DOI: 10.3724/SP.J.1118.2018.17439

刺激隐核虫 α-微管蛋白基因的克隆、原核表达及在生活史不同阶 段的 mRNA 表达

孙嘉阳1,张子平2,朱友芳3,邹志华1,韩坤煌1,葛辉4,王艺磊1

1. 集美大学水产学院, 福建 厦门 361021;

2. 福建农林大学动物科学学院, 福建 福州 350002;

3. 莆田市水产科学研究所, 福建 莆田 351100;

4. 福建省水产研究所, 福建 厦门 361013

摘要: 从本实验室已有刺激隐核虫(*Cryptocaryon irritans*)转录组数据中筛选获得 α-微管蛋白基因片段,利用 5'RACE 和 3'RACE 技术首次克隆获得其 cDNA,全长为 1602 bp,包含 1356 bp的开放阅读框,编码 451 个氨基酸,预测蛋白质分子量为 49.78 kD。生物信息学分析表明 α-微管蛋白为亲水性非跨膜蛋白,氨基酸序列的第 142~148 位有特异且保守的 GTP 核苷酸结合位点(GGGTGSG)。对刺激隐核虫 α-微管蛋白氨基酸序列进行同源性比对及进 化树分析,发现其与间日疟原虫(*Trypanosoma vivax*)、丹氏锥虫(*Trypanosoma danilewskyi*)、八肋游仆虫(*Euplotes octocarinatus*)、尾刺耐格里原虫(*Naegleria gruberi*)、眼虫(*Euglena gracilis*)等的序列一致性高达 94%~95%,且在系 统进化树上聚为一支。采用实时荧光定量 PCR 技术对 α-微管蛋白基因在刺激隐核虫 3 个生活史阶段的表达进行检测,结果显示 α-微管蛋白基因的表达量在纤毛虫时期显著高于包囊和滋养体时期(*P*<0.05)。我们进一步构建了 α-微管蛋白重组表达载体,并转化至大肠杆菌表达菌株 BL21(DE3)和 Rosetta(DE3)中进行原核表达, SDS-PAGE 分析表明,诱导表达的重组蛋白分子量约为 50 kD,与预测的结果一致,即成功诱导表达 α-微管蛋白。本实验结果为后 续制备 α-微管蛋白有效亚单位疫苗防治刺激隐核虫病奠定了基础。

关键词:刺激隐核虫;α-微管蛋白;原核表达;生活史;实时荧光定量 PCR 中图分类号:S917 文献标志码:A 文章编号:1005-8737-(2018)06-1172-11

刺激隐核虫(Cryptocaryon irritans)又称海水 白点虫,隶属前口纲、前管目、隐核虫科、隐核 虫属(Cryptocaryon)^[1],广泛分布于热带和亚热带 海洋中,除黄斑蓝子鱼(Siganus oramin)之外^[2], 几乎所有的海水硬骨鱼都可以成为其宿主^[3-4], 是海水中最具破坏性的寄生原虫之一^[5-6]。其生命 周期是由宿主生活阶段和自由生活阶段两部分组 成,并不需要中间宿主,生活史主要分为 3 个阶 段,即:寄生在鱼体表面的滋养体阶段,发育成 熟后成为包囊前体,成熟的包囊前体离开宿主形 成附着在池壁底部的包囊阶段,进而由包囊孵化 成感染期的纤毛幼虫阶段^[7]。繁殖温度为 10~30℃, 最适水温为 25~30℃,整个生命周期约1到2周时 间^[8]。刺激隐核虫病感染的主要特征是鱼体表面 会出现大量白点,故俗称"白点病"^[5]。

由于刺激隐核虫的适宜生存水温范围广泛, 无中间宿主,繁殖周期短,繁殖率高,且在高密 度集约化的养殖模式下,一旦鱼体感染,便会引 发大面积死亡造成巨大的经济损失^[8-10]。目前对 刺激隐核虫的防治方法主要分为化学防治,物理 防治,免疫防治三大类。化学防治包括浸泡高锰 酸钾、福尔马林、氯酸钠、硫酸铜以及中草药治

收稿日期: 2017-12-11;修订日期: 2018-01-18.

基金项目: 福建省海洋与渔业厅五新项目(201209200023); 福建省科技厅高校产学合作项目(2017N5002).

作者简介: 孙嘉阳(1992-), 女, 硕士研究生, 从事分子生物学研究. E-mail: 344156662@qq.com

通信作者: 王艺磊, 教授, 从事分子生物学研究. E-mail: ylwang@jmu.edu.cn

1173

疗^[5,11-15]。物理防治主要是通过移除包囊、淡水 浸泡以及用紫外线或臭氧对养殖水体进行杀菌来 实现^[12,16-18]。然而,前两种方法有诸多缺点,化 学防治容易对养殖环境造成破坏,难以在大面积 开放水体中使用,且对鱼体有毒副作用或有药物 残留。物理防治则易对病鱼造成较强的应激反应。 近年来的研究发现用天然的刺激隐核虫体做抗原 能诱发宿主鱼产生先天性和获得性的免疫反应^[19], 这给刺激隐核虫感染的免疫诊断方法和免疫预防 措施的开发提供了理论依据。越来越多的证据表 明制备刺激隐核虫疫苗来免疫寄主鱼能够有效保 护寄主鱼免受刺激隐核虫包染^[20-21],因此筛选有 效抗原是研发刺激隐核虫的亚单位疫苗的关键。

微管蛋白的种类主要有: α-微管蛋白, β-微管 蛋白以及 γ-微管蛋白。α-微管蛋白和 β-微管蛋白 通过 GTP 结合位点聚合形成 α/β-异二聚体构成 微管骨架^[22]。微管蛋白是真核生物细胞骨架等亚 细胞器的重要组成部分, 也是原生动物纤毛和鞭 毛的主要成分, 它在保持细胞形态, 参与细胞分 裂、胞内运输、纤毛和鞭毛的运动中起到重要作 用^[23]。早在 1995 年, Balaban 等^[24]研究表明锥虫 的膜下微管可以作为治疗锥虫病的特殊非突变靶 位点。随后的时间里, 越来越多的研究者对微管 蛋白作为原生动物潜在抗原进行研究证实。 Rasooly 和 Balaban^[25]利用布氏锥虫(Trypanosoma brucei)的一种微管结合蛋白 MAP p15 免疫小鼠, 发现可以 100%的保护宿主免受多种异株布氏锥 虫侵染。Li 等^[26]研究表明体外构建重组载体原核 表达伊氏锥虫(Trypanosoma evansi)微管蛋白能够 诱导小鼠对锥虫产生免疫反应。然而,目前关于 刺激隐核虫微管蛋白抗原性的研究较少。因此, 寻找刺激隐核虫的微管蛋白验证其免疫原性并作 为潜在靶抗原疫苗是本研究的主要目的。

1 材料与方法

1.1 实验材料

本研究使用的包囊收集自暴发刺激隐核虫病 害的宁德海区。将收集的包囊用斜带石斑鱼 (Epinephelus coioides)传代培育获得滋养体和纤 毛幼虫,保存于液氮中。

1.2 总 RNA 提取及 cDNA 第一条链的合成

采用 Total RNA kit II (OMEGA, 美国)试剂 盒,分别抽取滋养体、包囊、纤毛虫的总 RNA。 使用 ND-1000 分光光度计来确定获得的 RNA 纯 度和浓度。对提取的 RNA 溶液进行琼脂糖凝胶电 泳,进一步验证 RNA 的质量。获得的 RNA 样品 于-80℃保存备用。按照 RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, Lithuania) 试剂盒说明书以 20 µL 体系逆转录反应合成 cDNA 第一条链,反应体系为:总 RNA1 µg, 5× Reaction Buffer 4 µL, Random Hexamer Primer (0.2 µg/µL) 1 µL, dNTP Mix (10 mmol/L) 2 µL, RevertAid Reverse Transcriptase 1 µL, RiboLock RNase Inhibitor 1 µL, RNase Free dH₂O 定容至 20 µL。 反应条件为 25℃ 10 min, 42℃ 45 min, 70℃ 15 min, 16℃ 15 min, 逆转录反应结束后置于-20℃保存。

1.3 α-微管蛋白基因 cDNA 全长片段的扩增、克 隆和序列测定

根据实验室已有的刺激隐核虫转录组数据库, 筛选获得与其他原生动物的基因具有 90%以上一 致性的 α-微管蛋白基因部分序列。为验证该序列 的准确性,利用 Primer Premier 5.0 软件设计特异 性上游引物 tubulin-F1 和下游引物 tubulin-R1(表 1)。PCR 反应程序: 95℃变性 5 min; 95℃ 30 s, 55℃ 30 s, 72℃ 30 s, 35 个循环; 72℃延伸 3 min。 产物经琼脂糖凝胶电泳检测。使用琼脂糖凝胶 DNA 回收试剂盒(Promega, USA)回收目的片段并 连接于 pMD19-T 载体,将其转化到 *Escherichia coli* DH5α感受态细胞,挑取阳性单克隆送往生工 生物工程(上海)股份有限公司测序。

以刺激隐核虫纤毛虫阶段样品总 RNA 逆转 录分别制备 3'RACE 和 5'RACE cDNA 模板,方法 参考刘春云等^[27]。根据 SMART II Oligonucleotide, 运用 Primer 5.0 软件,在已有中间序列测序结果 的基础上,设计 3'RACE 引物 outer-F1 和 inner-F2, 5'RACE 基因特异性引物 outer-R1 和 inner-R2(表 1)。根据巢式 PCR 原理,进行第一轮 Outer PCR 和第二轮 Inner PCR,具体反应步骤参考刘春云 等^[27]。用上述方法挑取阳性单克隆送往生工生物 工程(上海)股份有限公司测序。所有引物均由铂 瑞生物技术(厦门)有限公司合成。

	————————————————————				
引物 primer	序列(5'-3') sequence (5'-3')	用途 usage			
tubulin-F1	GGAAGGAGGACGCTGCGAACAACTAC	中间序列扩增 middle sequence amplification			
tubulin-R1	CGAGGAGGACGTCGAGGAGTACTAG	中间序列扩增 middle sequence amplification			
outer-F1	TTCCTGGTGTTCAACTCGGTGGGC	3'RACE			
inner-F2	CGTCGTTGAGCCGTACAACAGCGTG	3'RACE			
outer-R1	AGGCACAGGTCCACGATCTCCTTCC	5'RACE			
inner-R2	GTGAACCCCAGCTTCGACTTGC	5'RACE			
tubulin-F2	AAGTGCGGGATCAACTACCA	qRT-PCR			
tubulin-R2	GCACGCTTCGAGTACATCAG	qRT-PCR			
18S-F	GATCTTAAACCAATATTCCTTCGGG	qRT-PCR 内参基因 the reference gene for qRT-PCR			
18S-R	GGGCCAGCCTCGATCC	qRT-PCR 内参基因 the reference gene for qRT-PCR			

表 1 用于 α-微管蛋白基因 cDNA 克隆和实时荧光定量 PCR 的引物序列 Tab. 1 Primers used for α-tubulin gene cDNA cloning and qRT-PCR

1.4 序列拼接与生物信息学分析

利用 SequencherTM 软件将测序结果进行拼 接, 对拼接获得的核酸序列用 ORF Finder 程序 (https://www.ncbi.nlm.nih.gov/orffinder/)确定开放 阅读框(Open Reading Frame, ORF); BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 对推导的 氨基酸序列进行同源性分析;使用 ExPASy(http:// web.expasy.org/compute pi/)预测等电点及分子量; SMART 程序(http://smart.embl-heidelberg.de/)预 测蛋白质的结构域; SignalP 4.1 Server (http:// www.cbs.dtu.dk/services/SignalP/) 预测信号肽; TMHMM Server v.2.0 (http://www.cbs.dtu.dk/services/ TMHMM/)进行跨膜区预测; ProtScale (http://web. expasy.org/protscale/)预测蛋白的亲/疏水性; 使用 PBIL 的在线分析工具 SOPMA 预测氨基酸序列 的二级结构(https://npsa-prabi.ibcp.fr/cgi-bin/npsa automat.pl?page=npsa sopma.html); 使用 SWISS-MODEL (http: //swissmodel.expasy.org/)进行蛋白 质三级结构构建。通过 BioEdit 软件进行序列的 多重比对,使用 MEGA 7.0 软件构建系统进化树。

1.5 α-微管蛋白基因的原核表达及鉴定

1.5.1 重组载体 pET30a/α-tubulin 的构建及鉴定 根据大肠杆菌(*Escherichia coli*)密码子的偏好性, 利用 MaxCodonTM Optimization Program (V13)软件 对 α-微管蛋白基因序列的密码子进行优化,送往 德泰生物科技(南京)有限公司进行全基因合成; 并在目的基因片段的两端加入限制性酶切位点 *Nde* I 和 *Hind* III, 通过此二酶切位点将目的基因插 入到表达载体 pET30a 中, 之后将构建的重组质 粒 pET30a/α-tubulin 导入大肠杆菌 BL21(DE3)感 受态细胞中。再利用限制性酶切位点 *Xho* I 和 *Xba* I 双酶切验证重组质粒 pET30a/α-tubulin 是否构建 成功。将含有重组质粒 pET30a/α-tubulin 的 BL21 (DE3)菌液送往生工生物工程(上海)股份有限公 司进行测序, 以确定最终表达载体的准确性。

1.5.2 重组载体 pET30a/α-tubulin 的表达及鉴定

将构建成功的重组质粒 pET30a/α-tubulin 导入大肠 杆菌表达菌株 BL21(DE3)和 Rosetta(DE3)感受态 细胞中,挑选单克隆分别接种于 LB 培养液(含 50 μ g/mL 的硫酸卡那霉素)和 TB 培养液(含 50 μ g/mL 的 硫酸卡那霉素)中。单克隆菌液 BL21(DE3)/ pET30a/α-tubulin 和 Rosetta(DE3)/pET30a/α-tubulin 作为实验组,用相同的方法得到空载体单克隆菌 液 BL21(DE3)/pET30a 和 Rosetta(DE3)/pET30a 作 为阴性对照组。待培养至 OD₆₀₀ 为 0.5~0.8, 向培 养液中加入终浓度 0.1 mmol/L IPTG,分别置于 15℃ 和 37℃, 200 r/min,诱导表达 16 h。最后,用 SDS-PAGE 分析鉴定诱导表达结果。

1.6 刺激隐核虫 α-微管蛋白基因在不同生活史的 mRNA 表达水平

将滋养体、包囊、纤毛虫的总 RNA 按照刘春 云等^[27]方法制备定量 PCR 模板。利用荧光实时定 量 PCR 技术(qRT-PCR)在 LightCycler480 实时定 量 PCR 仪(罗氏,美国)对 α-微管蛋白基因在不同 生活史的表达水平进行检测。tubulin-F2 和 tubulin-R2 为 α-微管蛋白基因定量 PCR 引物(引物序列见表 1), 18S-F 和 18S-R 为内参基因 18S rRNA 的引物 (引物序列见表 1)。具体反应体系参照刘春云等^[27]: 95℃, 1 min; 95℃ 15 s, 59℃ 10 s, 72℃ 10 s, 40 个循环,每个生活史分别设置 4 个平行样品。根 据 Roche 480 实时定量 PCR 仪自动给出每个样品 的 C_p 值计算 RQ 值(2^{-ΔΔCt}, ΔC_t =样品目的基因的 C_t 值-内参基因 18S C_t 值, $\Delta \Delta C_t$ =每一个样品的 ΔC_t 值-基准样品的 ΔC_t 值)。基因表达水平均用 RQ 平 均值±标准误(\bar{x} ±SE)来表示,并通过 SPSS 18.0 软 件检测样品间的显著性差异, P<0.05 为显著性 差异。

2 结果与分析

2.1 刺激隐核虫 α-微管蛋白基因全长 cDNA 序列 分析

以验证成功的 1073 bp 中间序列为基础, 采 用 RACE 方法获得 α-微管蛋白基因 3'和 5'端。经 软件 SequencherTM 拼接得到全长为 1602 bp 的 cDNA 序列。经 ORF Finder 分析, 该序列 ORF 为 1356 bp, 编码 451 个氨基酸, 5'UTR 为 51 bp, 3'UTR 为 195 bp。ExPASy 预测该基因所编码的氨基酸蛋 白分子量为 49.78 kD, 等电点为 4.9 (图 1)。

1	CCCCTTTCTGTACTTCATTGGACTCGAAAGCAAAGACAAGGAAAAGCCAAG atg cgtgagtgatctcgatccacatcgggcaggccggt	90
1	M R E V I S I H I G Q A G	13
91	tgccaggtcggcaacgcgtgctgggagctgtactgccttgagcacgggatccagcctgacggggcgatgccgtcggacaagacgtgcgggggggg	180
14	C Q V G N A C W E L Y C L E H G I Q P D G A M P S D K T C G	43
181	gtggaggacgacgcgttcaacaccttcttctcggagacgggtgcggggaagcacgtgccgcgggggggg	270
44	VEDDA <u>FNTFFSETGAGKHVPRAVMLDLEPT</u>	73
271	gtgatcgacgaggtgcggacggacgtaccgccagctgttccacccggagcagctgatctcggggaaggaggacgctgcgaacaactaccggagcaggtgcggaaggaggacgttgcgaacaactaccggagcaggtgcggaaggaggacgttgcgaacaactaccggagcaggtgcggaaggaggacgttgcgaacaactaccggagcaggtgcggaaggaggaggacgttgcgaacaactaccggagcaggtgcggaaggaggaggacgttgcgaacaactaccggagcaggtgcggaaggaggaggacgttgcgaacaactaccggagcaggtgcggaaggaggaggacgttgcgaacaactaccggagcaggtgcggaaggaggaggaggacgttgcgaacaactaccggagcaggtgcggaaggaggaggacgttgcgaacaactaccggagcaggtgcggaaggaggaggacgttgcgaacaactaccggagcaggtgcggaaggaggaggacggtgcggaacaactaccggagcaggtgcggaaggaggaggacggtgcgaacaactaccggagcaggtgcggaaggaggaggaggaggacggtgcgaacaactaccggagcaggtgcggaaggaggaggaggaggaggaggaggaggaggaggag	360
74	<u>VIDEVRTGTYRQLFHPEQLISGKEDAANNY</u>	103
361	gcgcgtgggcactacacgatcgggaaggagatcgtggacctgtgcctggaccggatccggaagctggcggacaactgcacgggtctgcaggacggac	450
104	A R G H Y T I G K E I V D L C L D R I R K L A D N C T G L Q	_133
451	gggttcctggtgttcaactcggtgggcggcggggaccgggtcgggtcgggtcgggtgcgctgctgctggtggaccggtgggactacggccgcdgtgggggggggg	540
134	<u>GFLVFNSV</u> GGGTGSGLGALLLERLSVDYGR	163
541	aagtcgaagctggggttcacggtgtacccgtcgccgcaggtgtcgacggccgtcgttgagccgtacaacagcgtgctgtcgacgcactcggcgtgtcgacgcactcgggggttcacggtgtgtgt	630
164	<u>KSKLGFTVYPSPQVSTAVVEPYNSVLSTHS</u>	193
631	ctgctggagcacacggacgtcgcgtgcatgctggacaacgaggcggtgtacgacatcgcgccgcaacctggacatcgagcgcccgacgcgccgcacctggacatcgagcgcccgacgcgccgcacctggacatcgagcgcccgacgcgccgcacctggacatcgagcgcccgacgcgccgcacctggacatcgagcgcccgacgcgccgcacctggacatcgagcgcccgacgcgcgcg	720
194	<u>LLEHTDVACMLDNEAVYDIARRNLDIERPT</u>	223
721	ta cac gaac ctg a a ccg tcg ctg cg	810
224	Y T N L N R L I A Q V I S S L T A S L R F D G A L N V D V T	253
811	gagttecagacgaacetggtgccgtacccgcggatecacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcgggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcgggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcgggagaaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcgggagaggcgtaccacttcatgetttcgtcgtacgcgcggtgatetcggcgggagaggggagaggggaggg	900
254	<u>EFQTNLVPYPRIHFMLSSYAPVISAEKAYH</u>	283
901	gag cag ctg tcg gtg gcg gag at cac ga acg ctg cg tcg ag ccg gcg tcg at gat gg cg a ag tg cg acc cg cg cca cg gg a ag ta cat gg cg a c cg gg cg a g ta cat gg cg a c cg cg c ca cg gg a ag ta cat gg cg a cg	990
284	<u>EQLSVAEITNAAFEPASMMAKCDPRHGKYM</u>	313
991	gcgtgctgcctgatgtaccgcggcgacgtggtgccgaaggacgtgaacgctggacggtggcgacgatcaagacgaaggacgatccagttcaggtggcgacgatcaagacgaaggacgatcaggtcaggtggcgacgatcaggtgggggggg	1080
314	A C C L M Y R G D V V P K D V N A S V A T I K T K R T I Q F	343
1081	gtggactggtcgccgacggggttcaagtgcgggatcaactaccagccgccgacggtggtgccgggcggcgacctggcgaaggtgcagcgtggtgccgggggggg	1170
344	V D W S P T G F K C G I N Y Q P P T V V P G G D L A K V Q R	373
1171	gcggtgtgcatgatctcgaacagcacggcgatcgccgaggtgttcgcgcgcatcgaccacaagttcgacctgatgtactcgaagcgtgcggtgtgcatgatcgacgacgtgtgtgt	1260
374	<u>A V C M I S N S T A I A E V F A R I D H</u> K F D L M Y S K R A	403
1261	ttcgtgcactggtacgtcggggagggtatggagggggggg	1350
404	F V H W Y V G E G M E E G E F S E A R E D L A A L E K D Y E	433
1351	gaggtcggcgccgagtcggcggacatcgagggcgaggaggacgtcgaggagtactagGCGCACGTCCTCCAGCCGCTTCCACCCTTTTTCCACCCTTTTTCCACCCTTTTTCCACCCTTTTTCCACCCTTTTTCCACCCTTTTTCCACCCTTTTTCCACCCTTTTTT	1440
434	EVGAESADIEGEEDVEEY*	451
1441	GCGTTCCCCCTGTTGGTGTCCCGCACTCTTGGTTATCGTTTTTTGTGCGGAGAACAGAATGTTCTTCACACAACAGAAGCAAAACAAAC	1530
1531	ААСАААСАААСАААСАААСАААСАААСАААСАААСААА	

图 1 刺激隐核虫 α-微管蛋白基因核苷酸序列及推导的氨基酸序列 加粗体为起始密码子 ATG; *为终止密码子 TAG; 单下划线部分为 GTP 酶结合区; 双划线部分为 C 端结构域; 阴影部分为 GTP 核苷酸结合位点(GGGTGSG).

Fig. 1 Nucleotide and deduced amino acids sequences of α-tubulin in *Cryptocaryon irritans* The bold fonts indicated the start codon (ATG); asterisk indicated the stop codon (TGA); the GTPase domain is single underlined; the C-terminal domain is double underlined; GTP nucleotide binding site (GGGTGSG) is outlined in gray. 使用 ProtScale 预测刺激隐核虫 α-微管蛋白的 亲/疏水性,结果显示亲水性氨基酸残基所占面积 大于疏水性氨基酸残基,推测其属于亲水性蛋白 质(图 2)。使用 TMHMM 预测 α-微管蛋白序列跨 膜域,结果显示其蛋白序列的肽链跨膜的概率低 于 0.5,且预测跨膜螺旋中的氨基酸残基数为 1.59 个,表明 α-微管蛋白不具有明显的跨膜结构(图 3)。使用 SignalP 预测发现 α-微管蛋白不存在信号 肽,预测其不是分泌型蛋白。

通过 ScanProsite 软件对 α-微管蛋白的氨基酸 序列进行结构预测分析,结果表明在第 142 至 148 位氨基酸序列区域内,存在特有的保守区 域—GTP 核苷酸结合位点 GGGTGSG。用 SMART 预测 α-微管蛋白有 2 个显著的结构域家族, Phe49-Gly246 位氨基酸为 Tubulin/FtsZ 家族 GTP 酶结构域; Leu248-His393 位氨基酸为 Tubulin/FtsZ 家族 C-末端结构域(图 1)。使用 PBIL 的在线分析 工具 SOPMA 对氨基酸序列的二级结构进行预测, SWISS-MODEL 软件的同源建模构建蛋白质三级 结构,结果显示 α-微管蛋白是由 45.01%的 α-螺旋, 28.60%的无规卷曲, 16.63%的延伸链和 9.76%的 β-转角组成(图 4)。

图 4 预测的刺激隐核虫 α-微管蛋白的三级结构 Fig. 4 Predicted three-dimensional structure of the α-tubulin in *Cryptocaryon irritans*

2.2 刺激隐核虫 α-微管蛋白基因编码的氨基酸 序列同源性及其进化树分析

经过 BLAST 分析,发现刺激隐核虫 α-微管蛋 白与尾刺耐格里原虫(Naegleria gruberi)、眼虫 (Euglena gracilis)a-微管蛋白氨基酸序列的一致 性最高,为95%;与间日疟原虫(Trypanosoma vivax)、 丹氏锥虫(Trypanosoma danilewskyi)、八肋游仆虫 (Euplotes octocarinatus)一致性也高达 94%; 使用 BioEdit 软件将刺激隐核虫 α-微管蛋白氨基酸序 列分别与人(Homo sapiens)、小鼠(Mus musculus)、 斑马鱼 (Danio rerio)、东美螈 (Notophthalmus viridescens)、家蚕(Bombyx mori)和丹氏锥虫等动 物的 16 条 α-微管蛋白序列进行同源性比对分析 (表2),结果显示刺激隐核虫α-微管蛋白的氨基酸 序列与其他物种的 α-微管蛋白的氨基酸序列具有 较高一致性(图5),表明α-微管蛋白具有较高的保 守性。使用 MEGA7.0 软件以 NJ 法构建 17 种生 物 α-微管蛋白氨基酸序列的分子系统进化树(图 6)。进化树结果表明,脊椎动物中哺乳类人和小 鼠、鸟类波斑鸨(Chlamydotis macqueenii)、两栖类 东美螈和非洲爪蟾(Xenopus laevis)以及鱼类斑马 鱼聚为一支;无脊椎动物中环节动物家蚕、节肢

1177

动物果蝇(Drosophila melanogaster)以及头索动物 亚门的文昌鱼(Branchiostoma floridae)聚为一支; 刺激隐核虫与原生动物草履虫(Paramecium tetraurelia)、四膜虫(Tetrahymena thermophila)、 八肋游仆虫、丹氏锥虫、眼虫、尾刺耐格里原虫、 间日疟原虫聚为一支(图 6)。由 17 个代表物种的 α-微管蛋白氨基酸序列所反映的系统发育关系与 生物在进化上的地位关系相一致。

表 2 刺激隐核虫 α-微管蛋白氨基酸序列多重 比对和系统进化树所用物种信息 Tab. 2 Species information for multiple sequence alignment and phylogenetic analysis for α-tubulin of Cryptocaryon irritans

物种 species	登录号 accession number			
人 Homo sapiens	AAA91576.1			
小鼠 Mus musculus	NP_035784.1			
斑马鱼 Danio rerio	AAB84143.1			
东美螈 Notophthalmus viridescens	Q91060.1			
波斑鸨 Chlamydotis macqueenii	KFP42342.1			
非洲爪蟾 Xenopus laevis	NP_001081575.1			
家蚕 Bombyx mori	NP_001036885.1			
果蝇 Drosophila melanogaster	NP_476772.1			
文昌鱼 Branchiostoma floridae	AAM73981.1			
草履虫 Paramecium tetraurelia	CAA67848.1			
四膜虫 Tetrahymena thermophila	XP_001022424.1			
八肋游仆虫 Euplotes octocarinatus	Q08114.1			
丹氏锥虫 Trypanosoma danilewskyi	ABA00480.1			
眼虫 Euglena gracilis	AAK37831.1			
尾刺耐格里原虫 Naegleria gruberi	XP_002675196.1			
间日疟原虫 Trypanosoma vivax	CCC46465.1			

2.3 α-微管蛋白基因的原核表达及鉴定

2.3.1 重组表达载体的鉴定 将已构建好的重组 质粒 pET30a/α-tubulin 通过 *Xho* I 和 *Xba* I 双酶切 鉴定表达载体构建的准确性,结果显示,酶切下 的基因片段大小与目的基因大小 1356 bp 一致(图 7)。在此基础上,将含有重组质粒 pET30a/α-tubulin的 BL21(DE3)菌液送往生工生物工程(上海)股份有限公司进行测序。测序结果显示,含有 1356 bp 的α-微管蛋白基因 ORF 片段成功插入到 pET30a 表达质粒上且序列正确。说明α-微管蛋白 基因成功亚克隆到 pET30a 表达载体上。可以进 行下一步原核表达蛋白。

2.3.2 SDS-PAGE 分析重组表达蛋白 将 pET30a/ α-tubulin 转化至 BL21(DE3)和 Rosetta(DE3)表达

感受态细胞, 诱导 16 h 可以获得较好的蛋白表达 量。对重组蛋白 SDS-PAGE 电泳图(图 8 , 图 9) 分析发现, 诱导表达的重组蛋白分子量约为 50 kD (箭头所示), 与软件预测的蛋白分子量大小相 一致, 说明 α-微管蛋白诱导表达成功。进一步分 析发现在 BL21(DE3)表达菌株中 15℃与 37℃下 诱导表达的重组蛋白电泳条带相差不大(图 8), 说 明在 BL21(DE3)表达菌株中 15℃和 37℃诱导表 达的效果相近。但在 Rosetta(DE3)表达菌株中 15℃下诱导表达的重组蛋白电泳条带颜色明显较 37℃深(图 9), 说明在 Rosetta(DE3)表达菌株中 15℃条件下诱导表达效果更好。而使用 LB 培养 液或 TB 培养液培养表达菌体对重组蛋白的诱导 表达影响不大。

2.4 α-微管蛋白基因在刺激隐核虫 3 个生活史时 期的表达

以18S为内参基因, qRT-PCR结果显示(图10), α-微管蛋白基因在刺激隐核虫3个生活史时期均 有表达,其中在纤毛幼虫时期的表达量显著高于 包囊和滋养体时期(P<0.05)。

3 讨论

微管蛋白是细胞微管骨架, 纤毛和鞭毛的重 要组成部分,参与胞内运输、细胞分裂以及纤毛 和鞭毛的运动等生命活动^[28]。Kim 等^[29]研究发现 水滴伪康纤虫(Pseudocohnilembus persalinus) β-微管蛋白具有较好的免疫原性,可作为靶抗原疫 苗预防海水鱼类的纤毛虫病。Plouffe 等^[30]发现丹 氏锥虫的 α、β-微管蛋白均具有免疫原性, 微管蛋 白可能作为靶位分子控制鱼的锥虫病。本研究克 隆得到的刺激隐核虫基因编码 451 个氨基酸。在 氨基酸序列第 142~148 位处存在一个微管蛋白特 有的保守区域: GTP 核苷酸结合位点 α-微管蛋白 (GGGTGSG), 它是 α、β-微管蛋白结合形成二聚 体的重要结构^[31]。通过 BLAST 分析,发现刺激隐 核虫 α-微管蛋白氨基酸序列与尾刺耐格里原虫、 间日疟原虫、锥虫等原生动物的序列一致性高达 94%~95%; 与人、小鼠、斑马鱼等非原生动物序 列一致性达78%~86%,说明α-微管蛋白具有较高 的保守性。

	10	20	30	40	50	60	70	80
Homo sapiens Mus musculus Danio rerio Notophthalmus viridescens Chlamydotis macqueenii Xenopus laevis Bombyx mori Drosophila melanogaster Paramecium tetraurelia Tetrahymena thermophila Euplotes octocarinatus Trypanosoma danilewskyi Euglena gracilis Naegleria gruberi Trypanosoma vivax Cryptocaryon irritans Clustal Consensus	M R E C I S I H VG Q A G M R E C I S I H VG Q A G M R E C I S I H VG Q A G M R E C I S VH VG Q A G M R E C I S VH VG Q A G M R E C I S VH I Q Q A G M R E C I S VH I Q Q G M R E V I S I H VG Q G M R E V I S I H VG Q G M R E V I S I H VG Q G M R E V I S I H VG Q G M R E V I S I H VG Q G M R E V I S I H I G Q G G M R E V I S I H I G Q G G M R E V I S I H I G Q G G M R E V I S I H I G Q G G M R E V I S I H I G Q G G M R E V I S I H I G Q A G M R E V I S I H I G Q A G M R E V I S I H I G Q A G	Q G A C WE L YC L Q I G N A CWE L YC L Q G N A CWE L YC L Q MG N A CWE L YC L Q G N A CWE L YC L Q I G N A CWE L YC L Q I G N A CWE L YC L Q I G N A CWE L YC L Q G N A CWE L YC L Q G N A CWE L YC L Q G N A CWE L FC L Q G N A CWE L FC L Q V G N A CWE L FC L Q V G N A CWE L FC L Q U G N A CWE L YC L Q V G N A CWE L YC L Q U G N A CWE L YC L Q U G N A CWE L FC L Q V G N A CWE L YC L Q U G N A CWE L YC L Q U G N A CWE L YC L Q V G N A CWE L YC L Q U G N A CWE L YC L Q U G N A CWE L YC L Q U G N A CWE L YC L Q U G N A CWE L YC L Q U G N A CWE L YC L	E HG I Q P DG E HG I Q P DG	0 M F S D K T I G G G QM F S D K T I G G G QM F S D K T I G G G QM F S D K T I G G G QM F S D K T I G G G QM F S D K T I G G G QM F S D K T I G G G QM F S D K T I G G G QM F S D K T I G G G QM F S D K T I G G G AM F S D K T I G V E S M F S D K T I G V E S M F S D K T I G V E AM F S D K T I G V E AM F S D K T I G V E AM F S D K T I G V E AM F S D K T G V E AM F S D K T G V E AM F S D K T G V E	$\begin{array}{c} \textbf{D} \textbf{S} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{S} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{S} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{S} \textbf{S} \textbf{S} \textbf{G} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{S} \textbf{S} \textbf{S} \textbf{G} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{S} \textbf{S} \textbf{S} \textbf{G} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{S} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{S} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{D} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{S} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \\ \textbf{S} \textbf{D} \textbf{A} \textbf{F} \textbf{N} \textbf{T} \textbf{F} \textbf{F} \textbf{S} \end{array} $	ETGACKH VPRA ETGACKH VPRA ETGACKH VPRA ETGSKH VPRA ETGSKH VPRA ETGSKH VPRA ETGACKH VPRA ETGACKH VPRA ETGACKH VPRA ETGACKH VPRA ETGACKH VPRA ETGACKH VPRA ETGACKH VPRA ETGACKH VPRA	JF VDLEPTV VF VDLEPTV FVDLEPTV FVDLEPTV FVDLEPTV FVDLEPTV FVDLEPTV FLDLEPTV FLDLEPTV FLDLEPTV FLDLEPTV FLDLEPTV FLDLEPTV FLDLEPTV	I D E V R T I D E I R S I G E I R N V D E V R T I D E V R T I D E V R T I D E V R T V D E V R T
	90	100	110	120	130	140	150	160
Homo sapiens Mus musculus Danio rerio Notophthalmus viridescens Chlamydotis macqueenii Xenopus laevis Bombyx mori Drosophila melanogaster Paramecium tetraurelia Tetrahymena thermophila Euplotes octocarinatus Trypanosoma danilewskyi Euglena gracilis Naegleria gruberi Trypanosoma vivax Cryptocaryon irritans Clustal Consensus	GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRSLFHPEQLI GTYRSLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI GTYRQLFHPEQLI	$ \begin{array}{c} \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{Y} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{Y} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{Y} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{Y} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{Y} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{Y} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{Y} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{Y} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{Y} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{F} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{F} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{F} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{A} \mathbf{R} \mathbf{G} \\ \mathbf{G} \mathbf{K} \in \mathbf{D} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{A} \mathbf{K} \mathbf{G} \\ \mathbf{G} \mathbf{K} \mathbf{K} \mathbf{D} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{A} \mathbf{K} \mathbf{G} \\ \mathbf{G} \mathbf{K} \mathbf{K} \mathbf{D} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{A} \mathbf{K} \mathbf{G} \\ \mathbf{G} \mathbf{K} \mathbf{K} \mathbf{D} \mathbf{A} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{K} \mathbf{K} \mathbf{G} \\ \mathbf{K} \mathbf{K} \mathbf{K} \mathbf{K} \mathbf{K} \mathbf{K} \mathbf{K} \mathbf{K}$	HYTIGKEI HYTIGKEL HYTIGKEL HYTIGKEL HYTIGKEV HYTIGKET HYTIGKEI HYTIGKEI HYTIGKEI HYTIGKEI HYTIGKEI HYTIGKEI HYTIGKEI HYTIGKEI	$\begin{array}{c} D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	DO CT R L QG DO CT G L QG DO CT G L QG DO CT G L QG DO C S G L QG DO C S G L QG DO C S G L QG DO CT G L QG DO CT G L QG DN CT G L QG	L V FH S F G G G T G F L V FH S F G G G T G F L V FH S F G G G T G F L V FH S F G G G T G F L V FH S F G G G T G F L V FH S F G G G T G F L V FH S F G G G T G F L V FH S V G G G T G F L V FH S V G G G T G F L V FH S V G G G T G F L V FH S V G G G T G F L V FH S V G G G T G F L V FH S V G G G T G F L V FH S V G G G T G F L V FH S V G G G T G	3 SG FT SLIM 5 SG FT SLIM 5 SG FT SLIM 5 GFT SLIM 5 GFT SLIM 5 GFT SLIM 5 GFT SLIM 5 GFT SLIM 5 GL SLII 5 GL G SLIII 5 GL G SLIII 5 GL G SLII 5 GL G SLIII 5 GL G	E R L S VD E R L S VD
	170	180	190	200	210	220	230	240
Homo sapiens Mus musculus Danio rerio Notophthalmus viridescens Chlamydotis macqueenii Xenopus laevis Bombyx mori Drosophila melanogaster Paramecium tetraurelia Tetrahymena thermophila Euplotes octocarinatus Trypanosoma danilewskyi Euglena gracilis Naegleria gruberi Trypanosoma vivax Cryptocaryon irritans Clustal Consensus	YGKK SKLEF S I YP YGKK SKLEF S I YP YGK SKLEF S I YP YGK SKLEF S I YP YGK SKLEF S YYP YGK SKLEF S YYP YGK SKLEF S YYP YGK SKLEF S I YP YGK SKLEF S I YP	P Q S T V P Y P Q S T V P Y P Q S T V P Y P Q S T V P Y Y T Y P Y T Y	S IL TTHTT S ILTTHTT S ILTTHTT S ILTTHTT S ILTTHTT S ILTTHTT S ILTTHTT S ILSTHSL S VL STHSL S VL STHSL			RN L DI E R P T YTN	ILNEL ISQI ILNRLISQI ILNRLISQI ILNRLIGQI ILNRLIGQI ILNRLIGQI ILNRLIGQI ILNRLIGQI ILNRLIAQV ILNRLIAQV ILNRLIAQV ILNRLIAQV ILNRLIAQV ILNRLIAQV	V S S I TA V S S I TA I S S L TA
	250	260	270	280	290	300	310	320
Homo sapiens Mus musculus Danio revi Chlamydotis macqueenii Xenopus laevis Bombyx mori Drosophila melanogaster Paramecium tetraurelia Tetrahymena thermophila Euplotes octocarinatus Trypanosoma danilewskyi Euglena gracilis Naegleria gruberi Trypanosoma vivax Cryptocaryon irritans Clustal Consensus	SLRFDGALN VD LTF SLRFDGALN VD VT SLRFDGALN VD VT SLRFDGALN VD VTF SLRFDGALN VD VTF SLRFDGALN VD VTF SLRFDGALN VD VTF	F Q TN L VP YP R I H F Q TN L VP YP R I H	F F A T Y A T Y A Y Y Y A Y	VI SAEKA YHEQI VI SAEKA YHEQI VI SAEKA YHEQI VI SAEKA YHEQI I SAEKA YHEQI VI SAEKA YHEQI VI SAEKA YHEQI VI SAEKA YHEQI VI SAEKA YHEQI VI SAEKA YHEQI I SAEKA YHEQI VI SAEKA YHEQI	$\begin{array}{c} {\rm S} \; {\rm VAD} \; {\rm I} \; {\rm TN} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm A} \\ {\rm S} \; {\rm VP} \; {\rm E} \; {\rm I} \; {\rm TN} \; {\rm A} \\ {\rm S} \; {\rm VP} \; {\rm E} \; {\rm I} \; {\rm TN} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm S} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm S} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm S} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm S} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm S} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm S} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm TN} \; {\rm S} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm S} \; {\rm S} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm S} \; {\rm S} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm S} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm S} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm S} \; {\rm A} \\ {\rm S} \; {\rm VAE} \; {\rm I} \; {\rm S} \; {\rm$	C F E P A N Q M V K C T C F E P A N Q M V K C T C F E P A N Q M V K C T C F E P A N Q M V K C T C F E F S N Q M V K C T C F E Y S N Q M V K C T C F E P A N Q M V K C T C F E P A N Q M V K C T A F E P A N M M K C T S F E P A S M M K C T A F E P A S M M K C T A F E P A S M M K C T V F E P A S M M K C T A F E P A S M K C T A F E P A S M	P GHGK YMA P RHGK YMA P RHGK YMA P RHGK YMA P RRGK YMA P RRGK YMA P RHGK YMA	C C L L YR C C L L YR C L L YR C C L L YR C SML YR C SML YR C SML YR C SML YR C C LM YR
	330	340	350	360	370	380	390	400
Homo sapiens Mus musculus Danio reris Notophthalmus viridescens Chlamydotis macqueenii Xenopus laevis Bombyx mori Drosophila melanogaster Paramecium tetraurelia Tetrahymena thermophila Euploies octocarinatus Trypanosoma danilewskyi Euglena gracilis Naegleria gruberi Trypanosoma vivax Cryptocaryon irritans Clustal Consensus	$ \begin{array}{c} GD \ V \ V \ P \ K \ D \ V \ A \ A \ A \ A \ A \ A \ A \ A \ A$	IK TK RT I QF VDW IK TK RS I QF VDW IK TK RS I QF VDW IK TK RS I QF VDW IK TR RS I QF VDW IK TK RT I QF VDW	C P T G F K V G C P T G F K V G S P T G F K C G	I N YQ P T V YP G I N YQ P T VY P G	ID LAK VQ RA ID LAK VQ RA D VAK VQ RA D LAK VQ RA	VCML LSN TTA 1 A VCML LSN TTA 1 A VCML SN TA 1 A VCML SN TA 1 A VCM I SN STA 1 A	A WAR L DHK A WAR L DHK VF SR L DHK VF SR L DHK VF SR L DHK VF SR I DHK VF SR I DHK VF SR I DHK VF SR I DHK	F D L M YA F D L M YS F D L M YS F D L M YS F D L M YS F D L M YS
	410	420	430	440	450			
Homo sapiens Mus musculus Danio rerios viridescens Notophthalmus viridescens Chlamydotis macqueenii Xenopus laevis Bombyx mori Drosophila melanogaster Paramecium tetraurelia Tetrahymena thermophila	K RAF VHWYVGEGMF K RAF VHWYVGEGMF	E G E F S E A R E D M A E G E F S E A R E D M A E G E F S E A R E D M A E G E F S E A R E D M A E G E F S E A R E D M A E G E F S E A R E D L A E G E F S E A R E D L A E G E F S E A R E D L A E G E F S E A R E D L A E G E F S E A R E D L A E G E F S E A R E D L A	A L E K D Y E E A L E K D Y E E	V G V D S V E G E G E F V G V D S V E G E G E F V G V D S V E G E - E C V G L D S Y E G E - E - V G L D S Y E G E - E - V G T D S A D V E - E - V G V D S T E G E - L D V G V D S T E G E - L D V G M D S G O G E - G E V G I E T A E G E G E F V G I E T A E G E G E F	E G E E Y E G E E Y D E G E E Y D E G E E Y D E E D E Y D E E D E Y C E A E E Y G E A E G Y			

图 5 刺激隐核虫与其他物种的 α-微管蛋白序列多重比对

Fig. 5 Multiple alignment of the a-tubulin amino acid sequence between Cryptocaryon irritans and other species

图 7 pET30a/α-tubulin 重组质粒双酶切鉴定 M:标准分子量 DNA; 1:超螺旋的重组质粒 pET30a/α-tubulin; 2: pET30a/α-tubulin 经 *Xho* I 和 *Xba* I 双酶切后的结果.

Fig. 7 Identification of the recombinant plasmid pET30a/α-tubulin by double restriction digestion
M: DNA ladder; 1: Recombinant plasmid pET30a/α-tubulin of supercoiling; 2: Recombinant plasmid pET30a/α-tubulin digested by both *XhoI* and *XbaI*.

刺激隐核虫的纤毛幼虫时期以纤毛作为运动 细胞器在海水中自由游动,寻找并侵染宿主鱼。 Bai 等^[32]研究表明,以刺激隐核虫纤毛幼虫时期 制备的抗原疫苗比包囊和滋养体时期的疫苗能使 宿主鱼获得更好的免疫保护。Mai 等^[33]研究发现 刺激隐核虫纤毛幼虫、包囊以及滋养体蛋白分别 与相应的兔抗血清进行免疫杂交, α/β 微管蛋白只

图 8 SDS-PAGE 分析 α-微管蛋白在 BL21(DE3)中的表达

M:蛋白质分子量标准;1:阴性对照(BL21(DE3)/pET30a诱导16h);2:阴性对照(未加IPTG诱导剂);3:15℃,

0.1 mmol/L IPTG 诱导 BL21(DE3)/ pET30a /α-tubulin 表达 16 h, LB 培养液; 4: 37℃, 0.1 mmol/L IPTG 诱导 BL21(DE3)/ pET30a /α-tubulin 表达 16 h, LB 培养液; 5: 15℃, 0.1 mmol/L IPTG 诱导 BL21(DE3)/ pET30a /α-tubulin 表达 16 h, TB 培养

液; 6: 37℃, 0.1 mmol/L IPTG 诱导 BL21(DE3)/ pET30a /α-tubulin 表达 16 h, TB 培养液.

Fig. 8 SDS-PAGE analysis of the prokaryotic expression of α-tubulin in *Escherichia coli* BL21(DE3)

M: protein marker; 1: the negative control BL21(DE3)/pET30a induced for 16 h); 2: the negative control (not add IPTG revulsant); 3: BL21(DE3)/pET30a/α-tubulin induced by 0.1 mmol/L IPTG for 16 h at 15°C, LB medium; 4: BL21(DE3)/pET30a/α-tubulin induced by 0.1 mmol/L IPTG for 16 h at 37°C, LB medium; 5: BL21(DE3)/pET30a/α-tubulin induced by 0.1 mmol/L IPTG for 16 h at 15°C, TB medium; 6: BL21(DE3)/pET30a/α-tubulin induced by 0.1 mmol/L IPTG for 16 h at 37°C, TB medium;

图 9 SDS-PAGE 分析 α-微管蛋白在 Rosetta (DE3)中的表达

- M: 蛋白质分子量标准; 1: 阴性对照(Rosetta (DE3)/pET30a 诱导 16 h); 2: 阴性对照(未加 IPTG 诱导剂); 3: 15℃,
- 0.1 mmol/L IPTG 诱导 Rosetta (DE3)/pET30a/α-tubulin 表达 16 h, LB 培养液; 4: 37℃, 0.1 mmol/L IPTG 诱导 Rosetta (DE3)/pET30a /α-tubulin 表达 16 h, LB 培养液; 5: 15℃,
- 0.1 mmol/L IPTG 诱导 Rosetta (DE3)/pET30a/α-tubulin 表达
 16 h, TB 培养液; 6: 37℃, 0.1 mmol/L IPTG 诱导 Rosetta (DE3)/pET30a/α-tubulin 表达 16 h, TB 培养液.
- Fig. 9 SDS-PAGE analysis of the prokaryotic expression of α-tubulin in *Escherichia coli* Rosetta (DE3)
 M: protein marker; 1: the negative control Rosetta (DE3)/pET30a induced for 16 h); 2: the negative control (not

add IPTG revulsant); 3: Rosetta (DE3)/pET30a/α-tubulin induced by 0.1 mmol/L IPTG for 16 h at 15°C, LB medium; 4: Rosetta (DE3)/pET30a/α-tubulin induced by 0.1 mmol/L IPTG

for 16 h at 37°C, LB medium; 5: Rosetta (DE3)/pET30a/α-tubulin induced by 0.1 mmol/L IPTG for 16 h at 15°C, TB medium; 6: Rosetta (DE3)/pET30a/α-tubulin induced by 0.1 mmol/L IPTG for 16 h at 37°C, TB medium.

柱上不同小写字母表示不同时期存在显著差异(P<0.05).

Fig. 10 The relative expression levels of α-tubulin in *Cryptocaryon irritans* during the three phases of life history by qRT-PCR.
Histogram bars with different small letters indicate

在纤毛幼虫时期检测出来,表明微管蛋白可能是 纤毛幼虫时期的特异性抗原成分。本实验结果显 示纤毛幼虫时期的α-微管蛋白基因相对表达量显 著高于包囊和滋养体时期,结合 Bai^[34]和 Mai^[35] 等研究结果,推测刺激隐核虫纤毛幼虫时期的α-微管蛋白基因可作为潜在的靶抗原疫苗。

本研究成功诱导重组表达载体 pET30a/αtubulin 在表达菌株 BL21(DE3)和 Rosetta(DE3)中 原核表达。Katzenback 等^[34]研究首次将体外重组 表达的丹氏锥虫微管蛋白作为疫苗对金鱼(*Carassius auratus* L.)进行腹腔注射活体实验,发现原生动 物寄生虫类微管蛋白对金鱼具有刺激免疫作用。 Kurup 等^[35]研究表明制备伊氏锥虫微管蛋白基因 DNA 疫苗能够诱导小鼠产生保护性免疫反应。这 些研究为刺激隐核虫微管蛋白用于养殖生产上的 实用型疫苗提供了理论依据,本研究后续还将对 此 α-微管蛋白进行大量的原核表达和蛋白纯化, 进一步地通过对宿主鱼体内活体注射检测以及体 外 ELISA 检测等实验多角度全方位地验证 α-微管 蛋白具有免疫原性,为深入研究微管蛋白基因的 功能以及制备"白点病"疫苗奠定基础。

参考文献:

- Shen C, Zhou M X, Zhou S M, et al. Electron microscopic observation of artificial infection of theront of *Cryptocaryon irritans* in vitro[J]. Journal of Biology, 2017, 34(2): 104-107.
 [沈晨,周旻曦,周素明,等. 体外人工感染的刺激隐核虫 幼虫的电镜观察[J]. 生物学杂志, 2017, 34(2): 104-107.]
- [2] Wang F H, Xie M Q, Li A X. A novel protein isolated from the serum of rabbitfish (*Siganus oramin*) is lethal to *Cryptocaryon irritans*[J]. Fish & Shellfish Immunology, 2010, 29(1): 32-41.
- [3] Burgess P, Matthews R. Fish host range of seven isolates of *Cryptocaryon irritans* (Ciliophora)[J]. Journal of Fish Biology, 1995, 46(4): 727-729.
- [4] Diggles B K, Adlard R D. Intraspecific variation in *Crypto-caryon irritans*[J]. Journal of Eukaryotic Microbiology, 1997, 44(1): 25-32.
- [5] Colorni A, Burgess P. *Cryptocaryon irritans Brown* 1951, the cause of 'white spot disease' in marine fish: an update[J]. Aquarium Sciences and Conservation, 1997, 1(4): 217-238.
- [6] Huang W, Ma Y, Li A X. Ultrastructural study on *Crypto-caryon irritans* throughout the life cycle of artificially infecting Trachinotus blochi[J]. Journal of Fisheries of China, 2005, 29(5): 635-642. [黄玮, 马跃, 李安兴. 人工感染的刺

significant differences (P<0.05).

激隐核虫各期虫体的超微结构[J].水产学报,2005,29(5): 635-642.]

- [7] Lui Z Y, Xie Y Q. The observation of the lifehistory of *Cryptocaryon irritans*[J]. Journal of Fujian Fisheries, 2010(1): 46-48. [刘振勇,谢友佺. 刺激隐核虫生活史的观察[J]. 福 建水产, 2010(1): 46-48.]
- [8] Luo X, Xie M, Zhu X, et al. Some characteristics of host–parasite relationship for *Cryptocaryon irritans* isolated from South China[J]. Parasitology Research, 2008, 102(6): 1269-1275.
- [9] Yambot A V, Song Y L, Sung H H. Characterization of *Cryptocaryon irritans*, a parasite isolated from marine fishes in Taiwan[J]. Diseases of Aquatic Organisms, 2003, 54(2): 147-156.
- [10] Cheng Q, Pan L D. Review on the biological characteristics of *Cryptocaryon irritans* and the diagnosis and treatment of cryptocaryoniosis[J]. Chinese Fishery Quality and Standards, 2014, 4(5): 16-23. [成奇, 潘连德. 刺激隐核虫生物学和刺 激隐核虫病临床诊治的研究进展[J]. 中国渔业质量与标 准, 2014, 4(5): 16-23.]
- [11] Herwig N. Notes on the treatment of *Cryptocaryon*[J]. Drum and Croaker, 1978, 18(1): 6-12.
- [12] Wilkie D W. Outbreak of cryptocaryoniasis in marine aquaria at Scripps Institute of Oceanography[J]. California Fish and Game, 1969, 55: 227-236.
- [13] Cai Z P, Li M. Prevention and cure of white spot disease in red snapper, *Lutjanus argentimaculatus*[J]. Marine Sciences, 2001, 25(8): 10-11. [蔡泽平, 李沫. 紫红笛鲷白点病的防 治试验[J]. 海洋科学, 2001, 25(8): 10-11.]
- [14] Fan H P, Lin Y, Zhong Q F, et al. Insecticidal efficacy of Chinese herbal medicine on *Cryptocryon irritans*[J]. Fujian Agricultural Science and Technology, 2016, 47(3): 12-14.
 [樊海平,林煜, 钟全福,等. 中草药对刺激隐核虫幼虫的 杀灭效果[J]. 福建农业科技, 2016, 47(3): 12-14.]
- [15] Wang Y G, Liu Z W, Lin C Y, et al. Cryptocaryoniosis in cultured turbot and its treatment[J]. Journal of Fisheries of China, 2011, 35(7): 1105-1112. [王印庚, 刘志伟, 林春媛, 等. 养殖大菱鲆隐核虫病及其治疗[J]. 水产学报, 2011, 35(7): 1105-1112.]
- [16] Colorni A. Biology of *Cryptocaryon irritans* and strategies for its control[J]. Aquaculture, 1987, 67(1/2): 236-237.
- [17] Gratzek J, Gilbert J P, Lohr A L, et al. Ultraviolet light control of *Ichthyophthirius multifiliis* Fouquet in a closed fish culture recirculation system[J]. Journal of Fish Diseases, 1983, 6(2): 145-153.
- [18] Hirazawa N, Oshima SI, Hara T, et al. Antiparasitic effect of medium-chain fatty acids against the ciliate *Cryptocaryon irritans* infestation in the red sea bream *Pagrus major*[J]. Aquaculture, 2001, 198(3): 219-228.

- [19] Bryant M S, Lee R P, Lester R J G, et al. Anti-immunoglobulin antisera used in an ELISA to detect antibodies in barramundi *Lates calcarifer* to *Cryptocaryon irritans*[J]. Diseases of Aquatic Organisms, 1999, 36(1): 21-28.
- [20] Luo X C, Xie M Q, Zhu X Q, et al. Protective Immunity in Grouper (Epinephelus coioides) following exposure to or injection with *Cryptocaryon irritans*[J]. Fish & Shellfish Immunology, 2007, 22(4): 427-432.
- [21] Dan X M, Li A X, Lin X T, et al. Immune response and immunoprotection of pompanos (*Trachinotus ovatus*) against *Cryptocaryon irritans*[J]. Acta Hydrobiologica Sinica, 2008, 32(1): 13-18. [但学明, 李安兴, 林小涛, 等. 卵形鲳鲹对 刺激隐核虫的免疫应答和免疫保护研究[J]. 水生生物学 报, 2008, 32(1): 13-18.]
- [22] Downing K H, Nogales E. Tubulin and microtubule structure[J]. Current Opinion in Cell Biology, 1998, 10(1): 16-22.
- [23] Fuchs M A, Ryan L A, Chambers E L, et al. Differential expression of liver fluke β-tubulin isotypes at selected life cycle stages[J]. International Journal for Parasitology, 2013, 43(14): 1133-1139.
- [24] Balaban N, Waithaka H K, Njogu A R, et al. Intracellular antigens (microtubule-associated protein copurified with glycosomal enzymes)—possible vaccines against *trypanosomiasis*[J]. Journal of Infectious Diseases, 1995, 172(3): 845-850.
- [25] Rasooly R, Balaban N. *Trypanosome* microtubule-associated protein p15 as a vaccine for the prevention of African sleeping sickness[J]. Vaccine, 2004, 22(8): 1007-1015.
- [26] Li S Q, Fung M C, Reid S, et al. Immunization with recombinant beta-tubulin from *Trypanosoma evansi* induced protection against *T. evansi*, *T. equiperdum* and *T. b. brucei* infection in mice[J]. Parasite Immunology, 2007, 29(4): 191-199.
- [27] Lui C Y, Fu M J, Zhang Z P, et al. Molecular cloning and expression analysis of Sp-PHGPx in *Scylla paramamosain*[J]. Journal of Fisheries of China, 2015, 39(2): 161-173. [刘春云, 傅明骏, 张子平,等. 拟穴青蟹 PHGPx 基因的克隆及其表 达分析[J]. 水产学报, 2015, 39(2): 161-173.]
- [28] Qian Y, Zhang Y, Gu F K. The cytoskeletal proteins and functional modules in protozoa[J]. Chinese Journal of Cell Biology, 2004, 26: 558-560. [钱雨, 张莹, 顾福康. 原生动 物的细胞骨架蛋白及其功能组件[J]. 细胞生物学杂志, 2004, 26: 558-560.]
- [29] Kim S M, Lee E H, Kwon S R, et al. Preliminary analysis of recombinant β-tubulin of *Pseudocohnilembus persalinus* (Ciliophora: Scuticociliatida) as a vaccine antigen candidate against scuticociliatosis[J]. Aquaculture, 2006, 260(1-4): 21-26.
- [30] Plouffe D A, Belosevic M. Antibodies that recognize α-and β-tubulin inhibit in vitro growth of the fish parasite *Trypanosoma danilewsky*i, Laveran and Mesnil, 1904[J]. Developmental & Comparative Immunology, 2006, 30(8):

685-697.

- [31] Menéndez M, Rivas G, Díaz J F, et al. Control of the structural stability of the tubulin dimer by one high affinity bound magnesium ion at nucleotide N-site[J]. Journal of Biological Chemistry, 1998, 273(1): 167-176.
- [32] Bai J S, Xie M Q, Zhu X Q, et al. Comparative studies on the immunogenicity of theronts, tomonts and trophonts of *Cryptocaryon irritans* in grouper[J]. Parasitology Research, 2008, 102(2): 307-313.
- [33] Mai Y Z, Li Y W, Li R J, et al. Proteomic analysis of differentially expressed proteins in the marine fish parasitic ciliate

Cryptocaryon irritans[J]. Veterinary Parasitology, 2015, 211(1): 1-11.

- [34] Katzenback B A, Plouffe D A, Haddad G, et al. Administration of recombinant parasite β-tubulin to goldfish (*Carassius auratus* L.) confers partial protection against challenge infection with *Trypanosoma danilewskyi* Laveran and Mesnil, 1904[J]. Veterinary Parasitology, 2008, 151(1): 36-45.
- [35] Kurup S P, Tewari A K. Induction of protective immune response in mice by a DNA vaccine encoding *Trypanosoma evansi* beta tubulin gene[J]. Veterinary Parasitology, 2012, 187(1): 9-16.

Cloning and prokaryotic expression of *Cryptocaryon irritans* α-tubulin gene and its mRNA expression levels in different life history stages

SUN Jiayang¹, ZHANG Ziping², ZHU Youfang³, ZOU Zhihua¹, HAN Kunhuang¹, GE Hui⁴, WANG Yilei¹

1. Fisheries College, Jimei University, Xiamen 361021, China;

2. Animal Science College, Fujian University of Agriculture, Fuzhou 350002, China;

3. Putian Institute of Fishery Sciences, Putian, 351100, China;

4. Fujian Fisheries Research Institute, Xiamen, 361013, China

Abstract: Cryptocaryon irritans is an extremely destructive ciliate parasite of marine fishes, which results in severe economic costs in mariculture. Its life history is divided into three stages: trophont, tomont, and theront. Tubulin is a major component of the cytoskeleton, cilia, and flagella, which plays an important role in maintaining cell morphology, intracellular trafficking, cell division, ciliary, and flagella motility. At the same time, many studies showed that tubulin has immunogenicity and can be used as a target antigen vaccine. In this study, the a-tubulin gene fragment was obtained from the C. irritans transcriptome data in our laboratory. Full-length cDNA of α -tubulin C. *irritans* was cloned for the first time by 5'RACE and 3'RACE. The results showed that full-length cDNA of α -tubulin is 1602 bp containing a 1356 bp open reading frame, which encodes proteins with 451 amino acids. The predicted molecular mass of α -tubulin is 49.78 kD. Bioinformatics analysis showed that it is a hydrophilic non-transmembrane protein. The amino acid sequence at positions 142-148 has a unique conserved GTP nucleotide binding site (GGGTGSG). Multiple sequence alignment analysis and phylogenetic analysis revealed that the α -tubulin in C. *irritans* was integrated with other protozoa in the phylogenetic tree and had 94%–95% sequence identity with Trypanosoma vivax, T. danilewskyi, Euplotes octocarinatus, Naegleria gruberi, and Euglena gracilis. The real-time quantitative PCR technique was used to detect the expression of α -tubulin gene in the life history of C. *irritans*. The results showed that α -tubulin gene expression was significantly higher in the theront stage than in the tomont and trophont stages (P < 0.05). Furthermore, the α -tubulin recombinant expression vector was constructed and transformed into the BL21 (DE3) and Rosetta (DE3) of the Escherichia coli expression strain for prokaryotic expression. SDS-PAGE analysis showed that the molecular weight of the recombinant protein was approximately 50 kD, which was consistent with the predicted result, indicating that α -tubulin protein induced expression successfully. The results of this study laid the foundation for the subsequent preparation of an effective subunit vaccine.

Key words: *Cryptocaryon irritans*; α-tubulin; prokaryotic expression; life history; real-time quantitative PCR **Corresponding author:** WANG Yilei. E-mail: ylwang@jmu.edu.cn