研究论文

长江流域 4 个野生大眼鳜群体的遗传多样性分析

程起群¹, 吕浩¹, 逄娇慧¹, 赵金良²

1. 中国水产科学研究院东海水产研究所,农业农村部远洋与极地渔业创新重点实验室,上海 200090;

2. 上海海洋大学,农业农村部淡水水产种质资源重点实验室,上海 201306

摘要: 为探讨长江流域大眼鳜(*Siniperca kneri*)野生群体的遗传多样性和遗传结构,为长江大眼鳜野生群体资源的 有效管理和合理开发利用提供基础科学数据支撑,本研究基于线粒体细胞色素 b (cytochrome b, Cyt b)基因及控制 区(D-loop)全序列,对4个群体(赤水河群体-CS、南京群体-NJ、岳阳群体-YY、宜昌群体-YC)共计79 尾个体进行 了分析。结果如下:(1)获得了长1141 bp 的 Cyt b 基因全序列,共检测到26种单倍型。单倍型多样性(haplotype diversity, H_d)指数为0.685 (CS)~0.924 (YC),核苷酸多样性(nucleotide diversity, π)指数为0.176% (CS)~0.285% (YY)。群体内 与群体间的遗传距离均在0.002~0.003。(2)获得了长度为834~840 bp 的D-loop 全序列,在79 尾个体中共检测到 46 种单倍型。单倍型多样性指数为0.754 (CS)~0.990 (NJ),核苷酸多样性指数为0.548% (CS)~1.412% (YC)。群体 内遗传距离在0.005 (CS)~0.014 (YC),群体间遗传距离在0.008~0.012,提示4个野生群体均尚未达到亚种分化水 平。分子方差分析(AMOVA)显示群体内的变异是总变异的主要来源,长江流域大眼鳜野生群体无显著遗传结构差异。

关键词:长江;大眼鳜;细胞色素 *b* 基因; D-loop;遗传多样性 中图分类号: S931; Q9 **文**献标志码: A **文**章编号: 1005-8737-(2019)04-0774-09

大眼鳜(Siniperca kneri),隶属于鲈形目(Perciformes)、鮨科(Serranidae)、鳜亚科(Sinipercinae), 是东亚地区特有的名贵经济鱼类,主要分布在中 国淮河以南水系。多年来,由于酷捕滥渔、环境污 染以及水工建设等因素的影响,包括鱼类在内的长 江水生生物资源全面衰退,例如,主要经济鱼类青 鱼(Cmylopharyngodon piceus)、草鱼(Ctenopharyngodon idellus)、鲢(Hypophthalmic wolitrix)、鳙(Aristichthys mobilis)四大家鱼卵苗发生量由 20 世纪 60 年代的 1200 亿粒(尾)下降到目前的不足 10 亿粒(尾),渔 获物个体较小;鲥(Hilsa ilisha)踪迹难以寻觅;旗 舰种中华鲟(Acipenser sinensis)连续数年监测不到 自然繁殖,白鱀豚(Lipotes vexillifer)则已功能性灭 绝。作为长江的重要经济鱼类之一,野生大眼鳜 资源也受到人为破坏并急剧下降^[1]。

细胞色素 b (cytochrome b, Cyt b)和控制区

(D-loop 区)是线粒体上的两种重要分子标记。其中细胞色素 b 是蛋白质编码基因,进化速度适中;控制区是非编码区,其进化速率一般是编码区的 2~5倍;这两种标记在鱼类遗传多样性、系统发育、物种鉴别等领域中均有着较为广泛的应用^[2-10]。

遗传多样性是群体内不同个体遗传变异的总 和,是种群适应和进化的基础。掌握遗传多样性 信息,是大眼鳜资源有效管理和合理利用的必要 基础。大眼鳜是中国重要的经济鱼类,是长江(上、 中、下游)及其附属水体(支流、湖泊)的重要鱼类 组成成分;而且,它是以长江其他水生动物为食 的肉食性鱼类,位于食物链顶端,是水生生态系 统健康的重要一环,对于维护水域生产力和生物 生态平衡具有重要作用。因此,长江大眼鳜群体 的资源与遗传多样性在长江鱼类资源评估与保护 中的地位极为重要。截至目前,对大眼鳜的研究,

收稿日期: 2018-08-15; 修订日期: 2018-11-29.

基金项目:现代农业产业技术体系专项资金项目(CARS-46).

作者简介:程起群(1972-),男,博士,研究员.主要从事水生动物种质资源和种群遗传研究.E-mail: chengqq@ecsf.ac.cn 通信作者:赵金良,教授,主要从事鱼类遗传与育种研究.E-mail: jlzhao@shou.edu.cn

主要集中在形态、年龄、生长、生理、资源状况、 系统发育等方面^[1, 11-27],仅有少量研究涉及大眼 鳜的遗传多样性^[28-32],且研究样本主要采自珠江 流域;而长江流域大眼鳜的遗传多样性和遗传结 构状况的资料甚为缺乏。本研究以线粒体 Cyt *b* 和控制区全序列为线索,探讨长江流域大眼鳜的 遗传多样性和遗传结构,以期为长江大眼鳜野生 群体资源的有效管理和合理开发利用提供基础科 学数据支撑。

1 材料与方法

1.1 研究样本

在长江流域赤水河、宜昌段、洞庭湖岳阳站 和长江南京段现场采集野生大眼鳜样本,共采集 并分析了4群体79尾样本(表1和图1),样本体 长10~20 cm,体重40~200 g。取鱼的背部肌肉,保 存于无水乙醇中,带回实验室分析。

表 1 大眼鳜样本信息 Tab. 1 Samples information of *Siniperca kneri*

群体 population	采样点 sampling site	采集时间 sampling time	样本数/尾 sample size
赤水河 (CS)	长江流域赤水河(Chishui River, Yangtze Basin)	2015-08	24
宜昌(YC)	长江宜昌段(Yichang section, Yangtze River)	2015-10	19
岳阳(YY)	洞庭湖岳阳站(Yueyang station, Dongting Lake)	2015-10	21
南京(NJ)	长江南京段(Nanjing section, Yangtze River)	2015-09	15

注: CS-赤水河; YC-宜昌; YY-岳阳; NJ-南京.

Note: CS-Chishuihe; YC-Yichang; YY-Yueyang; NJ-Nanjing.

1.2 总 DNA 提取

采用酚氯仿法提取总 DNA。先用纯净水清洗 肌肉组织, 然后将肌肉组织剪碎, 接着用蛋白酶 K 消化过夜, 用酚-氯仿抽提, 最后用 100%乙醇 沉淀^[33]。抽提出的总 DNA 用琼脂糖凝胶电泳检 测, 然后稀释到合适的浓度(约 100 ng/μL), 用于 PCR 扩增。

1.3 线粒体 Cyt *b* 基因和 D-loop 区的扩增、纯化 和测序

Cyt b 基因用通用引物 L14724 和 H15915^[34] 扩增。控制区序列由自行设计的引物扩增,引物 分别为: DYG1F, 5'-CCCCTTCATTATCATTG-3'; DYG1R, 5'-GGGTATTCGGCTTTAGT-3'。PCR 扩 增在 50 μL 体系中进行, 体系中包含 2×PCR Taq PCR MasterMix 25 µL, 10 µmol/L 的引物各 2 µL, 20 ng/µL 的 DNA 模板 2 µL, 双蒸水 19 µL。在 94℃条件下预变性 5 min, 然后进行 35 次循环, 每次循环包括 94℃变性 45 s, 合适温度(Cyt b, 53℃; D-loop, 51℃)退火 45 s, 72℃延伸 60 s; 最后 在 72℃延伸 8 min。将 PCR 扩增产物在 1.3%琼脂 糖凝胶上 160 V 下电泳 20 min, 然后用溴化乙锭 染液染色 15 min, 在 FR980 凝胶电泳成像系统中 观察、拍照保存。将有目的条带的 PCR 扩增产物 进行割胶纯化、PCR 双向测序, 测序引物和 PCR 扩增引物相同。

1.4 实验数据处理和分析

对测序所得的序列进行比对、拼接。序列比 对在 Clustal X 1.83^[35]软件上进行;简约信息位点 (P)、多态位点数(V)、核苷酸多样性(*π*)、单倍型 多样性(H_d)、Tajima's D^[36]和 Fu's F_s^[37]检验等在 DnaSP^[38]软件上进行;序列碱基含量、基于 Kimura 双参数替换模型(K-2-P)^[39]的群体间遗传距离等 用 MEGA 5.0^[40]软件进行计算。采用单倍型多样 性(H_d)和核苷酸多样性(*π*)来评估种群或群体的遗 传变异。单倍型多样性是指种群内两个随机选择的 单倍型不相同的概率,核苷酸多样性是指同一种 群内所有的两两序列对之间的每位点核苷酸差异 的 平均值^[41]。分子方差分析 (AMOVA)^[42]在 Arlequin3.0 软件^[43]进行,通过计算种群内及种群 间的变异贡献率,可确定种群的遗传分化程度。

2 结果与分析

2.1 大眼鳜 Cyt b 基因和 D-loop 区序列特征

大眼鳜 4 群体所有 79 个个体的 Cyt *b* 基因和 D-loop 序列均被成功扩增和测序。其中 Cyt *b* 长 度为 1200 bp 左右, D-loop 长度为 1400 bp 左右; 经测序、拼接、比对和校正, 获得长 1141 bp 的 Cyt *b* 全序列, 以及长度介于 834~840 bp 之间的 D-loop 全序列。

Cyt b 基因序列中,未发现碱基缺失或插入, 有 22 个变异位点,占总位点数的 1.93%; 简约信 息位点 15 个。Cyt b 基因平均碱基含量(%)分别为 A-26.1、T-28.4、G-14.5、C-30.9,A+T(54.5)含量 高于 G+C(45.4)。Cyt b 基因全序列(1141 bp)共编 码 380 个 AA(氨基酸)残基,从起始密码子 ATG 开 始,至第 1141 位的不完全终止密码子 T 为止。 D-loop 区序列中,有碱基缺失或插入,经比对获 得长度为 851 bp 的一致序列,有 113 个变异位点, 占总位点数的 13.28%; 简约信息位点 43 个。 D-loop 区平均碱基含量(%)分别为 A-34.0、T-30.4、 G-15.2、C-20.4,A+T(64.4)大于 G+C(35.6)。密码 子碱基的使用频率具有很强的反 G 偏倚特征,这 与硬骨鱼类 mDNA 的特点相符合^[44-45]。

2.2 遗传多样性分析

2.2.1 单倍型分布 在4个大眼鳜群体79尾样本 中, 共检测出26个 Cyt b 单倍型(表 2); 所有单倍 型序列已提交至 GenBank (登录号 KU884484~ KU884509)。其中17个单倍型为特有单倍型,总 频率 0.6538, 分别为 Hap2、Hap5、Hap7、Hap8、 Hap11、Hap13~Hap17、Hap20~Hap26; 另外 Hap6、 Hap9、Hap18、Hap19为2 群体所共享; Hap1、 Hap4、Hap10、Hap12为3 群体所共享; Hap1、 Hap4、Hap10、Hap12为3 群体所共享; Hap3为4 群体所共享。在4 群体中,岳阳群体单倍型最多 (14个),其次是宜昌(12个)、南京(8个)和赤水河 群体(7个)。所有单倍型中,Hap1频率最高,出现 16次(频率 0.2025); 宜昌群体中未出现 Hap1。

在4个大眼鳜群体79尾样本中, 共检测出46 个 D-loop 单倍型(表 3); 所有单倍型序列已提交 至 GenBank(登录号为 KU884511~KU884555)。其 中 7 个是共享单倍型; 其余的单倍型都是特有单

表 2	大眼鳜 4 个群体的 Cyt b 单倍型分布
Tab.	2 The Cyt <i>b</i> haplotypes distribution in
	four populations of Siniperca kneri

	P.	- p		P		
单倍型	赤水河群	南京群	宜昌群	岳阳群	汇总	频率
haplotype	体(CS)	体(NJ)	体(YC)	体(YY)	total	frequency
1	13	2		1	16	0.2025
2	1				1	0.0253
3	4	4	4	1	13	0.1646
4	1	1		1	3	0.0378
5	1				1	0.0127
6	3		1		4	0.0506
7	1				1	0.0127
8		1			1	0.0127
9		1		1	2	0.0253
10		4	4	6	14	0.1772
11		1			1	0.0127
12		1	2	1	4	0.0506
13			1		1	0.0127
14			1		1	0.0127
15			1		1	0.0127
16			1		1	0.0127
17			1		1	0.0127
18			1	1	2	0.0253
19			1	1	2	0.0253
20			1		1	0.0127
21				3	3	0.0378
22				1	1	0.0127
23				1	1	0.0127
24				1	1	0.0127
25				1	1	0.0127
26				1	1	0.0127

倍型,其中,赤水河群体中有 Hap1、Hap3~Hap10, 南京群体中有 Hap11~Hap16、Hap18、Hap20~ Hap22、Hap24,宜昌群体中有 Hap25~Hap28、 Hap30、Hap31、Hap33、Hap35、Hap36,岳阳群 体有 Hap37~Hap46。单倍型 Hap17、Hap23 为南 京、宜昌、岳阳 3 群体所共享,单倍型 Hap29、 Hap32、Hap34 为宜昌和岳阳 2 群体所共享;单倍 型 Hap2 仅存于赤水河、宜昌 2 群体中,单倍型 Hap19 仅存于南京、宜昌 2 群体。Hap3 出现频率 最高(12 次),该单倍型可能是长江上游的一种特 有单倍型;Hap17 出现频率次之(8 次)。

表 3 大眼鳜 4 个群体的 D-loop 单倍型分布 Tab.3 The D-loop haplotype distribution in four populations of *Siniperca kneri*

单倍型	赤水河群	南京群	宜昌群	岳阳群	汇总	频率
haplotype	(CS)	徲(NJ)	(YC)	(44)(44)	total	frequency
1	1				1	0.01266
2	1		1		2	0.02532
3	12				12	0.15190
4	1				1	0.01266
5	2				2	0.02532
6	1				1	0.01266
7	1				1	0.01266
8	1				1	0.01266
9	2				2	0.02532
10	2				2	0.02532
11		1			1	0.01266
12		1			1	0.01266
13		1			1	0.01266
14		1			1	0.01266
15		1			1	0.01266
16		1			1	0.01266
17		2	2	4	8	0.10127
18		1			1	0.01266
19		1	1		2	0.02532
20		1			1	0.01266
21		1			1	0.01266
22		1			1	0.01266
23		1	1	2	4	0.05063
24		1			1	0.01266
25			1		1	0.01266
26			1		1	0.01266
27			1		1	0.01266
28			2		2	0.02532
29			1	1	2	0.02532
30			1		1	0.01266
31			1		1	0.01266
32			1	1	2	0.02532
33			1		1	0.01266
34			2	1	3	0.03797
35			1		1	0.01266
36			1		1	0.01266
37				1	1	0.01266
38				1	1	0.01266
39				1	1	0.01266
40				1	1	0.01266
41				1	1	0.01266
42				1	1	0.01266
43				1	1	0.01266
44				3	3	0.03797
45				1	1	0.01266
46				1	1	0.01266

2.2.2 遗传多样性指数 对 Cyt b 而言, 宜昌群体单倍型多样性最高(0.924), 赤水河群体最低(0.685), 南京、岳阳群体的单倍型多样性分别为0.876、0.914。各群体的核苷酸多样性介于 0.176%~0.285%, 其中赤水河群体最低, 宜昌群体最高(表4)。对 D-loop 而言, 大眼鳜 4 群体的平均单倍型多样性为 0.963, 平均核苷酸多样性为 0.933%。南京、宜昌、岳阳群体的单倍型多样性指数都较高且接近, 赤水河群体单倍型多样性指数最低(0.754); 各群体核苷酸多样性在 0.548%~1.412%, 赤水河群体的遗传多样性相对其他群体是最低的(表 4)。

表 4 大眼鳜 4 个群体遗传多样性参数 Tab. 4 Genetic diversity indexes of four *Siniperca kneri* populations

T114 / L.		Cyt b			D-loop			
#†1本 popula- tion	n	单倍 型数 <i>h</i>	单倍型 多样性 <i>H</i> d	核苷酸 多样性 /% π	单倍型 数 h	单倍型 多样性 <i>H</i> d	核苷酸 多样性 /% π	
赤水河 Chishui River	24	7	0.685	0.176	10	0.754	0.548	
南京 Nanjing	15	8	0.876	0.184	14	0.990	0.958	
宜昌 Yichang	19	12	0.924	0.275	16	0.982	1.412	
岳阳 Yueyang	21	14	0.914	0.285	15	0.967	0.892	
总和 total	79	26	0.899	0.237	46	0.963	0.933	

注: *n*, 样本数; *h*, 单倍型数; *H*_d, 单倍型多样性; *π*, 核苷酸多样性. Note: *n*, number of individuals; *h*, number of haplotypes; *H*_d, haplotype diversity; *π*, nucleotide diversity.

2.3 遗传结构分析

2.3.1 遗传距离 基于 Kimura 双参数模型(K-2-P) 的各大眼鳜群体的遗传距离见表 5。对 Cyt b 而言, 各群体间或群体内的遗传距离都在 0.002~0.003 间; 对 D-loop 而言, 4 群体内的遗传距离分别为赤 水河(0.005)、南京(0.010)、宜昌(0.014)、岳阳(0.009)。赤水河群体内遗传距离最小, 宜昌遗传距离最大。4 群体间的遗传距离在 0.008~0.012 之间, 提示 4 个群体未达到亚种分化水平。

2.3.2 遗传分化指数 大眼鳜群体间的遗传分化 指数(*F*_{st})见表 6。对 Cyt *b* 而言,赤水河群体与宜

表 5 大眼鳜群体内和群体间的遗传距离 Tab. 5 Genetic distances between and within populations of *Siniperca kneri*

群体 population	赤水河 Chishui	南京 Nanjing	宜昌 Yichang	岳阳 Yueyang
赤水河 Chishui River	0.002 0.005	0.008	0.011	0.008
南京 Nanjing	0.002	0.002 0.010	0.012	0.009
宜昌 Yichang	0.003	0.002	0.003 0.014	0.012
岳阳 Yueyang	0.002	0.002	0.003	0.003 0.009

注: 对角线下表示 Cyt b; 对角线上表示 D-loop; 对角线表示群体内. Note: below diagonal means Cyt b; above diagonal means D-loop; diagonal means within population.

表 6 长江流域 4 个大眼鳜群体的遗传分化指数 F_{st} Tab. 6 F_{st} of 4 Siniperca kneri populations

群体 population	赤水河 Chishui	南京 Nanjing	宜昌 Yichang	岳阳 Yueyang
赤水河 Chishui River		0.057**	0.084***	0.070****
南京 Nanjing	0.044		-0.006	-0.009
宜昌 Yichang	0.124**	-0.002		0.003
岳阳 Yueyang	0.056	-0.033	-0.008	

注:*表示 P<0.05, **表示 P<0.01, ***表示 P<0.001. 对角线下表示 Cyt b; 对角线上表示 D-loop.

Note: * means P < 0.05; ** means P < 0.01; *** means P < 0.001. Below diagonal means cyt b; above diagonal means D-loop.

昌、岳阳群体间的 F_{st}值均在 0.05~0.15 之间;其 中赤水河群体与宜昌群体的遗传分化程度最高 (F_{st}=0.124)。对 D-loop 而言,赤水河群体和南京、 宜昌、岳阳群体间的遗传分化指数相对较高,均 大于 0.05 且差异极显著,提示赤水河群体与其他 3 个群体存在一定程度的遗传分化。

2.4 分子方差分析

分子方差分析的结果显示,无论是 Cyt b,还 是 D-loop,均显示群体内的变异贡献率达到 96% 以上,群体间的变异贡献率 4%以下,4 个群体总 的 F_{st}值小于 0.04 (表 7),提示各群体间的遗传分 化主要由群体内的差异引起,无显著的群体间遗 传差异。

2.5 大眼鳜的种群历史

中性检验是判断种群在其历史上是否发生扩 张的一种检验方法^[46],其中,Tajima's D检验能反 映较长时间尺度的种群事件,更加倾向于种群的 古老突变;而 Fu's F_s 检验反映的是较短时间尺度 的种群事件,对近期事件敏感^[47]。

		Si	niner	ca kn	<i>eri</i> n	opula	ations		
	Та	b. 7	AM	OVA	anal	lysis (of four	· wild	
表	7	大眼	鳜 4	个野	生群	体的	分子7	方差分	·析

	变异来源 source of variation	自由度 degree of freedom, df	平方和 sum of squares	变异贡献率 percentage of variation	遗传分化 指数 fixation index	
Cut h	群体间 among populations	3	6.909	3.70	$F_{\rm st}=$	
Cyt b	群体内 within population	75	98.585	96.30	0.03701	
Dloop	群体间 among populations	3	30.304	3.93	$F_{\rm st}=$	
D-100p	群体内 within population	75	419.582	96.05	0.03954**	
注: **表	示 P<0.01.					

Note: ** means P<0.01.

中性检验结果如表 8 所示。一般来说,中性 检验的数值为负以及 P 值小于 0.05,则表示某群 体在历史上可能经历过种群扩张^[36-37]。就 Cyt b 而言,若将大眼鳜 4 个群体作为一个整体,其 D 值为负,但是 P 值不显著,不具备生物统计学意 义; Fu's F_s的值为负且极显著,而 Fu's F_s在检 验群体的种群扩张的敏感性比 Tajima's D 的好, 故可以推测大眼鳜种群在较近的时间内发生了种 群扩张。就 D-loop 而言,若将 4 个大眼鳜群体作 为一个整体,其 Tajima's D 值为负且 P 值极显著; Fu's F_s的值为负且 P 值极显著,故可以推测大眼 鳜种群在较近的时间内发生了种群扩张。

表 8 大眼鳜 4 个群体的 Tajima's D 和 Fu's F_s 中性检验 Tab. 8 Tajima's D and Fu's F_s values of 4 Siniperca kneri populations

	1	1 1			
群体	Су	t <i>b</i>	D-loop		
population	Tajima's D	Fu's $F_{\rm s}$	Tajima's D	Fu's $F_{\rm s}$	
赤水河 Chishui River	-0.54786	-0.831	-1.18655	1.00437	
南京 Nanjing	-0.09631	-2.909^{*}	-1.61826^{*}	-4.31495^{*}	
宜昌 Yichang	-0.80123	-5.299^{**}	-1.66631^{*}	-2.57338	
岳阳 Yueyang	-1.14855	-7.411^{**}	-1.62214^{*}	-2.32882	
总和 total	-1.18645	-16.506^{**}	-2.08116^{**}	-24.41791**	

注:*表示 0.01<P<0.05; **表示 P<0.01.

Note: * means 0.01<P<0.05; ** means P<0.01.

3 讨论

3.1 长江大眼鳜的遗传多样性

长江流域大眼鳜 4 个野生群体呈现出单倍型 多样性水平较高而核苷酸多样性水平低到中等的 特点。对 Cyt b 而言, 其平均单倍型多样性为 0.899, 平均核苷酸多样性为 0.237%, 低于同水系 的黄颡鱼(Pelteobagrus fulvidraco, H_d =0.945, π = $(0.419\%)^{[48]}$ 、斑鳜(Siniperca scherzeri, $H_d=0.928$, *π*=3.288%)^[49];高于长江长鳍吻鮈(*Rhinogobio* ventralis, H_d=0.709)^[50]、青鱼(Mylopharyngodon *piceus*, *H*_d=0.798)^[51]。对 D-loop 而言, 其平均单倍 型多样性为 0.963, 平均核苷酸多样性为 0.933%, 高于长江圆口铜鱼(Coreius guichenoti, H_d=0.902, $\pi=0.42\%$ ^[52]、长江铜鱼(Coreius heterodon, H_d= 0.9257, π=0.418)^[53]、长江水系翘嘴鲌(Culter alburnus, H_d=0.866, π=0.330%)^[54]。长江大眼鳜的遗 传多样性特点可能与第四纪冰川有关,冰期破坏 了大眼鳜的栖息地, 使得只有少数的大眼鳜生存 下来,从冰期避难所扩散后,种群数量在较短的 时期里迅速扩大, 在短期内产生很多特有单倍型, 使得单倍型多样性增加,但是核苷酸多样性却未 能在相同的时间内增加^[55-56],群体间较小的遗传 距离也佐证了这一点,即瓶颈效应使得大眼鳜的 遗传多样性发展受到限制。与此同时, 近期的环 境污染、捕捞过度等因素也造成大眼鳜群体的遗 传多样性水平下降。另外,赤水河群体的单倍型 多样性和核苷酸多样性最低,这可能与赤水河是 长江上游的支流,其群体较小、生境与中下游差 别较大、过度捕捞等因素有关。为保护赤水河的 渔业资源,恢复种群的遗传多样性,农业部发布 《关于赤水河流域全面禁渔的通告》,规定从 2017年1月1日起,赤水河流域全面禁渔10年。 相信这对全面恢复长江上游支流的大眼鳜的遗传 多样性起到重要的促进作用。

3.2 大眼鳜的遗传分化和历史动态

对 Cyt b 而言,长江水系大眼鳜 4 群体内与 群体间的遗传距离均在 0.002~0.003 之间;而对 D-loop 而言,其群体内与群体间的遗传距离在 0.005~0.012 之间;表明长江水系大眼鳜群体分化 不显著。Shaklee 等^[57]提出,以 0.05、0.30、0.90 作为鱼类在种群、种以及属的三级水平上的遗传 距离分界值。本研究中,Cyt *b* 和 D-loop 遗传距离 均低于 0.05,提示大眼鳜 4 个群体的分化仍属于 种群水平,未上升到亚种水平。

群体间遗传分化程度一般由遗传分化指数 (Fst 值)来表示。Wright^[58]认为,如果遗传分化指 数大于 0.25, 则表示群体间分化程度非常高; 如 果遗传分化指数在 0.15 和 0.25 之间,则表示群体 间有高度分化;如果遗传分化指数在 0.05 和 0.15 之间,则表示群体间有中等程度的分化;如果遗 传分化指数小于 0.05, 则表示群体间未发生分 化。本研究表明, CS 群体与其他 3 个群体的 F_{st} 均接近或者超过0.05,提示CS群体与其他3个群 体间达到或者接近中等程度的分化; 而其他 3 个 群体间的F_{st}均小于0.05,提示它们之间没有分化 或者分化很小。赤水河群体与其余群体有一定程 度的分化,这可能因为赤水河是长江上游的支流, 与干流群体间的基因交流可能有些阻隔。值得注 意的是, NJ 群体与 YC 及 YY 群体的 Fst 均为负值, 提示观察杂合子的频率比哈温平衡随机配对的频 率高, 意味着可能有杂种优势, 发生了某种程度 的自然选择事件。AMOVA 分析显示变异贡献率 主要来自种群内, 提示群体间基因交流频繁, 群 体间无显著的遗传分化。单倍型的分布(表 2 和表 3)显示特有单倍型多,呈现出一定的地域分化特 征,提示长江大眼鳜可能存在一定的局部分化, 可能有亚群体的存在,下一步需要通过增加采样 点进行精细化的深入分析和验证。

参考文献:

- Pu D Y, Huang X Q, Wei G. Histological studies and comparison on the digestive tract in *Siniperca kneri* and *Siniperca scherzeri*[J]. Freshwater Fisheries, 2013, 43(2): 26-31. [蒲德永,黄小琪,魏刚. 大眼鳜和斑鳜消化道组织 结构的比较研究[J]. 淡水渔业, 2013, 43(2): 26-31.]
- [2] Avise J C, Arnold J, Ball R M. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics[J]. Annual Review of Ecology and Systematics, 1987, 18: 489-522.
- [3] Avise J C. Molecular Markers, Natural History and Evolution[M]. New York: Chapman and Hall, 1994.

- [4] Billington N, Hebert P D N. Mitochondrail DNA diversity in fishes and its implications for introductions[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48: 80-94.
- [5] Graves J E. Molecular insights into the population structures of cosmopolitan marine fishes[J]. Journal of Heredity, 1988, 89: 427-437.
- [6] Wolstenholme D R. Animal mitochondrial DNA: structure and evolution[M]//Wolstenholme D R, Jeon K W. International Review of Cytology: A Survey of Cell Biology Mitochondrial Genomes (Vol 141). New York: Academic Press, 1992: 173-216.
- [7] Perdices A, Sayanda D, Coelho M M. Mitochondrial diversity of *Opsariichthys bidens* (Teleostei, Cyprinidae) in three Chinese dminages[J]. Molecular Phylogenetics and Evolution, 2005, 37(3): 920-927.
- [8] Ma C Y, Cheng Q Q, Zhang Q Y, et al. Genetic variation of *Coilia ectenes* (Clupeiformes: Engraulidae) revealed by the complete cytochrome *b* sequences of mitochondrial DNA[J]. Journal of Experimental Marine Biology and Ecology, 2010, 385(1-2): 14-19.
- [9] Cheng Q Q, Zhang Q Y, Ma C Y, et al. Genetic structure and differentiation of four lake populations of *Coilia ectenes* (Clupeiformes: Engraulidae) based on mtDNA control region sequences[J]. Biochemical Systematics and Ecology, 2011, 39(4-6): 544-552.
- [10] Zhu Y X, Cheng Q Q, Rogers S M. Genetic structure of *Scomber japonicus* (Perciformes: Scombridae) along the coast of China revealed by complete mitochondrial cytochrome *b* sequences[J]. Mitochondrial DNA Part A, 2016, 27(6): 3828-3836.
- [11] Liu L Z, Li G F, Chen S J, et al. Age and growth of bigeye mandarinfish (*Siniperca kneri*) in Guishi Reservoir, Guangxi Province[J]. Journal of Fishery Sciences of China, 2012, 19(2): 229-236. [刘凌志,李桂峰,陈石娟,等. 广西龟石 水库大眼鳜的年龄与生长特征[J]. 中国水产科学, 2012, 19(2): 229-236.]
- [12] Li H J. Study on feeding habitat of mandarinfish (*Siniperca kneri*) in Pearl River[J]. Reservior Fishery, 2008, 28(4): 66-68. [李红敬. 珠江水系大眼鳜的食性研究[J]. 水利渔业, 2008, 28(4): 66-68.]
- [13] Pu D Y, Wang Z J, Zhou C J, et al. Study on the development and growth of *Siniperca kneri* Garman larvae[J]. Journal of Southwest University (Natural Science Edition), 2007, 29(8): 118-122. [蒲德永, 王志坚, 周传江, 等. 大眼鳜幼 鱼的发育和生长[J]. 西南大学学报(自然科学版), 2007, 29(8): 118-122.]
- [14] Zhou C J, Pu D Y, Zhao H P, et al. Observation on early stage of Siniperca kneri[J]. Freshwater Fisheries, 2006, 36(3): 44-46. [周传江, 蒲德永, 赵海鹏, 等. 大眼鳜早期生活习性的观察[J]. 淡水渔业, 2006, 36(3): 44-46.]
- [15] Wang G J, Xie J, Pang S X, et al. Bioproductive biology of

Siniperca kneri in Pearl River water system[J]. Journal of Fisheries of China, 2006, 30(1): 50-54. [王广军, 谢骏, 庞世勋, 等. 珠江水系大眼鳜的繁殖生物学[J]. 水产学报, 2006, 30(1): 50-54.]

- [16] Xie C X. Age and growth of *Siniperca kneri* in Sandaohe Reservior[J]. Reservior Fishery, 1995(1): 12-15. [谢从新. 三道河水库大眼鳜的年龄和生长[J]. 水利渔业, 1995(1): 12-15.]
- [17] Chen J, Zheng W B, Wu Y Y, et al. The growth and fecundity of *Siniperca chuatsi* and *Siniperca kneri*[J]. Journal of South China Normal University (Natural Science Edition), 2003(1): 110-114. [陈军,郑文彪,伍育源,等. 鳜鱼和大 眼鳜鱼年龄生长和繁殖力的比较研究[J]. 华南师范大学 学报(自然科学版), 2003(1): 110-114.]
- [18] Yin W L, Dai J H, Yang D S, et al. Comparative studies on mitochondrial DNA from *Siniperca chuatsi* and *Siniperca kneri*[J]. Acta Hydrobiologica Sinica, 1998, 22(3): 257-264.
 [殷文莉,戴建华,杨代淑,等. 鳜及大眼鳜线粒体 DNA 比较研究[J]. 水生生物学报, 1998, 22(3): 257-264.]
- [19] Zhou C W, Yang Q, Cai D L. On the classification and distribution of the Sinipercinae fishes (family Serranidae)[J]. Zoological Research, 1988, 9(2): 113-215. [周才武, 杨青, 蔡德霖. 鳜亚科 Sinipercinae 鱼类的分类整理和地理分布 [J]. 动物学研究, 1988, 9(2): 113-215.]
- [20] Li S Z. On the distribution of the *Sinipercinae* fishes (family Serranidae)[J]. Chinese Journal of Zoology, 1991, 26(4):
 40-44. [李思忠. 鱖亚科鱼类地理分布的研究[J]. 动物学 杂志, 1991, 26(4): 40-44.]
- [21] Han D J, Hu J X, Hong F. Comparative studies on the feeding habit and digestive organs of *Siniperca* fishes of Lushui Reservoir[J]. Journal of Fisheries of China, 1996, 20(2): 97-103. [韩德举, 胡菊香, 洪峰. 陆水水库鳜属鱼类食性 及消化器官的比较研究[J]. 水产学报, 1996, 20(2): 97-103.]
- [22] Zhang C G, Chen D X. Resource status and reasonable utilization of *Siniperca* fishes in China[J]. Bulletin of Biology, 1999, 34(12): 9-11. [张春光, 陈大雪. 我国鳜资源现状及 其恢复和合理利用的途径[J]. 生物学通报, 1999, 34(12): 9-11.]
- [23] Zhao J L, Wang W W, Li S F, et al. Structure of the mitochondrial DNA control region of the sinipercine fishes and their phylogenetic relationship[J]. Acta Genetica Sinica, 2006, 33(9): 793-799.
- [24] Zhao J L, Li S F, Cai W Q, et al. The preliminary phylogenetic relationships of sinipercine fishes and somelower percoids inferred from 16S ribosomal DNA sequences[J]. Journal of Shanghai Fisheries Unviersity, 2005, 14(4): 364-369.
 [赵金良,李思发,蔡完其,等.由 16S rDNA 序列初步推断鳜类与低等鲈形目鱼类的系统关系[J]. 上海水产大学学报, 2005, 14(4): 364-369.]
- [25] Zhao J L, Li S F, Cai W Q, et al. Phylogenetic relationship of sinipercine fishes in East Asia based on cytochrome b se-

quences analysis[J]. Acta Zoologica Sinica, 2006, 52(4): 676-680. [赵金良, 李思发, 蔡完其, 等. 基于细胞色素 *b* 基因序列的东亚鳜类系统发育关系[J]. 动物学报, 2006, 52(4): 676-680.]

- [26] Yang H R, Ouyang P H, Li G F, et al. Morphological differentiation among three wild populations of *Siniperca kneri* in Pearl River[J]. Journal of Fishery Sciences of China, 2016, 23(2): 447-457. [杨慧荣, 欧阳徘徊, 李桂峰, 等. 珠江流域 3 个野生大眼鳜群体的形态差异[J]. 中国水产科学, 2016, 23(2): 447-457.]
- [27] Yang S B. Resource utilization and genetic diversity of sinipercine fishes[J]. Information of Fishery Technology, 2003, 30(3): 121-125. [杨受保. 鳜类的资源利用及遗传多样性研究[J]. 水产科技情报, 2003, 30(3): 121-125.]
- [28] Guo J K, An M, Wang J N, et al. Sequence analysis of rDNA ITS-1 from three populations of *Siniperca kneri* in Guizhou[J]. Genomics and Applied Biology, 2016, 35(6): 1383-1387. [郭健康, 安苗, 王金娜, 等. 贵州大眼鳜 3 个 群体 rDNA ITS-1 序列分析[J]. 基因组学与应用生物学, 2016, 35(6): 1383-1387.]
- [29] Guo J K, An M, Zhou Q C, et al. Sequence analysis of cytochrome c oxidase subunit I (COI) of mitochondrial DNA gene of bigeye mandarinfish *Siniperca kneri* in Karst Mountain[J]. Fisheries Science, 2016, 35(6): 649-657. [郭健康, 安苗, 周其椿, 等. 喀斯特山区大眼鳜线粒体 COI 基因序 列分析[J]. 水产科学, 2016, 35(6): 649-657.]
- [30] Wu X H, Liang X F, He S. Genetic diversity analysis in three species of *Siniperca*[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2014, 35(3): 255-260. [吴晓蕙, 梁旭方,何珊. 鳜属 3 个物种的遗传多样性分析[J]. 暨南 大学学报(自然科学与医学版), 2014, 35(3): 255-260.]
- [31] Zhao C, Liang X F, Tian C X, et al. Analysis of genetic diversity and phylogenetic relationships of five *Siniperca* species based on microsatellite markers[J]. Journal of Huazhong Agricultural University, 2015, 34(5): 76-80. [赵程, 梁旭方, 田昌绪, 等. 鱖属 5 种鱼类微卫星遗传多样性分析[J]. 华中农业大学学报, 2015, 34(5): 76-80.]
- [32] Yu F Y. Study on genetic diversity of *Siniperca chuatsi/kneri* complex in the Yangtze River[D]. Guangzhou: Jinan University, 2011. [余帆洋. 长江鳜和大眼鳜复合种的遗传多 样性研究[D]. 广州: 暨南大学, 2011.]
- [33] Sambrook J, Russell D W. Molecular Cloning: A Laboratory Manual[M]. 3rd edn. New York: Cold Spring Harbor Laboratory Press, 2001: 463-471.
- [34] Xiao W H, Zhang Y P, Liu H Z. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia[J]. Molecular Phylogenetics and Evolution, 2001, 18(2): 163-173.
- [35] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for mul-

tiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24): 4876-4882.

- [36] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123: 585-595.
- [37] Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147: 915-925.
- [38] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452.
- [39] Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16: 111-120.
- [40] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J].
 Molecular Biology and Evolution, 2007, 24(8): 1596-1599.
- [41] Nei M. Molecular Evolutionary Genetics[M]. New York: Columbia University Press, 1987.
- [42] Exoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data[J]. Genetics, 1992, 131: 479-491.
- [43] Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
- [44] Tzeng C S, Hui C F, Shen S C, et al. The complete nucleotide sequence of the *Crossostoma lacustre* mitochondrial genome: conservation and variations among vertebrates[J]. Nucleic Acids Research, 1992, 20(18): 4853-4858.
- [45] Jondeung A, Sangthong P, Zardoya R. The complete mitochondrial DNA sequence of the Mekong giant catfish (*Pan-gasianodon gigas*), and the phylogenetic relationships among Siluriformes[J]. Gene, 2007, 387(1-2): 49-57.
- [46] Excoffer L, Schneider S. Why hunter-gatherer populations do not show signs of Pleistocene demographic expansions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(19): 10597-10602.
- [47] Su B, Fu Y X, Wang Y X, et al. Genetic diversity and population history of the red panda (*Ailurus fulgens*) as inferred from mitochondrial DNA sequence variations[J]. Molecular Phylogenetics and Evolution, 2001, 18(6): 1070-1076.
- [48] Zhong L Q, Liu P P, Pan J L, et al. Genetic variation analysis of yellow catfish (*Pelteobagrus fulvidraco*) from five lakes in the middle and lower reaches of the Yangtze River based on mitochondrial DNA cyt b[J]. Journal of Lake Sciences, 2013, 25(2): 302-308. [钟立强, 刘朋朋, 潘建林, 等. 长江 中下游 5 个湖泊黄颡鱼(*Pelteobagrus fulvidraco*)种群线粒 体细胞色素 b 基因的遗传变异分析[J]. 湖泊科学, 2013,

25(2): 302-308.]

- [49] Zhou W Y. mtDNA cyt b diversity of Siniperca scherzeri from seven water systems[J]. Guangzhou: Jinan University, 2014. [周文漪. 基于线粒体细胞色素 b 的 7 水系斑鳜遗传 多样性分析[D]. 广州: 暨南大学, 2014.]
- [50] Cheng X F. Genetic structure of *Rhinogobio ventralis* endemic to the upper Yangtze River[D]. Chengdu: Southwest University, 2013. [程晓凤. 长江上游特有鱼长鳍吻鮈遗传 结构分析[D]. 成都:西南大学, 2013.]
- [51] Fu X Y. Genetic diversity of mitochondrial cytochromes b in black carp from the Yangtze and the Pearl River[D]. Guangzhou: Jinan Unviersity, 2011. [付晓艳. 长江和珠江水系青 鱼线粒体细胞色素 b 基因遗传多样性分析[D]. 广州: 暨 南大学, 2011.]
- [52] Yuan X P, Yan L, Xu S Y, et al. Genetic diversity of bronze gudgeon (*Coreius heteron*) and largemouth bronze gudgeon (*C. guichenoti*) in Yangtze River Basin[J]. Journal of Fishery Sciences of China, 2008, 15(3): 377-385. [袁希平, 严莉, 徐 树英,等. 长江流域铜鱼和圆口铜鱼的遗传多样性[J]. 中 国水产科学, 2008, 15(3): 377-385.]
- [53] Yuan J, Zhang Q Z, Li F, et al. mtDNA control region se-

quence variation and genetic diversity of *Coreius heterodon* (Bleeker) in the upper and middle sections of the Yangtze River[J]. Acta Hydrobiologica Sinica, 2010, 34(1): 9-19. [袁娟,张其中,李飞,等. 铜鱼线粒体控制区的序列变异和 遗传多样性[J]. 水生生物学报, 2010, 34(1): 9-19.]

- [54] Huang X Y. Study on genetic diversity of *Culter alburnus* in the Yangtze River[D]. Guangzhou: Jinan University, 2012.
 [黄小彧. 长江水系翘嘴鲌遗传多样性研究[D]. 广州: 暨南大学, 2012.]
- [55] Grant W A S, Bowen B W. Shallow population histories in deep evolutionary lineages in marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426.
- [56] Avise J C. Phylogeography: The History and Formation of Species[M]. Cambridge: Harvard University Press, 2000: 9-32.
- [57] Shaklee J B, Tamaru C S, Waples R S. Speciation and evolution of marine fishes studied by electrophoresis analysis of proteins[J]. Pacific Science, 1982, 36(2): 141-157.
- [58] Wright S. The genetical structure of populations[J]. Annals of Human Genetics, 1949, 15(1): 323-354.

Genetic diversity of four wild *Siniperca knerii* populations in the Yangtze River

CHENG Qiqun¹, LYU Hao¹, PANG Jiaohui¹, ZHAO Jinliang²

- 1. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China;
- 2. Shanghai Ocean University, Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China

Abstract: To investigate genetic diversity and structure of wild *Siniperca knerii* populations in the Yangtze River, a total of seventy-nine individuals from four wild populations (i.e., CS-Chishui River, NJ-Nanjing, YC-Yichang, and YY-Yueyang) were analyzed using the complete sequences of the mitochondrial markers Cyt *b* (cytochrome *b*) and D-loop (control region). The complete Cyt *b* sequences were 1141 bp in length, and 26 haplotypes were detected. The Cyt *b* haplotype diversity ranged from 0.685 (CS) to 0.924 (YC) and nucleotide diversity ranged from 0.176% (CS) to 0.285% (YY). Genetic distances within or between populations were both between 0.002 and 0.003. The whole D-loop sequences were 834–840 bp in length and 46 haplotypes were detected. D-loop haplotype diversity ranged from 0.754 (CS) to 0.990 (NJ) and nucleotide diversity ranged from 0.548% (CS) to 1.412% (YC). Genetic distances within populations were between 0.005 (CS) and 0.014 (YC), and from 0.008 to 0.012 among populations. The differences between these four populations of *S. knerii* have not risen to the subspecies level based on the genetic distances. Analysis of molecular variance (AMOVA) with Cyt *b* and D-loop sequences showed that most variance occurred within populations, suggesting that this is the main source of total variance.

Key words: Yangtze River; Siniperca knerii; cytochrome b gene; D-loop; genetic diversity

Corresponding author: ZHAO Jinliang. E-mail: jlzhao@shou.edu.cn