DOI: 10.3724/SP.J.1118.2019.19068

红鳍东方鲀伪雌鱼卵巢发育迟滞的调控机制

胡鹏^{1,2,3}, 柳淑芳^{1,2}, 刘新富^{1,2}, 刘海金⁴, 刘圣聪⁴, 庄志猛¹

1. 中国水产科学研究院黄海水产研究所,农业农村部海洋渔业可持续发展重点实验室,山东 青岛 266071;

2. 青岛海洋科学与技术国家实验室,海洋渔业科学与食物产出过程功能实验室,山东 青岛 266071;

3. 内江师范学院,长江上游鱼类资源保护与利用四川省重点实验室,四川 内江 641100;

4. 大连天正实业有限公司, 辽宁 大连 116000

摘要: 伪雌鱼的培育是红鳍东方鲀(*Takifugu rubripes*)全雄制种技术研发的关键环节之一,然而外源雌激素诱导获 得的伪雌鱼表现出卵巢发育迟滞,降低了其育种价值和效率。为探讨红鳍东方鲀伪雌鱼卵巢发育迟滞的调控机制, 本研究从孵化后 20 日龄开始,用 10 μg/L 17 β-雌二醇(E2)浸泡红鳍东方鲀稚幼鱼,每天浸泡 1 次,每次 2 h,至 90 日龄结束。在 90、180 和 330 日龄分别采集处理组(10 μg/L E2)遗传雄性幼鱼和对照组(0 μg/L E2)遗传雌性幼鱼,比 较两组幼鱼性腺的组织学和形态学变化特征、下丘脑-垂体-性腺轴相关激素(FSH、LH、E2 和 17α, 20βOH-PROG) 和基因(*fshr、lhr、era、erβ1、erβ2*)及脂质积累相关基因(*lpl* 和 *vldlr*)的变化规律。结果显示: 10 μg/L E2 可将遗传雄性 幼鱼全部诱导为伪雌鱼,且伪雌鱼直至 330 日龄未二次反转为间性或者雄性,但其性腺系数、卵母细胞数量及卵黄 生成前期的卵母细胞面积均显著小于对照雌鱼。此外,90 日龄伪雌鱼的 *lhr* 和 *pgr* 的表达量显著高于同期对照雌鱼, 而 17α, 20β-PROG 的含量及 *fshr* 的表达量显著低于对照组; 180 日龄伪雌鱼的 *vldl* 表达量显著低于对照组; 330 日 龄伪雌鱼的激素含量及基因表达量没有显著差异。综合分析伪雌鱼性腺发育的形态学、组织学和性腺轴相关激素 及基因变化规律可见,足够浓度的外源 E2 能够诱导并维持伪雌鱼的卵巢特征,但 E2 浓度过高,一方面可能抑制 *fshr* 和 *vldlr* 基因的表达,从而影响脂质在卵黄生成早期卵母细胞中的积累,导致红鳍东方鲀伪雌鱼卵母细胞数量较少的原因 之一。

关键词: 红鳍东方鲀; 雌激素诱导; 伪雌鱼; 卵巢发育; 下丘脑–垂体–肝脏–性腺轴 中图分类号: S92 文献标志码: A 文章编号: 1005–8737–(2019)06–1105–11

红鳍东方鲀(Takifugu rubripes)素有"鱼中之 王"的美誉,是我国北方环黄渤海地区重要海水 养殖种类和传统出口创汇产品,其精巢被认为是 难得的珍品,有"西施乳"的美誉,养殖全雄苗种 的利润是养殖普通苗种的 1.5 倍以上,因此全雄 苗种自然成为养殖企业的首选。红鳍东方鲀的遗 传性别决定类型为雄性异配的 XX/XY 型^[1],其全 雄苗种制种关键技术之一是雌激素诱导 XY 型遗 传雄鱼性反转获得伪雌鱼(XY 型)^[2];但前期研究 发现,尽管雌激素浸泡处理可以诱导 XY 型雄鱼 性反转为伪雌鱼,但是诱导结束后伪雌鱼卵巢发 育缓慢,甚至部分卵巢退化^[3],降低了伪雌鱼的 育种价值和效率。解决这一问题,亟需明确红鳍 东方鲀伪雌鱼卵巢发育迟滞的调控机制。

自 Yamamoto^[4]在 1953 年首次利用雌酮成功 诱导雄性青鳉(*Oryzias latipes*)性反转以来,目前 已在 50 多种鱼类进行了雌激素诱导实验;但大部 分的研究着重雌激素的诱导效率^[5-7],并且由于

收稿日期: 2019-04-01; 修订日期: 2019-05-16.

基金项目:山东省重大科技创新工程专项(2018SDKJ0302);山东省泰山学者建设工程专项.

作者简介: 胡鹏(1987-), 男, 讲师, 从事鱼类遗传与育种研究. E-mail: hupeng3331609@163.com

通信作者: 柳淑芳, 研究员, 从事海洋生物学研究. E-mail: liusf@ysfri.ac.cn

缺少 DNA 标记来鉴定实验鱼的遗传性别, 难以 从形态上区分伪雌鱼和遗传雌鱼,因此有关伪雌 鱼卵巢发育调控机制的研究尚未见报道。下丘脑-垂体--性腺轴在鱼类卵巢发育和成熟过程中发挥 着主导作用,下丘脑分泌促性腺激素释放激素, 激发垂体分泌促性腺激素--促卵泡激素(Folliclestimulating hormone, FSH)和促黄体生成激素 (Luteinizing hormone, LH)^[8]。FSH 主要作用是诱 导 17β-雌二醇(17β-estradiol, E2)的合成, E2 促进 卵原细胞的有丝分裂扩增和卵母细胞的生长^[9]。 LH 指导 17a, 20β-双羟孕酮(17a, 20β-dihydroxy-4pregnen-3-one, 17a, 20βOH-PROG)的生成, 17a, 20βOH-PROG一方面促进卵原细胞减数分裂并发 育成为卵母细胞,另一方面激活成熟促进因子诱 导卵母细胞成熟^[9-11]。激素相关受体,如促卵泡激 素受体(Follicle-stimulating hormone, receptor, FSHR)、 促黄体生成激素受体(Luteinizing hormone, receptor, LHR)、雌激素受体(estrogen receptor, ER)和孕 酮受体(Progesterone receptor, PGR)等, 在上述激 素发挥功能的过程中起关键的介导作用[11-13]。此 外,红鳍东方鲀的卵母细胞在较长的时间内处于 卵黄生成早期^[3],这一时期的卵母细胞大量吸收 脂质,并储存在脂滴中^[14],是影响卵黄生成早期 卵母细胞生长的重要因素。本研究比较分析下丘 脑-垂体-性腺轴相关激素(FSH、LH、E2 和 17α, 20βOH-PROG)和受体基因(*fshr*、*lhr*、*era*、*erβ1*、 erβ2和 pgr)及脂质积累相关基因(lpl 和 vldlr)在正 常养殖的遗传雌鱼和 E2 诱导的伪雌鱼的卵巢发 育过程中的变化规律,初步探讨红鳍东方鲀伪雌 鱼卵巢发育迟滞的机制,为突破红鳍东方鲀全雄制 种技术瓶颈提供理论基础。

1 材料与方法

1.1 实验材料

本实验在大连天正实业有限公司唐山养殖基 地开展,红鳍东方鲀亲鱼经促熟培育后,采用 LHRHa 催产,人工授精获得受精卵,受精卵在 17~18℃水温下孵化 8~10 d 后,将孵化的初孵仔 鱼布池进行培育,培育水温为 18~21℃。仔鱼在 4~20 日龄投喂轮虫,在 21~40 日龄投喂卤虫,从 41 日龄开始, 投喂鱼糜。在孵化后 20 日龄, 将 4000 尾个体随机分配到 2 个养殖水槽(5 m³)中。

1.2 诱导方法

采用浸泡的方法进行红鳍东方鲀伪雌鱼的诱导。试验设 1 个激素处理组(10 μg/L E2)和 1 个对 照组(0 μg/L E2)。诱导时间从 20 日龄开始,至 90 日龄结束;每 1 d浸泡一次,每次浸泡时间为 2 h。 实验开始前,用无水乙醇配制 E2 浓度分别为 0.05 mg/mL 的 E2 储存液,放 4℃储存。每次诱导 前,先将养殖水槽中水放至 500 L,分别取 10 mL E2 储存液加入对应水槽中,对照组加入 10 mL 无 水乙醇。诱导结束后,将水槽中的水放掉 2/3,然 后再加入新的海水。在实验结束后,常流水养殖。

1.3 样品采集

在 90 日龄浸泡刚结束时,分别从对照组和诱导组随机取幼鱼 30 尾,18 尾幼鱼的一页性腺用 Davison's 固定液固定,4℃冰箱保存,另一页性腺和肝脏组织用 RNAstore 保存液(天根)保存于–20℃冰箱;剩余 12 尾幼鱼整体保存于–80℃用于组织匀浆。在 180 和 330 日龄,分别从对照组和诱导组取样 12 尾,尾部取血,常温静置 4 h 后,12000 r/min 离心 10 min 分离血清,保存于–80℃;每尾鱼的一页性腺用 Davison 液固定,另一页性腺和肝脏组织用 RNAstore 保存液保存。每尾样品取少量鳍条组织,保存于–20℃冰箱;同时称量鱼的体重和性腺重,计算性腺系数(gonadosomatic index, SGI)。性腺系数计算公式:SGI= $W_g/W_b \times$ 100%,式中, W_g 表示性腺重, W_b 表示体重。

1.4 遗传性别鉴定

利用 TIANamp Marine Animals DNA kit 试剂 盒(天根)提取鳍条的基因组 DNA, NanoDrop2000 超微量分光光度计测量 DNA 的浓度和 OD₂₆₀/ OD₂₈₀比值, 1.0%琼脂糖电泳检测 DNA 的完整性。 根据红鳍东方鲀的遗传性别鉴定方法^[3,15],设计 扩增性别差异基因 *amhr*II 的上游 PCR 引物 F1(5'-TAGACACGATGCACACAAACCAC-3') 和 下游 PCR 引物 R1(5'-CGCAAAATGAG GCTCTCTA-TGGAG-3'),并以样品的基因组 DNA 为模板进行 PCR 扩增。将 PCR 扩增产物送至华大基因(青岛) 测序,测序得到的基因片段用 CLC Sequence Viewer 6 与已知序列进行比对,并用 Chromas 软件检测 SNP 分析(图 1),鉴定幼鱼的遗传性别。

1.5 性腺组织学特征观察

Davison's 固定液固定的性腺样品经梯度酒精 脱水、二甲苯透明后,进行石蜡包埋,连续切片 (厚度 4~6 µm), HE 染色,中性树胶封片, OLYMPUS DP72 显微镜进行观察、测量和拍照。

1.6 基因表达分析

利用 MiniBEST Universal RNA Extraction Kit 试剂盒(TaKaRa)提取 RNAstore 保存液保存的样 品的总 RNA, 1.0%琼脂糖凝胶电泳检测总 RNA 的完整性, NanoDrop2000 超微量分光光度计测量 RNA 的浓度。利用 PrimeScript RT reagent Kit with gDNA Eraser 试剂盒(TaKaRa)将 1 µg RNA 反转 录为 cDNA 第一链,并将其保存于–20℃冰箱备用。

根据目的基因 *fshr*(MK359809)、*lhr*(BK005585)、 *pgr*(XM_011608628) 、 *era*(XM_003971746) 、 *erβ1*(LOC101076140) 、 *erβ2*(LOC101075495) 、 *vtg*(XM_011614957)和 *vldlr*(XM_003977293)及内 参基因 *β-actin*(XM_003964421)的 cDNA 序列,利 用 Oligo 6 软件设计荧光定量 PCR 引物,所有引 物均由华大基因有限公司合成。以 330 日龄对照 组雌鱼的肝脏和卵巢 cDNA 为模板进行 10 倍梯度 稀释,选取其中 5 个梯度标准品制备标准曲线, 并计算决定系数和扩增效率(表 1)。

荧光定量 PCR 反应在 StepOnePlusTM Real Time PCR System 仪器中进行。按照 SYBR[®] PrimeScriptTM RT-PCR Kit(TaKaRa)使用说明,采 用 SYBR Green I 嵌合荧光法进行实时定量 PCR 扩增。实验样品设 3 个平行,每个样品重复 3 次,

基因 gene	引物序列 primer sequence	决定系数 coefficients of determination	扩增效率 efficiencies	大小/bpsize
erα	5'-CCCTACACCGAAGTCACCAT-3' 5'-CTGATCGTGGAGGGACAGTT-3'	0.998	0.934	120
erβ1	5'-TCTGTCCTGCAACCAATCAG-3' 5'-CTGCGCTCTTTCCTCATACC-3'	0.999	0.907	121
erβ2	5'-AAGAGGAGCATCCAAGGTCA-3' 5'-TCCCACTTCGTAGCACTTCC-3'	0.999	0.952	120
fshr	5'-GTTCTCCTGGTGCTGCTAGG-3' 5'-GTCCACGGTTGCTATGACG-3'	0.997	0.928	120
lhr	5'-ACCTGGTCGTTCTCGTCATC-3' AGGCGATGAGCATCAGGTAG-3'	0.999	0.941	120
pr	5'-CAGCTATCTCTGCGCTGGAA-3' 5'-TTCCTTCCTCCGAGCATCAT-3'	0.996	0.913	117
lpl	5'-CGCTCCATCCACCTGTTCATCG-3' 5'-CGGACCTGGTTGACGTTGTAGC-3'	1.000	0.924	155
vldlr	5'-AGGTGCTCCAGTCCTCGGAATAC-3' 5'-GGTCATTCAGGTTGCTCGCTAGTG-3'	1.000	0.914	155
actb	5'-CAGGGAGAAGATGACCCAGA-3' 5'-CATCACCAGAGTCCATGACG-3'	0.997	0.909	128

表 1 荧光定量 PCR 反应中目的基因和内参基因的序列及相关信息 Tab. 1 Primers and related information of target genes and reference gene for gRT-PCR

并设两个阴性对照。以 β-actin 为参考基因,目的 基因 mRNA 的表达相对值用 $2^{-\Delta\Delta Ct}$ 方法计算。

1.7 激素检测

90 日龄幼鱼样品解冻后,首先用预冷的 PBS(0.01 mol/L, pH 7.4)冲洗幼鱼表面黏液,滤纸 拭干,称重后将组织剪碎。将剪碎的组织与对应 体积的 PBS(按 1:5 的重量体积比)加入到 50 mL 离心管中,用匀浆机重复研磨。最后将匀浆液于 5000×g离心 10 min,吸取上清液保存于--80℃冰 箱备用。通过比对红鳍东方鲀与其他鱼类的 FSH 和 LH 的氨基酸序列,发现两者在尼罗罗非鱼与 红鳍东方鲀的同源性最高,分别为 97%和 96%; 因此选用尼罗罗非鱼激素测定试剂盒进行相关激 素的检测。利用酶联免疫分析(ELISA)方法测定 90 日龄全鱼组织匀浆的上清液及 180 和 330 日龄 血清中 FSH、LH、E2 和 17α, 20βOH-PROG 的激 素水平,实验样品设 3 个平行,每个样品重复 2 次, 所需试剂盒均购自上海酶联生物有限公司。

1.8 数据分析

采用 SPSS16.0 软件进行单因素方差(ANOVA) 分析或 Duncan 多重比较分析, *P* 值取 0.05, 数据 用平均值±标准误(*x*±SEM)表示。

2 结果与分析

2.1 卵巢组织学特征

利用分子标记鉴定样品的遗传性别,筛选对 照组遗传雌性幼鱼和 E2 处理组遗传雄性幼鱼, 并观察两种类型幼鱼的性腺组织学形态(图 2)。90 日龄时,对照组遗传雌鱼卵巢内卵母细胞以周边 核仁期卵母细胞为主,同时观察到大量偶线期生 殖细胞(图 2A); E2 处理组遗传雄性幼鱼的性腺发 育为卵巢, 遗传雄鱼性反转为伪雌鱼, 但其卵巢 体积明显小于对照组雌鱼卵巢, 卵巢内仅有少量 周边核仁期卵母细胞,卵巢内尚未形成明显的产 卵板和卵巢腔(图 2B)。180 日龄时, 对照组雌鱼卵 巢内的生殖细胞以卵黄生成前期为主,同时可见 大量周边核仁期卵母细胞(图2C); 而E2处理组伪 雌鱼卵巢依然很小, 内部出现产卵板和卵巢腔, 生殖细胞以周边核仁期卵母细胞为主, 少量卵母 细胞发育至卵黄生成前期(图 2D)。330 日龄时, 对照组雌鱼卵巢组织学形态与 180 日龄时形态无 显著差异(图 2E); E2 处理组伪雌鱼卵巢内产卵 板明显, 生殖细胞以卵黄生成前期卵母细胞为主 (图 2F)。

图 2 E2 浸泡结束后对照组雌鱼和处理组伪雌鱼的卵巢组织学形态

A, C, E: 对照组雌鱼在 90、180 和 330 日龄时的卵巢组织学形态; B, D, F: 10 μg/L E2 处理组伪雌鱼在 90、180 和 330 日龄时 的卵巢组织学形态。BV: 血管; GCM: 偶线期生殖细胞; OG: 卵原细胞; PNO: 周边核仁期卵母细胞; PVO: 卵黄生成前期卵母细胞 Fig. 2 Ovarian photomicrographs of control females and pseudo females after E2 immersion A, C, E: the ovaries in control females at 90, 180, 330 dph, respectively. B, D, F: the ovaries in pseudo females

at 90, 180, 330 dph, respectively. BV: blood vessel; GCM: germ cells undergoing meiosis at zygotene stage; OG: oogonium; PNO: perinucleolar oocyte; PVO: previtellogenic oocyte.

2.2 卵巢形态学特征

对照组雌鱼和 E2 处理组伪雌鱼在 90、180 和 330 日龄时的体重没有显著差异(P>0.05)(图 3A)。90 日龄时, 伪雌鱼的卵巢重显著小于对照雌 鱼(P<0.05); 180 日龄时, 尽管两种类型卵巢的重 量相比 90 日龄时的重量都显著增加(P<0.05), 但 伪雌鱼的卵巢重只有对照雌鱼的 1/4; 发育至 330 日龄时, 对照组雌鱼的卵巢重继续增加, 而 E2 处 理组 XY 型雌鱼卵巢重不变,后者只有前者的 1/10 大小(图 3B)。性腺系数的变化规律与卵巢重 的变化规律相似(图 3C)。E2 浸泡诱导结束后,对 照组雌鱼和 E2 处理组伪雌鱼的卵母细胞面积都 逐渐增大,但在 90 和 180 日龄时 E2 处理组 XY 型雌鱼的卵母细胞最大面积显著小于对照组 XX 型雌鱼(P<0.05),在 330 日龄时,两者没有显著差 异(P>0.05)(图 3D)。

图 3 E2 浸泡结束后对照组雌鱼和处理组伪雌鱼的体重(A)、性腺重(B)、性腺系数(C)和卵母细胞面积(D)的变化规律 Fig. 3 The changes of body weight (A), goand weight (B), gonadosomatic index (C) and oocyte area (D) in control females and pseudo females after E2 immersion

2.3 内分泌激素含量规律

90 日龄时, FSH和LH在对照组雌鱼和处理组 伪雌鱼没有显著差异(*P*>0.05)(图 4A,图 4B),E2 在处理组伪雌鱼的水平显著高于其在对照组雌鱼 的水平(*P*<0.05)(图 4C),而17α,20β-PROG 与之相 反(图 4D)。在180和330日龄时,4种激素在对照 组 雌 鱼 和 处 理 组 伪 雌 鱼 均 没 有 显 著 差 异 (*P*>0.05)(图 4E-L)。

2.4 内分泌激素受体基因的表达规律

在同一取样时间点, era 在对照组雌鱼的卵巢

中的表达量显著高于 *erβ1* 和 *erβ2* 的表达量(*P*< 0.05, 图 5),并且在浸泡结束后 *era* 在处理组伪雌 鱼卵巢的表达量与其在对照组雌鱼卵巢中的表达 量没有显著差异(*P*>0.05)。在 90 日龄时,与对照 组雌鱼卵巢相比, *fshr* 在处理组伪雌鱼卵巢中的 表达量显著下降(*P*<0.05, 图 6A), 而 *pgr* 和 *lhr* 在 伪雌鱼卵巢中的表达量显著上升(*P*<0.05, 图 6B, 图 6C);在 180 和 330 日龄时,三者在对照组雌鱼 卵巢和处理自伪雌鱼卵巢中的表达量均没有显著 差异(*P*>0.05)。

图 4 E2 浸泡结束后对照组雌鱼和处理组伪雌鱼的内分泌激素水平

A, E, I: 90、180 和 330 日龄时的促卵泡激素激素水平; B, F, J: 90、180 和 330 日龄时的促黄体生成激素水平; C, G, K: 90、180 和 330 日龄时的 17β-雌二醇水平; D, H, L: 90、180 和 330 日龄时的 17α, 20β 双羟孕酮水平. *代表差异显著性(P<0.05).
Fig. 4 The levels of hormones in control females and pseudo females after E2 immersion

A, E, I: the levels of FSH at 90, 180 and 330 dph, respectively; B, F, J: the levels of LH at 90, 180 and 330 dph, respectively; C, G, K: the levels of E2 at 90, 180 and 330 dph, respectively; D, H, L: the levels of 17α, 20βOH-PROG at 90, 180 and 330 dph, respectively. * represent significant difference (*P*<0.05).

2.5 脂质积累相关基因的表达规律

在对照组雌鱼卵巢中, *lpl*在90日龄时高表达, 但其在180日龄和330日龄时的表达量较低(图7A); *lpl*在180日龄时在处理组伪雌鱼卵巢中的表达量 显著高于其在对照组雌鱼卵巢中的表达量(P<0.05), 在 90 和 330 日龄时没有显著差异(P>0.05)。vldlr 在对照组雌鱼卵巢中的表达量规律与 *lpl* 的表达 规律相反,并且在 180 日龄时 vldlr 在处理组伪雌 鱼卵巢中的表达量显著低于其在对照组雌鱼卵巢 中的表达量(P<0.05)(图 7B)。

图 5 E2 诱导结束后 era, erβ1 和 erβ2 在对照组雌鱼和处 理组伪雌鱼的卵巢中的表达规律

Fig. 5 The mRNA levels of $er\alpha$, $er\beta 1$ and $er\beta 2$ in ovary of control females and pseudo females after E2 immersion

3 讨论

鱼类的原始性腺具有可塑性,从性别分化开 始之前,至性腺分化结束,人为施加外源雌激素 能够诱导遗传雄鱼性逆转为伪雌鱼。目前的研究

表明雌激素的种类、剂量和诱导时间不仅影响诱 导效率,而且也会影响伪雌鱼卵巢的后期发育^[5,16]。 以欧洲狼鲈(Dicentrarchus labrax)为例, 12.5~ 50 mg/kg E2 和 EE2 投喂均可诱导获得 100%的雌 性个体,并且 E2 投喂组雌性个体的性腺组织学 形态和 GSI 平均值与对照组雌鱼没有显著差异; 但随着 EE2 浓度的增大, 性腺发育异常和绝育的 个体的比例逐渐增加, GSI 平均值逐渐下降^[17]。此 外,在青鳉的研究也发现,E2 短时间浸泡诱导获 得的伪雌鱼的卵巢发育与对照雌鱼没有显著差异, 但随着 E2 浸泡时间的延长, 伪雌鱼卵巢的发育 受到抑制,并且无法性成熟^[18]。课题组在前期研 究中利用 100 μg/L E2 浸泡诱导获得红鳍东方鲀 伪雌鱼,但其卵巢显著小于对照雌鱼^[3]:本研究 中, 尽管 E2 的浓度降至 10 µg/L, 但伪雌鱼的卵 巢发育依然迟缓, 说明 10 μg/L E2 依然过量并影 响伪雌鱼卵巢的发育。

红鳍东方鲀伪雌鱼卵巢发育迟滞主要表现为 生殖细胞数量少,其增殖明显受到抑制。在鱼类 卵巢发育中,原始生殖细胞分化形成卵原细胞后, 卵原细胞持续进行有丝分裂增殖,同时不断有卵

原细胞进入减数分裂期并发育为卵母细胞^[19-20]; 因此, 卵原细胞的有丝分裂扩增及其减数分裂启 动是决定生殖细胞数量的关键增殖过程。目前大 量的研究表明 HPG 轴在生殖细胞增殖过程中发 挥着重要作用, 其中 FSH 诱导雌激素的合成, 调 控有丝分裂增殖, LH 指导合成孕酮, 促进减数分 裂的启动^[10, 21-23]。小鼠(Mus musculus)卵巢内雌激 素合成不足或其受体编码基因的表达受到干扰, 都会引起卵原细胞增殖异常^[23-24]; 而适当增加 E2 的含量则会促进远东哲罗鱼(Hucho perryi)卵原细 胞的有丝分裂,但却抑制减数分裂的启动,导致 卵母细胞数量显著减少^[25]。在鸡(Gallus gallus)的 研究中也发现, LH 只有在 FSH 或 E2 含量较低的 环境下才能促进减数分裂的启动, FSH 或 E2 含量 增加,均会抑制减数分裂^[26]。本研究中,对照雌 鱼卵巢在90日龄时可见大量偶线期生殖细胞,而 在伪雌鱼卵巢内难以观察到此类生殖细胞;并且 与对照雌鱼相比, 伪雌鱼体内的 E2 含量及其卵 巢内 *lhr* 和 *pgr* 的表达量显著增加, 而 17α, 20β-PROG 的含量显著下降。结合伪雌鱼卵巢的组 织学观察结果,我们推测过量的 E2 抑制卵巢内 卵原细胞减数分裂的启动, 是导致红鳍东方鲀伪 雌鱼卵母细胞数量较少的原因之一。

红鳍东方鲀伪雌鱼卵巢发育迟滞的第二个现 象是卵黄生成前期卵母细胞的面积小, 尤其在 180 日龄时, 卵母细胞的平均面积只有对照卵母 细胞的 1/2 大小,其生长也显著受到抑制。卵母细 胞发育至卵黄生成前期后,大量积累液泡和脂质, 细胞的体积和面积逐渐增大^[14]。在斑马鱼(Danio rerio)的最新研究表明, FSH 是调控卵黄生成前期 卵母细胞发育的关键激素, 敲除 fsh 或 fshr 基因, 都会导致卵母细胞无法发育至卵黄生成早期^[27-28]。 FSH 还与脂质在银大马哈鱼(Oncorhynchus kisutch) 卵黄生成前期卵母细胞中的积累有关,但FSH并 不是通过诱导 E2 的合成影响脂质的积累, 而是 通过其他的途径; E2 则与液泡的积累相关^[29]。在 虹鳟(Oncorhynchus mykiss)、褐鳟(Salmo trutta)和 大菱鲆(Scophthalmus maximus)中的研究也发现, E2 是调控液泡积累的重要激素^[30]。本研究中, fshr 在 90 日龄时在伪雌鱼卵巢中的表达量显著低于

其在对照雌鱼中的表达量, 暗示此时伪雌鱼卵黄 生成前期卵母细胞的发育受到影响。此外, lpl 和 vldlr 基因编码的蛋白在卵母细胞吸收脂质的过程 中起到重要的运输作用, lpl 主要在虹鳟和银大马 哈鱼卵黄生成期后期表达^[31-32],而 vldlr 基因主要 在两种鱼的卵黄生成前期和早期表达[32-33],其编 码的 VLDLR 受体蛋白可在卵巢发育过程中循环 利用^[34-35]。本研究进一步检测了脂质运输相关基 因 lpl 和 vldlr 在对照雌鱼和伪雌鱼卵巢中的表达 水平,结果发现, lpl在180和330日龄时在对照雌 鱼卵巢的表达量非常低, vldlr 的表达量随着对照 雌鱼卵巢的发育而逐渐增加,说明 vldlr 在红鳍东 方鲀卵黄生成前期卵母细胞摄入脂质过程中起到 重要作用;但在180日龄时,vldlr在伪雌鱼卵巢的 表达量显著低于其在对照雌鱼卵巢中的表达量, 影响脂质的积累,从而导致红鳍东方鲀伪雌鱼卵 黄生成前期卵母细胞较小。

4 结论

本研究中,在孵化后 20~90 日龄采用 10 µg/L E2 浸泡的方法可将红鳍东方鲀遗传雄鱼诱导发 育为伪雌鱼,但诱导结束后伪雌鱼的卵巢发育迟 滞,卵母细胞数量少、面积小。与对照雌鱼相比, 伪雌鱼在 90 日龄时的 E2 含量显著增加,但其卵 巢内 fshr 的表达量显著下降,并且在 180 日龄时 伪雌鱼卵巢内 vldlr 的表达量也显著降低;过量 E2 抑制减数分裂的启动,影响卵母细胞的增殖, 而 fshr 和 vldlr 的低表达则可能影响卵黄生成前期 卵母细胞的发育和生长。本研究首次从卵巢发育 的内分泌调控层面初步探讨了红鳍东方鲀伪雌鱼 卵巢发育迟滞的调控机制,为进一步优化红鳍东 方鲀全雄制种技术提供了理论基础。

参考文献:

- Kikuchi K, Kai W, Hosokawa A, et al. The sex-determining locus in the tiger pufferfish, *Takifugu rubripes*[J]. Genetics, 2007, 175(4): 2039-2042.
- Hu P, Liu X F, Liu B, et al. Histological observation on the gonadal differentiation of tiger puffer (*Takifugu rubripes*)[J].
 Periodical of Ocean University of China, 2015, 45(10): 25-30. [胡鵬, 刘新富, 刘滨, 等. 红鳍东方鲀性腺的组织

学分化[J]. 中国海洋大学学报, 2015, 45(10): 25-30.]

- [3] Hu P, Liu B, Meng Z, et al. Recovery of gonadal development in tiger puffer *Takifugu rubripes* after exposure to 17β-estradiol during early life stages[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(3): 613-623.
- [4] Yamamoto T O. Artificially induced sex-reversal in genotypic males of the medaka (*Oryzias latipes*)[J]. Journal of Experimental Zoology, 1953, 123(3): 571-594.
- [5] Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological and environmental influences[J]. Aquaculture, 2002, 208(3): 191-364.
- [6] Piferrer F. Endocrine sex control strategies for the feminization of teleost fish[J]. Aquaculture, 2001, 197(1-4): 229-281.
- [7] Wang H P, Gao Z X, Beres B, et al. Effects of estradiol-17β on survival, growth performance, sex reversal and gonadal structure of bluegill sunfish *Lepomis macrochirus*[J]. Aquaculture, 2008, 285(1-4): 216-223.
- [8] Wei H, Wu Y. Fish Physiology[M]. Beijing: China Agriculture Press, 2011: 294-302. [魏华, 吴垠. 鱼类生理学[M]. 北京:中国农业出版社, 2011: 294-302.]
- [9] Lubzens E, Young G, Bobe J, et al. Oogenesis in teleosts: How fish eggs are formed[J]. General and Comparative Endocrinology, 2010, 165(3): 367-389.
- [10] Yaron Z, Levavi-Sivan B. Endocrine Regulation of Fish Reproduction[M]. San Diego: Academic Press, 2011: 1500-1508,
- [11] Jia Y D, Meng Z, Niu H X, et al. Molecular cloning, characterization, and expression analysis of luteinizing hormone receptor gene in turbot (*Scophthalmus maximus*)[J]. Fish Physiology and Biochemistry, 2014, 40(6): 1639-1650.
- [12] Jia Y D, Sun A, Meng Z, et al. Molecular characterization and quantification of the follicle-stimulating hormone receptor in turbot (*Scophthalmus maximus*)[J]. Fish Physiology and Biochemistry, 2016, 42(1): 179-191.
- [13] Nelson E R, Habibi H R. Estrogen receptor function and regulation in fish and other vertebrates[J]. General and Comparative Endocrinology, 2013, 192: 15-24.
- [14] Campbell B, Dickey J, Beckman B, et al. Previtellogenic oocyte growth in salmon: relationships among body growth, plasma insulin-like growth factor-1, estradiol-17beta, follicle-stimulating hormone and expression of ovarian genes for insulin-like growth factors, steroidogenic-acute regulatory protein and receptors for gonadotropins, growth hormone, and somatolactin[J]. Biology of Reproduction, 2006, 75(1): 34-44.
- [15] Kamiya T, Kai W, Tasumi S, et al. A trans-species missense

SNP in *Amhr2* is associated with sex determination in the tiger pufferfish, *Takifugu rubripes* (fugu)[J]. PLoS Genetics, 2012, 8(7): e1002798.

- [16] Pandian T J, Kirankumar S. Recent advances in hormonal induction of sex-reversal in fish[J]. Journal of Applied Aquaculture, 2003, 13(3-4): 205-230.
- [17] Gorshkov S, Gorshkova G, Colorni B, et al. Effects of natural estradioI-17β and synthetic 17α-ethynylestradiol on direct feminization of European sea bass *Dicentrarchus labrax*[J]. Journal of the World Aquaculture Society, 2004, 35(2): 167-177.
- [18] Hirai N, Nanba A, Koshio M, et al. Feminization of Japanese medaka (*Oryzias latipes*) exposed to 17β-estradiol: Effect of exposure period on spawning performance in sex-transformed females[J]. Aquatic Toxicology, 2006, 79(3): 288-295.
- [19] Tanaka M. Vertebrate female germline-the acquisition of femaleness[J]. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3(3): 231-238.
- [20] Nakamura S, Kobayashi K, Nishimura T, et al. Identification of germline stem cells in the ovary of the teleost medaka[J]. Science, 2010, 328(5985): 1561-1563.
- [21] Lubzens E, Young G, Bobe J, et al. Oogenesis in teleosts: How fish eggs are formed[J]. General and Comparative Endocrinology, 2010, 165(3): 367-389.
- [22] Tokarz J, Möller G, de Angelis M H, et al. Steroids in teleost fishes: A functional point of view[J]. Steroids, 2015, 103: 123-144.
- [23] Bayne S, Jones M E, Li H, et al. Estrogen deficiency leads to telomerase inhibition, telomere shortening and reduced cell proliferation in the adrenal gland of mice[J]. Cell Research, 2008, 18(11): 1141-1150.
- [24] Laws M J, Kannan A, Pawar S, et al. Dysregulated estrogen receptor signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis in mice[J]. PLoS Genetics, 2014, 10(3): e1004230.
- [25] Miura C, Higashino T, Miura T. A progestin and an estrogen regulate early stages of oogenesis in fish[J]. Biology of Reproduction, 2007, 77(5): 822-828.
- [26] He B, Mi Y L, Zhang C Q. Gonadotropins regulate ovarian germ cell mitosis/meiosis decision in the embryonic chicken[J]. Molecular and Cellular Endocrinology, 2013, 370(1-2): 32-41.
- [27] Zhang Z W, Zhu B, Ge W. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption[J]. Molecular Endocrinology, 2015, 29(1): 76-98.
- [28] Chu L H, Li J Z, Liu Y, et al. Gonadotropin signaling in zebrafish ovary and testis development: Insights from gene

knockout study[J]. Molecular Endocrinology, 2015, 29(12): 1743-1758.

- [29] Campbell B, Dickey J, Beckman B, et al. Previtellogenic oocyte growth in salmon: Relationships among body growth, plasma insulin-like growth factor-1, estradiol-17beta, follicle-stimulating hormone and expression of ovarian genes for insulin-like growth factors, steroidogenic-acute regulatory protein and receptors for gonadotropins, growth hormone, and somatolactin[J]. Biology of Reproduction, 2006, 75(1): 34-44.
- [30] Hyllner S J, Oppen-Berntsen D O, Helvik J V, et al. Oestradiol-17 β induces the major vitelline envelope proteins in both sexes in teleosts[J]. Journal of Endocrinology, 1991, 131(2): 229-236.
- [31] Yeong Kwon J, Prat F, Randall C, et al. Molecular characterization of putative yolk processing enzymes and their expression during oogenesis and embryogenesis in rainbow trout (*Oncorhynchus mykiss*)[J]. Biology of Reproduction, 2001, 65(6): 1701-1709.

- [32] Luckenbach J A, Iliev D B, Goetz F W, et al. Identification of differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, *Oncorhynchus kisutch*[J]. Reproductive Biology and Endocrinology, 2008, 6: 2.
- [33] Perazzolo L M, Coward K, Davail B, et al. Expression and localization of messenger ribonucleic acid for the vitellogenin receptor in ovarian follicles throughout oogenesis in the rainbow trout *Oncorhynchus mykiss*[J]. Biology of Reproduction, 1999, 60(5): 1057-1068.
- [34] Hiramatsu N, Chapman R W, Lindzey J K, et al. Molecular characterization and expression of vitellogenin receptor from white perch (*Morone americana*)[J]. Biology of Reproduction, 2004, 70(6): 1720-1730.
- [35] Perazzolo L M, Coward K, Davail B, et al. Expression and localization of messenger ribonucleic acid for the vitellogenin receptor in ovarian follicles throughout oogenesis in the rainbow trout, *Oncorhynchus mykiss*[J]. Biology of Reproduction, 1999, 60(5): 1057-1068.

Mechanisms of delayed ovarian development in pseudo-female Takifugu rubripes

HU Peng^{1, 2, 3}, LIU Shufang^{1, 2}, LIU Xinfu^{1, 2}, LIU Haijin⁴, LIU Shengcong⁴, ZHUANG Zhimeng¹

- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China;
- 3. Key Laboratory of Fish Conservation and Utilization in the Upper Research of the Yangtze River Sichuan province, Neijiang Normal University, Neijiang 641100, China;
- 4. Dalian Tianzheng Industry Co., Ltd. Dalian 116000, China

Abstract: The tiger puffer (*Takifugu rubripes*), the most valuable teraodontiformes fish, is widely cultured in northern China. Because the testes of male tiger puffers are regarded as a delicacy, males usually have a much higher value than females. Therefore, the production of an all-male population holds considerable potential to improve the economic benefit of tiger puffers. The first step to product an all-male tiger puffer population is to induce sex reversal of males by exogenous estrogens and obtain pseudo-females. However, previous studies have indicated that the ovarian development of pseudo-females is delayed after the exposure, with small number and sizes of oocytes. To explore the regulation mechanisms underlying delayed ovarian development in pseudo-females, in this study, tiger puffers were exposed to 10 µg/L E2 for 2 h once a day from 20 to 90 days posting hatching (dph), and genetic male fish from the treatment group (10 µg/L E2) and genetic female fish from the control group (0 µg/L E2) were collected at 90, 180 and 330 dph, respectively. Then, changes in the histological and morphological features of gonads, hormones (FSH, LH, E2, and 17α , 20 β OH-PROG), and genes (*fshr*, *lhr*, $er\alpha$, $er\beta 1$, $er\beta 2$, and pgr) on the hypothalamus-pituitary-gonad axis, and genes (*lpl* and *vldlr*) involved in lipid accumulation were monitored. The results showed that 10 μ g/L E2 was able to induce sex reversal in genetic males and obtain pseudo-females, and those pseudo-females were not reconverted into males or intersex at 330 dph. However, the gonadosomatic index, the oocyte number, and the area of previtellogenic oocyte in pseudo-females was significantly smaller than that of the control. Moreover, compared with control females at 90 dph, lower expression levels of fshr and lower levels of 17α , 20 β OH-PROG, as well as higher expression levels of lhr and pgr, were detected in pseudo-females. At 180 dph, only the expression levels of *vldlr* were significantly lower in pseudo-females than in the control. At 330 dph, there was no significant difference between pseudo-females and control females among the hormones and genes. The results indicated that concentrations that are high enough of E2 were able to induce and maintain ovarian development in pseudo-females. However, the high concentrations of E2 might affect lipid accumulation in previtellogenic oocytes by suppressing *fishr* and *vldlr* expression, resulting in delayed oocyte growth in pseudo-females. Furthermore, the high concentrations of E2 might also suppress meiosis initiation, leading to a decreased number of oocytes in pseudo-females.

Key words: *Takifugu rubripes*; exogenous E2 treatment; pseudo female; ovarian development; hypothalamus-pituitary-gonad axis

Corresponding author: LIU Shufang. E-mail: liusf@ysfri.ac.cn