DOI: 10.3724/SP.J.1118.2018.17178

水温对不同规格细鳞鲑摄食和生长的影响

刘洋¹, 刘红柏¹, 徐革锋¹, 牟振波², 尹家胜¹

1. 中国水产科学研究院黑龙江水产研究所, 黑龙江 哈尔滨 150070;

2. 西藏自治区农牧科学院 水产研究所, 西藏 拉萨 850032

摘要:为探讨水温对不同规格细鳞鲑(*Brachymystax lenok*)摄食和生长的影响,采用自制饲料在不同温度(6℃、10℃、14℃、18℃和22℃)下对小(7g)、中(68g)、大(169g)三种规格的细鳞鲑进行饲养实验。研究结果表明,小规格细鳞鲑在18℃时获得最大摄食率,中规格细鳞鲑在14℃和18℃获得最大摄食率,而大规格细鳞鲑在14℃时获得最大摄食率(*P*<0.05)。小、中规格细鳞鲑在14℃和18℃时的特定生长率最高,而大规格细鳞鲑特定生长率在14℃时有最大值(*P*<0.05)。相同水温条件下,细鳞鲑的最大摄食率随体重的增加而增加,特定生长率随体重的增加而降低,鱼体能值随体重的增加而升高。多元回归分析显示,水温和体重对细鳞鲑最大摄食率(*C*_{max})的影响可以用下式模拟: ln*C*_{max}=-6.8282+1.1603lnW+0.3729*T*-0.0095*T*²-0.0157*T*lnW;水温和体重对细鳞鲑湿重特定生长率(SGR_w,%/d)的影响可用下式拟合: lnSGR_w=-1.9390-0.2184lnW+0.4376*T*-0.0147*T*²,水温和体重对细鳞鲑能值*E*_t(kJ/fish)的影响可用如下方程进行较好拟合: ln*E*_t=1.0012+1.2070lnW-0.0002*T*²-0.0021*T*lnW。逐步回归分析表明,水温和体重对细鳞鲑最大摄食率和鱼体能值的影响存在显著的交互作用(*P*<0.05),而对湿重特定生长率的影响不存在交互作用(*P*>0.05)。综合上述研究结果可以认为细鳞鲑养殖的适宜水温范围是 14~18℃。

关键词:细鳞鲑;水温;体重;摄食;生长 中图分类号: S965 文献标志码: A

文章编号:1005-8737-(2018)02-0286-08

细鳞鲑(Brachymystax lenok)是中国珍稀名贵 的土著鲑科鱼类,在国内主要分布于东北、西北 和华北地区的高寒淡水水域中^[1]。因其肉质细嫩, 肉味鲜美,营养丰富,又无肌间刺而深受消费者 青睐^[2]。近年来由于过度捕捞、生存环境恶化以 及栖息地生境丧失等原因,细鳞鲑分布区域日益 缩小,种群数量急剧下降^[3]。因此,开展人工繁养 对于细鳞鲑的规模化养殖和物种保护具有重要的 理论和现实意义。目前,本研究团队已实现了细 鳞鲑的全人工繁殖,建立了规模化的繁育模式, 并在全国多个省市进行了推广和应用,取得了较 为可观的经济和社会效益^[4]。但在细鳞鲑实际的 养殖过程中,由于缺乏不同生长阶段适宜环境和 营养条件的信息,导致投喂管理缺乏科学性和准确性,进而产生鱼体生长缓慢、饲料浪费、水体 污染及病害高发等一系列问题,严重制约着细鳞 鲑养殖产业的进一步发展。

鱼类是变温动物,它们的摄食和生长高度依赖环境温度^[5-6]。水温通过对鱼类代谢的改变影响 鱼类的摄食、饵料转化效率以及能量分配,进而 影响鱼类的健康和存活^[7-10]。然而,鱼类的适宜水 温可能会随年龄和体重的变化而改变,且水温和 体重对鱼类摄食和生长的影响是否存在交互作用 仍存在争议^[11-15]。因此,水温和体重是养殖鱼类 投喂模型建立和应用中非常重要的两个因素。数 学模型使用方程式来描述和模拟一个特定系统的

收稿日期: 2017-05-03; 修订日期: 2017-09-05.

基金项目:黑龙江省自然科学基金项目(QC2015040);国家自然科学基金项目(31502188);现代农业产业技术体系建设专项资金资助项目(CARS-46);中央公益性院所基本业务费项目(HSY201412,HSY201602).

作者简介: 刘洋(1982-), 男, 助理研究员, 博士, 主要从事鱼类生理生态学研究. E-mail: liuyang@hrfri.ac.cn

通信作者: 尹家胜(1960-), 男, 研究员. E-mail: yinjiasheng@hrfri.ac.cn

动态变化,是应对水产养殖中面临挑战的有效方法,已经得到广泛的重视^[16]。它不仅可以定量地 描述生物学现象,还可根据环境因子的变化和能 量流动建立投喂管理模型预测养殖对象的摄食和 生长,以达到科学投喂、降低废物排放,精准养殖 的目的^[17-20]。

细鳞鲑是典型的冷水性鱼类,关于水温对细 鳞鲑摄食生长的研究已有报道^[21],但未见不同体 重细鳞鲑对水温适应性的研究。本实验通过研究 水温对不同规格细鳞鲑摄食和生长的影响,探讨 细鳞鲑的最大摄食率和生长率与水温和体重的关 系,并应用数学模型进行定量描述。作为细鳞鲑 投喂模型中的关键子模型,可为细鳞鲑的投喂管 理和精准养殖提供理论依据。

1 材料和方法

1.1 实验饲料

以鱼粉、豆粕为蛋白源,鱼油为脂肪源,配制 蛋白含量约为 430 g/kg、脂肪含量 120 g/kg 的实 验饲料(表 1)。实验饲料的制作过程参考《饲料配 方和制作》^[22]。根据实验鱼大小制成两种不同规 格的颗粒饲料。大、中规格实验鱼投喂粒径为 3 mm 的饲料,小规格实验鱼投喂粒径为 1.5 mm 的饲料。实验饲料制作后,测定饲料中的营养成 分,确认其营养水平后,采用塑料袋封口后置于 -20℃冰箱中冷冻保存,以待使用。

1.2 实验鱼及实验设计

实验用细鳞鲑来自黑龙江省北渔科技开发公司。本实验在中国水产科学研究院黑龙江水产研究所室内水族箱系统中进行。实验鱼先在 60 cm × 60 cm × 50 cm 的水族箱中驯化 3 周以上。驯养期间,水温控制在(16±0.5)℃。然后各处理组以每天 2~3℃的升温或降温速率调整到实验温度,在该 温度下再驯养 1 周开始正式实验。实验共设计 3 个体重组(小规格,7 g;中规格,68 g;大规格,169 g),5 个温度水平(6℃、10℃、14℃、18℃、22℃),每个处理 3 个重复。每个体重组养殖周期为 28 d。为保证各处理组生物量相近,每组实验 箱中转入不同尾数的实验鱼(小规格,50 尾;中规 格,6 尾;大规格,2 尾)。实验期间,每天以实验饲料

表 1 实验饲料配方及营养组成 Tab. 1 Formulation and proximate composition of the experimental diet

	%
原料 ingredient	含量 content
自鱼粉 ¹⁾ white fish meal ¹⁾	55.00
豆粕 soybean meal	6.00
鱼油 fish oil	8.00
玉米淀粉 corn starch	10.00
糊化淀粉 α-starch	10.00
维生素预混物 ²⁾ vitamin premix ²⁾	0.39
矿物质预混物 ³⁾ mineral premix ³⁾	5.00
氯化胆碱 choline chloride	0.11
抗氧化剂 ⁴⁾ antioxidant ⁴⁾	0.02
海藻酸钠 sodium alginate	1.00
羧甲基纤维素 carboxymethyl cellulose	2.00
三氧化二铬 Cr ₂ O ₃	1.00
纤维素 cellulose	1.48
化学组成 chemical composition (% of dry matter)	
粗蛋白 crude protein	43.30
粗脂肪 crude fat	11.97
能值/(MJ/kg) gross energy	19.72

注:1) 进口白鱼粉(美国海鲜公司, 西雅图, 华盛顿, 美国);2) 维生素预混物(mg/kg 或 IU/kg 饲料): 维生素 A 8000 IU, 维生素 E 70 mg, 维生素 B1 18 mg, 维生素 B2 35 mg, 维生素 B6 18 mg, 泛酸钙 60 mg, 烟酸 200 mg, 生物素 2.5 mg, 维生素 B12 0.6 mg, 叶酸 6 mg, 肌醇 1000 mg, 维生素 C 500 mg, 维生素 D3 2000 IU, 维生素 K 7 mg; 3) 矿物质预混物(g/kg): Ca(PO₄H₂)₂·H₂O (30), CaCO₃ (6.5), KCl (2.5), NaCl (4), MnSO₄·H₂O (0.2), FeSO₄·7H₂O (1.5), MgSO₄ (4.6), KI (0.02), CuSO₄·5H₂O (0.05), ZnSO₄·7H₂O (0.2), CoSO₄·7H₂O (0.05), Na₂SeO₃ (0.218×10⁻²), Al₂(SO₄)₃·18H₂O (1×10⁻²); 4) 2,6-二叔丁基-4-甲基苯酚.

Note: 1) pollock fish meal from American Seafood Company, Seattle, Washington, USA; 2) vitamin premix (mg/kg or IU/kg diet): Vitamin A 8000 IU, Vitamin E 70 mg, Vitamin B1 18 mg, Vitamin B2 35 mg, Vitamin B6 18 mg, calcium pantothenate 60 mg, niacin 200 mg, biotin 2.5 mg, Vitamin B12 0.6 mg, folic acid 6 mg, inositol 1000 mg, Vitamin C 500 mg, Vitamin D3 2000 IU, Vitamin K 7 mg; 3) mineral premix (g/kg): Ca(PO₄H₂)₂·H₂O (30), CaCO₃ (6.5), KCl (2.5), NaCl (4), MnSO₄·H₂O (0.2), FeSO₄·7H₂O (1.5), MgSO₄ (4.6), KI (0.02), CuSO₄·5H₂O (0.05), ZnSO₄·7H₂O (0.2), CoSO₄·7H₂O (0.05), Na₂SeO₃ (0.218×10⁻²), Al₂(SO₄)₃·18H₂O (1×10⁻²); 4) 2,6-di- tert-butyl-4-methylphenol.

饱食投喂 2 次(8:00 和 15:00), 溶解氧大于 8.5 mg/L, 氨氮低于 0.15 mg/L, 光照周期为 12L:12D。实 验结束时, 实验鱼饥饿 24 h, 称重。

1.3 数据分析

鱼体生长用湿重特定生长率(SGR_w, %/d)表示: SGR_w=100×(ln W_t -ln W_0)/t, 公式中的 W_t 和 W_0 分别 表示实验结束和实验开始时鱼体湿重。 最大摄食率[g/(ind·d)]与水温和体重之间的关 系用方程 $\ln C_{max} = a + b \ln W + cT + dT^2 + eT \ln W$ 进行回 归模拟; 湿重特定生长率(SGR_w, %/d)与水温和体 重之间的关系用方程 $\ln(SGR_w) = a + b \ln W + cT + dT^2$ 进 行回归模拟; 细鳞鲑鱼体能值 E_t (kJ/ind)与水温和 体重之间的关系可用方程 $\ln E_t = a + b \ln W + cT + dT^2 + eT \ln W$ 进行回归模拟。

应用 Statistaca 6.0 软件进行统计分析。水温 和体重对细鳞鲑摄食和生长影响的结果经单因素 方差分析 (one-way ANOVA)后,进行多重比较 (Duncan's multiple range tests), *P*<0.05 表示差异 显著。水温和体重对细鳞鲑最大摄食率、生长率 和能值的回归方程通过方差分析、Duncan's 多重 比较及多元回归分析,选择回归系数 *R*²最大的回 归模型。

2 结果与分析

2.1 摄食

小规格细鳞鲑在 18℃时获得最大摄食率, 中 规格在 14℃和 18℃获得最大摄食率, 而大规格在 14℃时获得最大摄食率(*P*<0.05)。相同水温条件下, 细鳞鲑的最大摄食率(*C*_{max}, g/fish/d)随体重的增加 而增加(图 1)。细鳞鲑的最大摄食率与体重的关系 可用方程 ln*C*_{max}=*a*+*b*ln*W* 表示。

图 1 水温及规格对细鳞鲑最大摄食率的影响 相同水温下,标有不同大写字母表示不同规格组间具有显著 性差异(P<0.05);相同规格下,标有不同小写字母表示不同 水温组间具有显著性差异(P<0.05). S、M、L 分别代表小规 格、中规格和大规格实验鱼.

Fig. 1 Effect of water temperature and fish size on maximum food consumption of *Brachymystax lenok*At the same temperature, different capitals mean significant difference among different fish sizes (*P*<0.05). At the same fish size, different lowercase letters mean significant difference

among different temperatures (P<0.05). S, M, L represent small size, middle size and large size experimental fish, respectively.

6°C:
$$\ln C_{\max} = -4.7520 + 1.0241 \ln W$$

($R^2 = 0.9938, n = 9$)

- 10° C: $\ln C_{\max} = -4.2655 + 1.0451 \ln W$ ($R^2 = 0.9939, n = 9$)
- 14°C: $\ln C_{\max} = -3.4869 + 0.9615 \ln W$ ($R^2 = 0.9950, n = 9$)
- 18°C: $\ln C_{\max} = -3.1404 + 0.8636 \ln W$ ($R^2 = 0.9962, n = 9$)

22°C:
$$\ln C_{\max} = -3.1714 + 0.8051 \ln W$$

($R^2 = 0.9934, n = 9$)

细鳞鲑的最大摄食率与水温和体重的关系如 图 2 和表 2 所示。多元回归分析显示水温和体重 对细鳞鲑最大摄食率的影响可以用下式模拟:

$$\ln C_{\max} = -6.8282 + 1.1603 \ln W + 0.3729 T - 0.0095 T^2 - 0.0157 T \ln W$$
(1)

$$R^2 = 0.9930, n = 45$$

逐步回归分析表明水温和体重对细鳞鲑最大 摄食率的影响存在显著的交互作用(P<0.05)(图 2)。

图 2 细鳞鲑最大摄食率与水温和体重之间的回归关系 Fig. 2 Multiple regression model of maximum food consumption of *Brachymystax lenok* relative to temperature and body weight

2.2 生长

如图 3 所示,小、中规格细鳞鲑在 14℃和 18℃ 时的特定生长率为最高,而大规格细鳞鲑特定生 长率在 14℃时有最大值(P<0.05)。相同水温下,细 鳞鲑的湿重特定生长率(SGR_w,%/d)随体重的增 加而降低。细鳞鲑湿重特定生长率(SGR_w,%/d)与 体重之间的关系可用方程 lnSGR_w=a+blnW 表示。

图 3 水温及规格对细鳞鲑湿重特定生长率的影响 相同水温下,标有不同大写字母表示不同规格组间具有显著 性差异(P<0.05);相同规格下,标有不同小写字母表示不同 水温组间具有显著性差异(P<0.05). S、M、L 分别代表小规 格、中规格和大规格实验鱼.

Fig. 3 Effect of water temperature and fish size on specific growth rate in wet weight of *Brachymystax lenok* At the same temperature, different capitals mean significant difference among different fish sizes (P < 0.05). At the same fish size, different lowercase letters mean significant difference among different temperatures (P < 0.05). S, M and L represent small size, middle size and large size experimental fish, respectively.

多元回归分析显示,水温和体重对细鳞鲑湿 重特定生长率(SGR_w,%/d)的影响可用下式进行 较好模拟:

$$lnSGR_{w} = -1.9390 - 0.2184 lnW + 0.4376T - 0.0147T^{2}$$
(2)

$$R^{2} = 0.8549, n = 45$$

逐步回归分析表明水温和体重对细鳞鲑湿重 特定生长率的影响不存在交互作用(图 4,表 2)。

2.3 能值

水温对不同规格细鳞鲑的鱼体能值 E_t (kJ/fish) 的影响如图 5 所示。相同水温下条件下,细鳞鲑 的能值 E_t (kJ/fish)随体重的增加而上升。多元回 归分析表明水温和体重对细鳞鲑能值 E_t (kJ/fish) 的影响可用如下方程进行较好拟合:

$$lnE_t$$
= 1.0012+1.2070 lnW -0.0002 T^2 -
0.0021 $TlnW$ (3)
 n =45, R^2 =0.9995
逐步回归分析表明, 水温和体重对细鳞鲑能

值 $E_t(kJ/fish)$ 的影响存在交互作用(图 6)。

Fig. 4 Multiple regression model of specific growth rate of *Brachymystax lenok* relative to temperature and body weight

图 5 水温及规格对细鳞鲑鱼体能值的影响 相同水温下,标有不同大写字母表示不同规格组间具有 显著性差异(P<0.05);相同规格下,标有不同小写字母 表示不同水温组间具有显著性差异(P<0.05).S、M、L 分 别代表小规格、中规格和大规格实验鱼.

Fig. 5 Effect of water temperature and fish size on energy of *Brachymystax lenok*

At the same temperature, different capitals mean significant difference among different fish sizes (P<0.05); at the same fish size, different lowercase letters mean significant difference among different temperatures (P<0.05).

S, M and L represent small size, middle size and large size experimental fish, respectively.

图 6 细鳞鲑能值与水温和体重之间的回归关系 Fig. 6 Multiple regression model of energy of *Brachymystax lenok* in relation to temperature and body weight

3 讨论

鱼类的生长是机体复杂生命活动的综合表现, 受外源和内源两类因子的制约。水温是影响鱼类 活动和生长的重要环境变量,主要对代谢反应速 率起控制作用,从而影响到鱼类的摄食活动、摄食 强度以及对食物的消化吸收速率等生理机能^[23]。 自然状态下,冷水性鱼类生活于高寒地区的低温 水域中。一般认为,冷水性鱼类生存的温度范围 在 0℃到 22℃之间,水温超过 22℃时,冷水性鱼 类会表现出严重的不适应,摄食、生长和发育停 止,甚至死亡^[24]。殷名称^[23]总结了鲑鳟类的温 度适应性特征,认为它们一般有两个最适生长温 度:7~9℃和 16~19℃,分析原因认为,在 7~9℃ 时,水温低,鱼类活动少,摄食后用于维持生命

活动的耗能少,有多余能量用于生长,且生长效 率大; 当水温达 10~15℃时, 鱼类特别活跃, 摄 食后用于维持生命活动的耗能多,没有多余或 较少多余能量用于生长; 16~19℃时, 鱼类强烈摄 食,但活动性相对 10~15℃要减弱,因而摄食后 也有较多多余能量用于生长, 但生长效率低; 低 于 7℃或高于 19℃, 鲑鳟类摄食活动减弱, 大多 停止生长。本研究中,在6℃时,细鳞鲑最大摄食 率和特定生长率都显著低于其他处理组, 水温达 到22℃,其最大摄食率和特定生长率都显著降低, 这与上述的总结是相同的。但本研究中不同规格 的细鳞鲑最适摄食和生长水温都在 14~18℃, 并 未发现两个最适宜生长温度,这也与牟振波等[21] 对初始体重 1.72 g 细鳞鲑的研究结果相一致, 在 该研究中,水温为 16℃时,细鳞鲑的特定生长 率、摄食率均显著高于其他处理组。与细鳞鲑相 似, 对褐鳟^[25]的研究也发现温度从 3.8℃升至 21.7℃时,标准代谢一直上升,其他指标则在 18℃ 附近有一显著转折。在18℃以上,摄食、排粪、 排泄、生长等能耗急剧下降。不同鲑鳟类的研究 结果说明鲑鳟类的适宜温度可能因种类不同而 存在一定的差异。细鳞鲑是古北界亚洲东北部的 一种冷水鱼,是在第四纪冰川时期由其中心分布 区西伯利亚伸延过来的^[26-27]。经过长期的演化, 细鳞鲑已成为一个陆封种类,并且其繁殖季节是 在春季,这与虹鳟(Oncorhynchus mykiss)、大麻哈 鱼(Oncorhynchus keta)等秋冬季繁殖的鲑科鱼类 有很大的差别。因此, 漫长自然选择中细鳞鲑的 适应性变化可能是其适宜生长温度与其他鲑科鱼 类不同的原因之一。

表 2 细鳞鲑最大摄食率、特定生长率及能值与水温和体重之间的回归关系 Tab. 2 Regression coefficients of maximum food consumption, specific growth rate and energy of *Brachymystax lenok* relative to temperature and body weight

				•				
模型 model	回归系数 a±SE	回归系数 b±SE	回归系数 c±SE	回归系数 d±SE	回归系数 e±SE	Р	R^2	п
А	-6.8282 ± 0.1746	1.1603 ± 0.0347	$0.3729 {\pm} 0.0204$	-0.0095 ± 0.0006	-0.0157 ± 0.0023	< 0.001	0.9930	45
В	$-1.9390{\pm}0.2387$	$-0.2184{\pm}0.0244$	$0.4376 {\pm} 0.0350$	-0.0147 ± 0.0012	—	< 0.001	0.8549	45
С	1.0012 ± 0.0542	1.2070 ± 0.0108	_	-0.0002 ± 0.0002	-0.0021 ± 0.0007	< 0.05	0.9995	45

注:(A) 最大摄食率与水温和体重之间的回归关系 ln*C*_{max}=*a*+*b*ln*W*+*cT*+*dT*²+*eT*ln*W* 的回归系数; (B) 特定生长率与水温和体重之间的回 归关系 ln(SGR_w)= *a*+*b*ln*W*+*cT*+*dT*² 的回归系数; (C) 能值与水温和体重之间的回归关系 ln*E*_t= *a*+*b*ln*W*+*cT*+*dT*²+*eT*ln*W* 的回归系数. Note: (A) Regression coefficients of temperature, body weight and maximum food consumption, ln*C*_{max}=*a*+*b*ln*W*+*cT*+*dT*²+*eT*ln*W*; (B) Regression coefficients of temperature, body weight and specific growth rate, ln(SGR_w)=*a*+*b*ln*W*+*cT*+*dT*²; (C) Regression coefficients of temperature, body weight and specific growth rate, ln(SGR_w)=*a*+*b*ln*W*+*cT*+*dT*²; (C) Regression coefficients of temperature, body weight and specific growth rate, ln(SGR_w)=*a*+*b*ln*W*+*cT*+*dT*²; (C) Regression coefficients of temperature, body weight and specific growth rate, ln(SGR_w)=*a*+*b*ln*W*+*cT*+*dT*²; (C) Regression coefficients of temperature, body weight and specific growth rate, ln(SGR_w)=*a*+*b*ln*W*+*cT*+*dT*²; (C) Regression coefficients of temperature, body weight and specific growth rate, ln(SGR_w)=*a*+*b*ln*W*+*cT*+*dT*²; (C) Regression coefficients of temperature, body weight and energy, ln*E*₁= *a*+*b*ln*W*+*cT*+*dT*²+*eT*ln*W*.

鱼类的适宜水温可能会随年龄和体重的变化 而改变,不同的研究结果存在一定的差异。一些 学者认为, 鱼类的最适温度随体重的增加而下降, 并认为发生这种现象是由于不同体重或发育阶段 的同种鱼类分布空间不同所致^[28-29]。本研究中, 不同规格细鳞鲑的生长特性表现出较强的相似 性, 均是在 6℃时最低, 14℃到 18℃最高, 当水温 达到 22℃时开始下降, 说明体重对细鳞鲑的生长 没有明显影响。这也与红大麻哈鱼(Oncorhynchus nerka)^[14]和哲罗鱼(Hucho taimen)^[30]的研究结果相 一致。然而对大西洋鲜(Salmo salar)的研究则显示 其适宜水温随着体重的增加而升高[11]。不同的研 究结果也说明. 鱼类的最适生长温度随体重的不 同而变化也因种而异,这可能也与鱼类自然状态 下的生活习性有关。细鳞鲑生活于两岸植被茂密 的山涧溪流中, 所生活的水域环境水深一般较浅, 并不存在明显的空间分布,因此不同规格细鳞鲑 的适宜水温具有相似性。本研究中,水温和体重 对细鳞鲑最大摄食率的影响存在交互作用, 而对 特定生长率的影响不存在交互作用。这与长吻鮠 (Leiocassis longirostris)的研究结果相一致^[31]。然而 对乌鳢(Channa argus)的研究显示出相反的结果, 水温和体重对乌鳢的摄食没有显著的交互作用, 对生长则具有显著的交互作用^[32]。另有研究显示 水温和体重对异育银鲫(Carassius auratus gibelio)^[33]和哲罗鱼^[30]摄食生长的影响均存在显著的 交互作用。上述研究结果表明水温和体重对鱼类 摄食和生长的影响是否具有交互作用可能与不同 鱼类对水温的适应性差异有关。

鱼类在自然生活环境中常遭受水温的季节性 和昼夜变化,已有研究发现,实验室得到的最适 生长温度和生长模型与野外观测结果不一致^[34]。 一些学者也研究了温度变化对鱼类等水生生物生 长的影响,并尝试探讨了其作用机制^[35-36],研究 结果表明环境变温可以一定程度影响水生动物的 生长。本文采用传统恒温实验设计,设置了 5 种 不同的温度进行生长实验,并没有考虑温度变化 对细鳞鲑摄食和生长的影响。自然状态下鱼类可 以通过游泳移动选择适宜的需求温度,如细鳞鲑 繁殖时就选择在水深较浅的支流中,而越冬时则 会选择水深较深的水域。因此,需要在未来的研 究中深入探讨温度变化对细鳞鲑生长和健康的影 响,以便更好地理解细鳞鲑对水温的适应性。

综上所述,水温和体重对细鳞鲑的摄食具有 交互作用,而对细鳞鲑的生长没有交互作用。综 合水温对不同体重细鳞鲑最大摄食率和特定生长 率影响的结果,可以认为细鳞鲑摄食和生长的适 宜温度范围在 14℃到 18℃。

参考文献:

- Dong C Z, Jiang Z F. Inner Cold Water Fisheries in China[M]. Harbin: Heilongjiang Science and Technology Press, 2008: 53-56. [董崇智, 姜作发. 中国内陆冷水性鱼 类渔业资源[M]. 哈尔滨:黑龙江科学技术出版社, 2008: 53-56.]
- [2] Liu Y, Xu G F, Mou Z B, et al. Evaluation of nutritive qualityand nutritional components of the muscle of *Brachymystax lenok*[J]. Acta Nutrimenta Sinica, 2010, 32(1): 99-100. [刘洋, 徐革锋, 牟振波, 等. 黑龙江水系细鳞鱼肌肉营养成分分 析与品质评价[J]. 营养学报, 2010, 32(1): 99-100.]
- [4] Mou Z B, Li Y F, Xu G F, et al. A technique of artificial reproduction and culture in manchurian trout *Brachymystax lenok*[J]. Chinese Journal of Fisheries, 2013, 26(1): 15-18.
 [牟振波, 李永发, 徐革锋, 等. 细鳞鱼全人工繁育技术研究[J]. 水产学杂志, 2013, 26(1): 15-18.]
- [5] Kusakabe K, Hata M, Shoji J, et al. Effects of water temperature on feeding and growth of juvenile marbled flounder *Pseudopleuronecte syokohamae* under laboratory conditions: evaluation by group- and individual-based methods[J]. Fisheries Sciences, 2017, 83(2): 215-219.
- [6] Handeland S O, Imsland A K, Stefansson S O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts[J]. Aquaculture, 2008, 283(1-4): 36-42.
- [7] Han D, Xie S, Zhu X, et al. Physiological responses of Chinese longsnout catfish to water temperature[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(3): 633-639.
- [8] Xie S, Zheng K, Chen J, et al. Effect of water temperature on energy budget of Nile tilapia, *Oreochromis niloticus*[J]. Aquaculture Nutrition, 2011, 17(3): e683-e690.
- [9] Bai H W, Zhang Y, Li X, et al. Effects of water temperature on feeding, growth and activities of digestive enzymes of juvenile *Acipensers chrenckii*[J]. Journal of Fishery Sciences

of China, 2012, 19(5): 799-805. [白海文, 张颖, 李雪, 等. 温度对施氏鲟幼鱼摄食、生长和肠道消化酶活性的影响[J]. 中国水产科学, 2012, 19(5): 799-805].

- [10] Kullgren A, Jutfelt F, Fontanillas R, et al. The impact of temperature on the metabolome and endocrine metabolic signals in Atlantic salmon (*Salmo salar*)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrattive Physiology, 2013,164(1): 44-53.
- [11] Pedersen T, Jobling M. Growth rates of large, sexually mature cod, *Gadus morhua*, in relation to condition and temperature during an annual cycle[J]. Aquaculture, 1989, 81(2): 161-168.
- [12] Nytro A V, Vikingstad E, Foss A, et al. The effect of temperature and fish size on growth of juvenile lumpfish (*Cyclopterus lumpus* L.)[J]. Aquaculture, 2014, 434: 296-302.
- [13] Elliott J M. The growth rate of brown trout (Salmo trutta L.) fed on maximum rations[J]. Journal of Animal Ecology, 1975, 44: 805-821.
- [14] Brett J R, Shelboume J E, Shoop C T. Growth rate and body composition of fingerling sockeye salmon, *Oncorhynchus nerka*, in relation to temperature and ration size[J]. Journal of Fisheries Research Board of Canada, 1969, 26: 2363-2394.
- [15] Sun L, Chen H. Effects of water temperature and fish size on growth and bioenergetics of cobia (*Rachycentron canadum*)
 [J]. Aquaculture, 2014, 426-427: 172-180.
- [16] Føre M, Alver M, Alfredsen J A, et al. Modelling growth performance and feeding behaviour of Atlantic salmon (*Sal-mo salar* L.) in commercial-size aquaculture net pens: Model details and validation through full-scale experiments[J]. Aquaculture, 2016, 464: 268-278.
- [17] Dumas A, France J, Bureau D. Modelling growth and body composition in fish nutrition: where have we been and where are we going?[J]. Aquaculture Research, 2010, 41: 161-181.
- [18] Chowdhury M, Siddiqui S, Hua K, et al. Bioenergetics-based factorial model to determine feed requirement and waste output of tilapia produced under commercial conditions[J]. Aquaculture, 2013, 410-411: 138-147.
- [19] Bureau D P, Hua K. Towards effective nutritional management of waste outputs in aquaculture, with particular reference to salmonid aquaculture operations[J]. Aquaculture Research, 2010, 41: 777-792.
- [20] Sun M, Hassan S G, Li D. Models for estimating feed intake in aquaculture: A review[J]. Computers and Electronics in Agriculture, 2016, 127: 425-438.
- [21] Mou Z B, Liu Y, Xu G F, et al. The optimum temperature for growth and feeding in *Brachymystax lenok*[J]. Chinese Journal of Fisheries, 2011, 24(4): 6-8. [牟振波, 刘洋, 徐革锋,

等. 细鳞鱼摄食和生长最适水温的研究[J]. 水产学杂志, 2011, 24(4): 6-8.]

- [22] Hardy R W, Barrows F T. Diet formulation and manufacture. Halver J E, Hardy R W(eds), Fish Nutrition[M]//San Diego: Academic Press, 2002: 505-600.
- [23] Yin M C. Fish Ecology[M]. Beijing: China Agriculture Press, 1995: 34-41. [殷名称. 鱼类生态学[M]. 北京: 中国农业出版社, 1995: 34-41.]
- [24] Fan Z T, Jiang Z F, Han Y. Cold Water Fish Culture[M].
 Beijing: China Agriculture Press, 2008: 1-8. [范兆廷, 姜作 发, 韩英. 冷水性鱼类养殖学[M]. 北京: 中国农业出版社, 2008: 1-8.]
- [25] Wootton R J. Ecology of Teleost Fishes[M]. London: Chapman & Hall, 1990: 73-95.
- [26] Li S Z. Studies on Zoogeographical Divisions for Fresh Water Fishes of China[M]. Beijing: Science Press, 1981: 32-45. [李思忠. 中国淡水鱼类的分布区划[M]. 北京: 科学出版社, 1981: 32-45.]
- [27] Wang S A. Biological feature and distributive change of fine scal fish in North China[J]. Salmonid Fisheries, 1990, 3(1): 39-45. [王所安. 细鳞鱼的生物学特性及其在华北分布范围的变化[J]. 鲑鳟渔业, 1990, 3(1): 39-45.]
- [28] Haug T. Biology of Atalantic halibut, *Hippoglossus hippoglossus* (L., 1758)[J]. Advance Marine Biology, 1990, 26: 1-70.
- [29] Fonds M, Cronie R, Vethamk A D, et al. Metabolisn, food consumption and growth of plaice (*Pleuronectes platessa*) and flounder (*Platichthys flesus*) in relation to fish size and temperature[J]. Netherlands Journal of Sea Resource, 1992, 29: 127-143.
- [30] Wang C A. Feeding strategy of *Hucho taimen* under farming conditions[D]. Harbin: Northeast Forestry University, 2015.
 [王常安.人工养殖条件下哲罗鱼(*Hucho taimen*)投喂模式的研究[D].哈尔滨:东北林业大学, 2015.]
- [31] Han D. Modeling for feeding system and pollution evaluation in Chinese longsnout catfish[D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 2005. [韩冬. 长吻鮠投喂管理和污染评估动态模型的研究[D]. 武汉: 中国科学院水生生物研究所, 2005.]
- [32] Liu J S. Growth and energy budgets in juvenile mandarin fish *Siniperca chuatsi* and Chinese snakehead *Channa argus*: a comparative study[D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 1998. [刘家寿. 鱖和乌鳢幼 鱼生长及能量收支的比较研究[D]. 武汉:中国科学院水 生生物研究所, 1998.]
- [33] Zhou Z G. Establishment of feeding regimes for gibel carp Carassius auratus gibelio: a bioenergetics modelling approach[D]. Wuhan: Institute of Hydrobiology, Chinese Acad-

emy of Sciences, 2002. [周志刚. 利用生物能量学模型建 立异育银鲫投喂体系的研究[D]. 武汉:中国科学院水生 生物研究所, 2002.]

- [34] Jensen A J. Growth of young migratory brown trout Salmo trutta correlated with water temperature in Norwegian rivers[J]. Journal of Animal Ecology, 1990, 59(2): 603-614.
- [35] Sadati M A Y, Pourkazemi M, Shakurian M, et al. Effect of

daily temperature fluctuation on growth and hematology of juvenile *Acipenser baerii*[J]. Journal of Applied Ichthyology, 2011, 27(2): 591-594.

[36] Recsetar M S, Bonar S A, Feuerbacher O G. Growth and survival of apache trout under static and fluctuating temperature regimes[J]. Transactions of the American Fisheries Society, 2014, 143(5): 1247-1254.

Effects of water temperature on feeding and growth of the lenok *Brachymystax lenok* (Pallas) with different sizes

LIU Yang¹, LIU Hongbai¹, XU Gefeng¹, MOU Zhenbo², YIN Jiasheng¹

Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China;
 Institute of Fishery Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China

Abstract: This study was conducted to investigate the effects of water temperature and fish size on feeding and growth of the lenok *Brachymystax lenok*. The experimental fish of three sizes (7 g, 68 g, and 169 g) were reared at five water temperatures (6°C, 10°C, 14°C, 18°C, 22°C) using artificial diet. The results showed that the maximum feeding rate (C_{max}) was observed at 18°C in small size, 14°C and 18°C in middle size, and 14°C in large size (P<0.05). The highest special growth rate (SGR_w) was obtained at 14°C and 18°C in small size and middle size, and at 14°C in large size (P<0.05). The maximum feeding rate and energy content of the lenok increased with increased fish size, however, the special growth rate decreased with increased fish size. Multiple regression model of SGR_w, C_{max} and E_t of the lenok in relation to temperature and fish size was $\ln C_{max}=-6.8282+1.1603\ln W+ 0.3729T-0.0095T^2-0.0157T\ln W$, $\ln SGR_w=-1.9390-0.2184\ln W+0.4376T-0.0147T^2$ and $\ln E_t=1.0012+1.2070\ln W-0.0002T^2-0.0021T\ln W$, respectively, which indicated that there was interaction on C_{max} and E_t of the lenok between temperature and fish size (P<0.05). The results suggested that the optimum temperature for different fish sizes of the lenok was similar, which was between 14–18°C based on maximum feeding rate (C_{max}) and specific growth rate in terms of wet weight (SGR_w).

Key words: *Brachymystax lenok*; water temperature; body weight; feeding; growth Corresponding author: YIN Jiasheng. E-mail: yinjiasheng@hrfri.ac.cn