结果认为 最佳的内参基因组合为 UBQ 和 Fe-SOD。以上研 究结果证明, 在确定不同条件下进行目的基因 表达特征分析的内参基因时,需要综合不同的 算法进行分析,从而获得较为可靠的候选内参 基因。

GAPDH 作为常用的内参基因, 近几年对于 其是否适合用作内参基因的研究存在很大的争 议[14, 25-26]。为研究其在脊尾白虾的定量分析中作 为内参基因的稳定性,本研究获得了脊尾白虾 GAPDH 基因 cDNA 序列。通过结构域预测发现, GAPDH 蛋白具有高度保守的位于 C 末端的催化 功能区和位于 N 末端的 NAD⁺结合域, 与其他甲 壳动物 GAPDH 蛋白结构域一致^[14]。有研究表明, NAD⁺结合域存在 RNA、磷酯酰丝氨酸和谷胱甘 肽的结合位点,可以调节 mRNA 的稳定性翻译并 发挥膜功能[27-28]; 另一个高度保守的催化结构域则 含有一个带有游离巯基(-SH)的半胱氨酸、与 GA-PDH 在细胞凋亡及氧化应激中发挥功能相关^[29-31]。 而 GAPDH 在脊尾白虾中除参与糖酵解过程外, 其他生理功能还有待进一步研究。经 BlastP 分析 发现, 脊尾白虾 GAPDH 氨基酸序列与甲壳动物 的 GAPDH 的同源性高达 95%, 仅与胡钩虾的同 源性略低,为 87.13%。并且在构建的系统进化树 中, 脊尾白虾 GAPDH 蛋白与甲壳纲聚为一支后 与昆虫纲聚为一支,说明 GAPDH 能较好地反映各 物种间的亲缘关系,进一步证明 GAPDH 可作为研 究物种进化与分类的分子模型[32]。

为比较 18S rRNA、β-actin 和 GAPDH 3 个基 因在脊尾白虾不同组织和不同蜕壳后时间点的内 参稳定性,本研究中通过 qRT-PCR,利用比较 C_t 值变化及 geNorm、NormFinder 和 BestKeeper 3 个软件进行计算,综合 4 种算法的结果,发现在 不同组织和不同蜕壳后时间点的最适内参基因均 为 18S rRNA, 其次为 GAPDH, β-actin 稳定性最 差。因此在不同组织和不同蜕壳后时间点的定量 分析中,选取单内参基因时,推荐利用 18S rRNA 为内参基因; 选取双内参时, 推荐 18S rRNA 和 GAPDH。然而、与在龙眼树中的结果相类似^[24]、 本研究中各个软件分析结果之间存在一定的差 异。例如,在不同组织中,geNorm 分析中稳定性 最差的是 *GAPDH*, 而 NormFinder 中是 β-actin; 在不同蜕壳后时间点, geNorm 分析中稳定性最高的 是 18S rRNA, 而 NormFinder 中是 GAPDH, 这可 能是由于软件之间具有不同的算法造成的^[9]。本 研究结果为不同组织和不同蜕壳后时间点的脊尾

白虾 qRT-PCR 检测基因表达中内参基因的选择提供了依据,但在其他生理条件下的还需要进一步验证以确定合适的内参基因。

参考文献:

- Wang X E. Preliminary observation of reproductive biology of *Exopalaemon carinicauda*[J]. Chinese Journal of Zoology, 1987, 22(1): 7–10. [王绪峨. 脊尾白虾繁殖生物学的初步 观察[J]. 动物学杂志, 1987, 22(1): 7–10.]
- [2] Wang X Q, Yan B L, Ma S, et al. Study on the biology and cultural ecology of *Exopalaemon carinicauda*[J]. Shandong Fisheries, 2005(8): 21–23. [王兴强, 阎斌伦, 马甡, 等. 脊 尾白虾生物学及养殖生态学研究进展[J]. 齐鲁渔业, 2005(8): 21–23.]
- [3] Xu W, Xie J, Shi H, et al. Hematodinium infections in cultured ridgetail white prawns, *Exopalaemon carinicauda*, in eastern China[J]. Aquaculture, 2010, 300: 25–31.
- [4] Liang J P, Li J, Li J T, et al. Molecular cloning of the vitellogenin receptor and its expression during ovarian development of *Exopalaemon carinicauda*[J]. Journal of Fishery Sciences of China, 2016, 23(4): 800-812. [梁俊平, 李健, 李吉涛, 等. 脊尾白虾 VgR 基因克隆及其在卵巢发育过程 中的表达分析[J]. 中国水产科学, 2016, 23(4): 800-812.]
- [5] Duan Y F, Jian L, Zhe Z, et al. Characterization of ADP ribosylation factor 1 gene from *Exopalaemon carinicauda*, and its immune response to pathogens challenge and ammonia-N stress[J]. Fish Shellfish Immun, 2016, 55: 123–130.
- [6] Wang Y K, Liu P, Duan Y F, et al. The cloning and expression of Alpha2-Macrogloblin gene of *Exopalaemon carinicauda*[J]. Progress in Fishery Sciences, 2015, 36(2): 63–70.
 [王有昆,刘萍,段亚飞,等.脊尾白虾(*Exopalaemon carinicauda*) α2-巨球蛋白 cDNA 全长的克隆和表达分析
 [J]. 渔业科学进展, 2015, 36(2): 63–70.]
- [7] Dong E N, Liang Q, Li L, et al. The selection of reference gene in real-time quantitative reverse transcription PCR[J]. Chinese Journal of Animal Science, 2013, 49(11): 92–96.
 [董恩妮, 梁青, 李利, 等. 实时荧光定量 PCR 内参基因的 选择[J]. 中国畜牧杂志, 2013, 49(11): 92–96.]
- [8] Hu R B, Fan C M, Fu Y F. Reference gene selection in plant real-time quantitative reverse transcription PCR (qRT-PCR)[J]. Journal of Agricultural Science and Technology, 2009, 11(6): 30–36. [胡瑞波, 范成明, 傅永福. 植物实时 荧光定量 PCR 内参基因的选择[J]. 中国农业科技导报, 2009, 11(6): 30–36.]
- [9] Zhang Y F, Zhao L J, Zeng Y L. Selection and application of reference genes for gene expression studies[J]. Plant Physiology Journal, 2014, 50(8): 1119–1125. [张玉芳, 赵丽娟,

曾幼玲. 基因表达研究中内参基因的选择与应用[J]. 植物 生理学报, 2014, 50(8): 1119–1125.]

- [10] Xing Z B, Wu P, Chen L, et al. Cloning and sequence analyses of *Eleutherococcus senticosus GAPDH*[J]. Chinese Traditional and Herbal Drugs, 2012, 43(1): 155–158. [邢朝斌, 吴鹏, 陈龙, 等. 刺五加 *GAPDH* 基因的克隆及序列分析 [J]. 中草药, 2012, 43(1): 155–158.]
- [11] Tarze A, Deniaud A, Le B M, et al. GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization[J]. Oncogene, 2006, 26(18): 2606–2620.
- [12] Zheng L, Roeder R G, Luo Y. S Phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component[J]. Cell, 2003, 114(2): 255–266.
- [13] Agarwal A R, Zhao L, Sancheti H, et al. Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs[J]. Am J Physiol-Lung C, 2012, 303(10): 889–898.
- [14] Fu C R, Ye H H, Chen X L, et al. Cloning and expression analysis of the glyceraldehydes-3-phosphatede hydrogenase in the mud crab (*Scylla paramamosain*)[J]. Journal of Fisheries of China, 2013, 37(1): 55–62. [付春茹, 叶海辉, 陈学 雷, 等. 拟穴青蟹 3-磷酸甘油醛脱氢酶基因的克隆与表达 [J]. 水产学报, 2013, 37(1): 55–62.]
- [15] Moe T K, Ziliang J, Barathi A, et al. Differential expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta actin and hypoxanthine phosphoribosyltransferase (HPRT) in postnatal rabbit sclera[J]. Curr Eye Res, 2009, 23(1): 44–50.
- [16] Vandesompele J, De P K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genom Biol, 2002, 3(7): 1–12.
- [17] Andersen C L, Jensen J L, Ørntoft T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Res, 2004, 64(15): 5245–5250.
- [18] Pfaffl M W, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pairwise correlations[J]. Biotechnol Lett, 2004, 26(6): 509–515.
- [19] Ponton F, Chapuis M P, Pernice M, et al. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in *Drosophila melanogaster*[J]. J Insect Physiol, 2011, 57(6): 840–850.
- [20] Meng Y, Li N, Tian J, et al. Identification and validation of

reference genes for gene expression studies in postharvest rose flower (*Rosa hybrida*)[J]. Sci Hortic-AMSTERDA, 2013, 158(4): 16–21.

- [21] Silver N, Best S, Jiang J, et al. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR[J]. BMC Mol Biol, 2006, 7(1): 1–9.
- [22] Wu Z J, Wang Z L, Han B, et al. Screening and verification of the best combination of reference genes of *Stipa grandis* under drought stress[J]. Chinese Journal of Grassland, 2016, 38(4): 8–12. [武志娟, 王照兰, 韩冰, 等. 大针茅干旱胁迫 下最佳内参基因组合的筛选及验证[J]. 中国草地学报, 2016, 38(4): 8–12.]
- [23] Jiang Q, Wang Y N, Wang L X, et al. Validation of reference genes for quantitative RT-PCR analysis in soybean root tissue under salt stress[J]. Chinese Bulletin of Botany, 2015, 50(6): 754–764. [姜琼, 王幼宁, 王利祥, 等. 盐胁迫下大 豆根组织定量 PCR 分析中内参基因的选择[J]. 植物学报, 2015, 50(6): 754–764.]
- [24] Lin Y L, Lai Z X. Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree[J]. Plant Sci, 2010, 178(4): 359–365.
- [25] Barber R D, Harmer D W, Coleman R A, et al. GAPDH as a housekeeping gene: analysis of *GAPDH* mRNA expression in a panel of 72 human tissues[J]. Physiol Genom, 2005, 21(3): 389–395.
- [26] Hu H Y, Ren C L, Shang X L, et al. Cloning, expression, and analysis of the stability of a reference gene, *GAPDH*, of *Musca domestica*[J]. Journal of Pathogen Biology, 2016, 11(3): 250–256. [胡红元,任春丽,尚小丽,等. 家蝇 GAPDH 基因的克隆、表达及作为内参的可靠性分析[J]. 中国病原生物学杂志, 2016, 11(3): 250–256.]
- [27] Kondo S, Kubota S, Mukudai Y, et al. Binding of glyceraldehyde-3-phosphate dehydrogenase to the cis-acting element of structure-anchored repression in ccn2, mRNA[J]. Biochem Bioph Res Co, 2011, 405(405): 382–387.
- [28] Ikeda Y, Yamaji R, Irie K, et al. Glyceraldehyde-3-phosphate dehydrogenase regulates cyclooxygenase-2 expression by targeting mRNA stability[J]. Arch Biochem Biophys, 2012, 528(2): 141–147.
- [29] Nakajima H, Amano W, Fujita A, et al. The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death[J]. J Biol Chem, 2007, 282(36): 26562–26574.
- [30] Hara M, Cascio M, Sawa A. GAPDH as a sensor of NO stress[J]. BBA-Mol Basis Dis, 2006, 1762(5): 502–509.
- [31] Sirover M A. Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity[J]. Int J Biochem

Cell B, 2014, 57: 20-26.

[32] Song S Y, Guo J, Li J, et al. Conservative of 3 dimensional structure of D-Glyceraldenhyde-3-phosphate dehydrogen-

ase[J]. Acta Biophysica Sinica, 1998, 14(3): 401-406. [宋时 英, 郭剑, 李军, 等. 甘油醛-3-磷酸脱氢酶结构的保守性 [J]. 生物物理学报, 1998, 14(3): 401-406.]

Cloning, expression and stability analysis of the reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in *Exopalae-mon carinicauda*

XUE Bei^{1, 2, 3}, ZHANG Pei^{1, 2, 3}, LI Zhihui^{1, 2, 3}, ZHAO Lian^{1, 2, 3}, LAI Xiaofang^{1, 2, 3}, GAO Huan^{1, 2, 3}, LI Jian⁴, YAN Binlun^{1, 2, 3}

1. Jiangsu Key Laboratory of Marine Biotechnology; Marine Life and Fisheries College, Huaihai Institute of Technology, Lianyungang 222005, China;

2. Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222001, China;

3. The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China;

4. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China

Abstract: Quantitative real-time PCR (qRT-PCR) is a powerful and commonly used method for in-depth analysis of gene expression that offers increased sensitivity and specificity over other methods. However, in order to obtain accurate results when using qRT-PCR to study gene expression, one or several internal control genes for normalization are needed. Housekeeping genes are known as such a class of genes that their expression levels are expected to remain constant in the cells or tissues in response to any environmental or physiological stress. But, in fact, no any housekeeping gene always stably expressed under all physiological conditions as ideal reference genes. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a classic key glycolysis enzyme presented in all tissues, is one of the most common housekeeping genes used in the analysis of comparing gene expression levels as reference genes. Nowadays, the role of GAPDH as the reference gene was being questioned and challenged by accumulated experiment evidences. To investigate the stability of GAPDH as a reference gene, the full-length cDNA sequence was cloned from the ridgetail white prawn, Exopalaemon carinicauda, which mRNA was measured in different tissues and at different post-molt times. The obtained full-length cDNA of GAPDH was 1514bp, including 69 bp of 5'-untranslated region (UTR), 1002 bp of open reading frame (ORF), 443 bp of 3'-UTR containing a canonical polyadenylation signal sequence AATAAA prior to a poly A tail. The ORF of GAPDH encoded 333 amino acids without signal peptide analyzed by SignalP software which is highly conserved across the phylogenetic scale. The molecular mass was calculated to be 35.71 kDa, and the pI was estimated to be 6.61. By alignment, the amino acid sequence of E. carinicauda GAPDH contains two major domains, the NAD⁺ binding domain (amino acids 3-149) and the catalytic domain (amino acids 154-311). In order to compare the expression stability of three endogenous candidate genes (18S rRNA, β -actin and GAPDH) in qRT-PCR analysis in different tissues and different post-molt times, eight tissues (eyestalk, gill, heart, hepatopancreas, ovary, stomach, instestines and abdominal muscle) and 4 different post-molt times (1, 5, 10 and 15 min) of E. carinicauda were collected for qRT-PCR. Comprehensive analysis of the results using delta C_t method and the software packages geNorm, NormFinder and BestKeeper revealed that 18S rRNA was the most stable reference gene in both different tissues and different post-molt times, then was the GAPDH and β -actin in decreasing order. In conclusion, the best choice for single reference gene is 18S rRNA, and 18S rRNA and GAPDH can be together as double reference genes if needed in E. carinicauda.

Key words: *Exopalaemon carinicauda*; *GAPDH*; reference gene; tissue; post-molt time Corresponding author: YAN Binlun. E-mail: yanbl@hhit.edu.cn