中华鲟(Acipenser sinensis)是一种大型溯河产卵洄游性鱼类,由于受到人类活动的影响,其自然种群发生了严重的衰退现象,已被列为国家一级重点保护动物[1-4]。自20世纪70年代始,国内多家研究机构在中华鲟物种保护方面做了大量工作,最初从长江中捕捞野生鱼进行人工繁殖,到2009年成功实现中华鲟在淡水条件下的全人工繁殖[5],再到目前已初步实现子二代中华鲟的规模化繁育与放流,中华鲟的物种保护工作不断取得新进展、新突破,这对中华鲟的种群复壮具有极其重要的意义。在中华鲟保护的初期,因其极为珍贵且养殖数量较少,养殖密度一般较低,目的是为它提供最优质的生存环境。然而,随着子二代中华鲟的规模化繁育的初步实现,国内多家中华鲟保护机构的养殖压力急剧增加。增加养殖密度是缓解养殖压力的有效途径,不仅可以最大化利用养殖设施,还可以降低中华鲟的养殖成本和保护成本。然而,养殖密度是鱼类养殖过程中一个非常重要的环境胁迫因子,养殖密度过高会加剧鱼类种群内部对生存空间和食物资源的竞争,加速养殖水体的恶化[6],降低鱼体的免疫力[7]和抗病力[8],影响肠道菌群数量[9],增加同类间的自残率[10],从而降低养殖鱼类的生长率和存活率。此外,Smith等[11]研究表明,养殖密度还是影响鱼类性成熟的重要因素。由此可见,中华鲟的养殖密度不可能一直增大,在保障其性腺发育正常的前提下,探索研究最大的适宜养殖密度对中华鲟物种保护具有重大意义。
目前,关于养殖密度对鲟鱼影响方面的研究多集中在生长发育[12-15]、免疫[13]、生理生化[12-15]、抗氧化[16]、体成分[17-18]和行为学[19]等方面。研究发现,高密度养殖显著降低了西伯利亚鲟(Acipenser baerii)幼鱼[16]、俄罗斯鲟(Acipenser gueldenstaedti)幼鱼[14]的生长及免疫性能,分别对大个体杂交鲟[达氏鳇(Huso dauricus)(♀)×史氏鲟(Acipenser schrenckii)(♂)]幼鱼[15]、杂交鲟[西伯利亚鲟(Acipenser baerii)(♀) ×施氏鲟(♂)]幼鱼[18]的血液生化指标及肌肉组分等产生了显著的不利影响。当前,关于养殖密度对鱼类性腺发育的影响研究鲜有报道,而关于养殖密度对中华鲟影响方面的研究也仅见于张建明等[19]和张晓雁等[20]。张建明等[19]研究发现增大养殖密度会显著影响子二代中华鲟的生长性能和活动强度;张晓雁等[20]研究推荐中华鲟的适宜养殖密度为2.0 kg/m3
实验鱼为中华鲟研究所全人工繁育获得的子二代中华鲟(3+龄)。挑选144尾同批次、规格一致、健康无损的子二代中华鲟用于实验,其初始体重为(5.61 ± 0.61) kg,初始体长为(81.03 ± 4.48) cm。每条鱼背部肌肉均注射有Programmable Interrupt Timer (PIT)芯片,用于对每条鱼进行标记识别。实验采用流水养殖系统,每个实验池的进水量基本一致(约为4.0 m3/h)。实验鱼在原养殖池中的养殖密度为5.0 kg/m3左右,实验鱼的原养殖池和实验池均为同车间φ4.5 m的圆形水泥池(内径4.0 m,水深0.8 m),恢复池为φ12.0 m的圆形水泥池(内径11.5 m,水深1.2 m)。
1.2 实验设计实验设置低、中、高3个密度梯度,初始密度分别为(6.12 ± 0.04) kg/m3、(8.92 ± 0.19) kg/m3和(11.75 ± 0.29) kg/m3(或11尾/池、16尾/池、21尾/池),每个密度设3个平行。在实验开始前,用100 mg/L MS-222将实验鱼进行麻醉,测量其体长和体重后转入实验池中;在此过程中,每个平行随机选择6尾鱼,记录其PIT号后,用5 mL一次性真空采血管(BD)进行尾静脉取血。在养殖12个月后,用100 mg/L MS-222将实验鱼进行麻醉,测量其体长和体重后转入恢复池中;在此过程中,用扫描仪(D-Think_X10LF+)识别实验鱼的PIT编码,对前期采过血的实验鱼再次进行采血。在低、中、高密度组中各分别随机选择1个平行组,将其中的实验鱼合并至1个恢复池中进行低密度恢复实验,共设有3个恢复池,每个恢复池的初始养殖密度不高于5.0 kg/m3。低密度恢复实验的目的是为探究低密度恢复能否消除或削弱高密度养殖对中华鲟生长、生化和性腺发育的影响。在恢复池中养殖6个月后,用100 mg/L MS-222将实验鱼进行麻醉,用扫描仪识别实验鱼的PIT编码,并测量记录其体长和体重;在此过程中,对前期采过两次血的实验鱼进行第3次采血,实验共持续18个月。在整个实验过程中,实验池、恢复池水温为15.3~24.8 ℃,溶解氧在6.0 mg/L 以上,pH为7.0~7.5,氨氮含量为0.05~0.10 mg/L,亚硝酸盐含量为0.01~0.08 mg/L;每天于9:00和15:00饱食投喂2次饲料,并在投喂30 min后收集残饵,烘干后称重,计算实验鱼摄食量。
1.3 样品处理和指标测定 1.3.1 生长性能的测定公式存活率(survival rate, SR)、增重率(weight gain rate, WGR)、日增重率(daily weight gain rate, DWGR)、特定生长率(specific growth rate, SGR)、肥满度(condition factor, CF)、变异系数(coefficient of variation, CV)、饲料系数(feed conversion ratio, FCR)分别按照以下公式计算:
SR = 100%×Nf /Ni
WGR = 100%×(Wt−W0)/W0
DWGR = 100%×(Wt−W0)/ (W0×t)
SGR = 100%×(lnWt−lnW0)/t
CF (g/cm3) = 100%×Wb/L3
CV = 100% ×(SD/MN)
FCR = F/(Wt−W0)
式中,Nf为终末鱼尾数;Ni为初始鱼尾数;Wt为终末体重(g); W0为初始体重(g); Wb为每尾鱼体重(g); t为实验天数(d); L为实验鱼的终末和初始体长(cm); SD为标准差;MN为平均值;F为实验期间每个养殖池投喂的饲料量(g)。
1.3.2 生化指标将采集的血液放入2 mL聚乙烯离心管中,单鱼单管,4 ℃冰箱内静置2 h,以3000 r/min 的转速离心15 min后,吸取血清至1 mL聚乙烯离心管中,迅速置于液氮中冷冻保存,随后转移至超低温冰箱(−80 ℃)中,用于测定生化指标和性激素指标。采用南京建成生物工程研究所生产的相关试剂盒进行葡萄糖(glucose, GLU)、白蛋白(albumin, ALB)、总蛋白(total protein, TP)、总胆固醇(total cholesterol, TC)、甘油三酯(triglyceride, TG)的测定,具体方法参照其说明书。
1.3.3 性激素指标采用上海酶联生物科技有限公司的酶联免疫分析试剂盒进行雌二醇(estradiol, E2)、睾酮(testosterone, T)、17α, 20β-双羟孕酮(17, 20R-dihydroxy-pregn-4-en-3-one, 17α, 20β-DHP)、孕酮(pesterone, P)和卵黄蛋白原(vitellogenin, VTG)的测定,具体方法参照其说明书。
1.4 数据统计实验数据用SPSS16.0和Excel 2016软件进行统计分析,利用单因素方差分析(one-way ANOVA)和Duncan’s多重进行差异显著性检验,差异的显著性以P<0.05为标准,结果以平均值±标准差($\bar{x}\pm \text{SE}$)表示。
2 结果与分析 2.1 养殖密度对中华鲟生长性能的影响由表1可知,实验开始时各密度组实验鱼体长、体重、CF、体长变异系数和体重变异系数均无显著性差异;在整个实验过程中,3个密度组实验鱼的存活率均为100%。经过12个月密度养殖实验,低、中、高密度组的养殖密度分别由(6.12± 0.04) kg/m3、(8.92 ± 0.19) kg/m3和(11.75 ± 0.29) kg/m3增至(10.99± 0.21)、(13.59 ± 0.10)和(17.78 ± 0.28) kg/m3
在低密度恢复实验开始时,各密度组实验鱼的养殖密度均为(4.11 ± 0.03) kg/m3;恢复期结束时养殖密度增至(5.31 ± 0.15) kg/m3,低密度组实验鱼体重显著高于中、高密度组(P < 0.05),各密度组间实验鱼CF差异不显著,体重、CF的组间差距较恢复期开始时要明显缩小。随着养殖密度的增加,实验鱼体重变异系逐渐增加,组间差距较恢复期开始时要明显缩小。与实验期结果不同的是,恢复期实验鱼SGR和DWGR随养殖密度升高呈逐渐增加趋势,中、高密度组DWGR显著高于低密度组(P < 0.05),其他差异不显著。
2.2 养殖密度对中华鲟血清生化指标的影响如图1所示,实验开始时各密度组实验鱼血清GLU、ALB、TG、TC和TP浓度无显著性差异。密度养殖实验结束后,高密度组血清GLU浓度达到6.04 mmol/L,高于中密度组(5.59 mmol/L)和低密度组(5.63 mmol/L);血清TG、TC和TP浓度随设计密度的增加呈逐渐递减的趋势,各组间差异不显著;各密度组间血清ALB浓度无显著性差异。低密度恢复实验结束后,各密度组血清GLU、ALB、TG、TC和TP浓度基本恢复至实验开始时的浓度水平;高密度组血清GLU浓度由6.04 mmol/L降到5.78 mmol/L,与其它两个密度组无显著性差异(P < 0.05);各密度组血清TG、ALB、TC和TP浓度无显著性差异。
![]() |
表1 不同养殖密度对中华鲟生长性能的影响 Tab. 1 Effects of different density on growth of Chinese sturgeon n = 6; $\bar{x}\pm \text{SE}$ |
如图2所示,实验开始时各密度组实验鱼17α, 20β-DHP、T、E2、VTG和P浓度均无显著性差异。密度养殖实验结束后,各密度组17α, 20β-DHP和T浓度仍无显著性差异(P > 0.05),但其浓度比实验开始时略有升高;随着设计密度的升高,实验鱼E2、VTG和P浓度水平显著下降,高密度组与低、中密度组存在显著性差异(P<0.05),低、中密度组间差异不显著。低密度恢复实验结束后,高密度组E2、VTG和P浓度分别由7.39 ng/L、60.79 μg/L和8.46 pmol/L升高至15.08 ng/L、110.62 μg/L和30.89 pmol/L;各密度组实验鱼E2、VTG和P浓度基本恢复至同一浓度水平,且各组间无显著性差异。
3 讨论 3.1 养殖密度对中华鲟生长性能的影响多项研究表明,养殖密度会对养殖鱼类的存活产生影响。丁厚猛[21]、程佳佳等[18]均研究发现高养殖密度显著增加了杂交鲟幼鱼死亡率,这可能是由于高密度不仅降低了鱼体非特异性免疫功能,使其对病原菌的敏感性升高,还显著增加了鱼体因碰撞引起机械损伤而致死的概率[21-23]。本研究结果与上述结果不同,在本研究中,3个密度组中华鲟的存活率均为100%,未受到养殖密度的影响。张建明等[19]、曹阳等[14]和罗江等[24]分别在研究养殖密度对中华鲟幼鱼、俄罗斯鲟幼鱼、长江鲟(Acipenser dabryanus)稚鱼存活率的影响时也得出同样的结果。分析其主要原因为:一是本研究设计的最高养殖密度尚未达到对中华鲟成鱼产生致死影响的临界密度;二是物种间差异导致不同鱼类对密度胁迫的适应能力不同[25],作者在养殖实践中发现,中华鲟在达到成鱼规格后,其耐受性和养殖成活率较高,不容易出现死亡现象。
![]() |
图1 不同养殖密度对中华鲟血清生化指标的影响*表示该密度组与同实验时期其它密度组之间差异显著(P < 0.05). Fig. 1 Effects of different densities on serum biochemical indexes of Chinese sturgeon* indicated that there is significant difference between this density group and other density groups in the same experiment period (P < 0.05). |
![]() |
图2 不同养殖密度对中华鲟性激素水平的影响*表示该密度组与同实验时期其他密度组之间差异显著(P < 0.05). Fig. 2 Effects of different densities on sex hormone levels of Chinese sturgeon* indicated that there is significant difference between this density group and other density groups in the same experiment period (P < 0.05). |
目前,关于养殖密度对养殖对象生长性能的影响前人已做过大量的研究,其研究结果可归为两类:一类结果是养殖密度对养殖对象影响较小或几乎没有影响,如转基因改良罗非鱼幼鱼[26](Oreochromis niloticus)、黄姑鱼(Nibea albiflora)[27]和俄罗斯鲟[14];另一类结果是养殖密度过高对鱼类的生长产生了严重的负面影响,如史氏鲟稚鱼[28]、青鱼(Mylopharyngodon piceus) 幼鱼[29]和巨型古拉米鱼[30],本研究结果支持上述第二类观点。在本研究中,中华鲟成鱼体重、SGR、WGR、DWGR随设计密度的增大而呈逐渐下降的趋势,低密度组显著高于中、高密度组,这反映了高密度养殖使中华鲟成鱼处于慢性胁迫状态中。此外,养殖密度的增大显著增加了实验鱼体重变异系数和FCR,这主要是随着养殖密度的升高,中华鲟成鱼对食物和生存空间的竞争不断加剧,资源分配不均匀导致其体重差距逐渐增大,变异系数显著增加;另外,养殖密度升高会显著提高中华鲟的活动强度,增加活动耗能,减少了用于生长的能量,从而影响了中华鲟的生长,这与丁厚猛等[21]、Khan等[31]、Santos等[32]的研究结果一致。
本研究中,在低密度恢复实验结束时,各密度组实验鱼体重、体重变异系数和CF的组间差距比恢复开始时要明显缩小;实验鱼SGR、DWGR随设计密度升高呈逐渐增加的趋势,这与密度养殖实验期实验鱼SGR、DWGR随养殖密度的变化趋势相反。推测其原因可能是由于当密度胁迫因子消除后,原中、高密度组实验鱼体内补偿机制被激活,目的是尽快消除密度胁迫对鱼体的不良影响。这可能与饥饿胁迫后再投喂可激活西伯利亚鲟[33]、虎龙斑(Epinephelus fuscoguttatus♀×E. lanceolatus♂)[34]、黄颡鱼(Pelteobagrus fulvidraco)[35]和条石鲷(Oplegnathus fasciatus)[36]等鱼类补偿生长机制相类似,需进一步研究证实。
3.2 养殖密度对中华鲟血液生化指标的影响血液在鱼类体内发挥着物质运输、生理调节和生理防御等重要功能,研究表明多种血液生理生化指标是反应鱼体代谢水平、健康水平、营养状况及适应环境变化的敏感指标[37-38],所以,很多学者用血液生理生化指标来评价密度养殖对鱼类生理机能的影响[15]。血糖(GLU)是鱼类重要的功能物质,其含量的多少是反应生物碳水化合物代谢水平的重要指标,也是反应鱼体应激性的重要指标[39-40]。本研究发现,密度养殖实验结束后,高密度组血清GLU浓度高于低、中密度组;而在低密度恢复实验结束后,3个密度组实验鱼血清GLU浓度恢复至同一水平。产生这种现象的主要原因为高密度组实验鱼产生了强烈的应激反应,导致鱼体对能量的需求急剧增加,刺激鱼体分泌大量皮质醇,促进糖异生作用,降低组织细胞对血糖的利用率,从而引起血糖浓度升高[41];而在密度胁迫消除后,鱼体能量消耗降低,皮质醇含量减少,糖代谢恢复正常,血糖浓度也恢复至正常水平。相似的结果也出现在密度胁迫后的红鳍东方鲀(Takifugu rubripes)[42]、点带石斑鱼(Epinephelus coioides)[43]、大菱鲆(Scophthalmus maximus)[44]和俄罗斯鲟[14]等鱼类中。然而,步艳等[15]、程佳佳等[18]研究发现养殖密度未对大杂交鲟幼鱼、杂交鲟幼鱼血糖浓度产生显著影响,分析其原因可能是大杂交鲟和杂交鲟分别为达氏鳇母本、西伯利亚鲟母本和史氏鲟父本杂交而来,具有生长速度快、抗病力和抗逆性强的杂交优势,对高密度胁迫的耐受性和自身调节能力强,实验设计的最高养殖密度对其产生的影响较小。程佳佳等[18]研究发现在养殖后期各密度组杂交鲟幼鱼血浆中血糖含量较前期均有所下降,推测原因可能为养殖后期实验鱼的饲料投喂量偏低,无法使鱼类维持在养殖前期的血糖水平。
血清总蛋白(TP)和白蛋白(ALB)是反应鱼体对蛋白质消化吸收和代谢水平的重要指标,是鱼类对环境应激反应的重要指示物[45-46]。张晓等[42]研发发现,高密度组红鳍东方鲀血清TP含量显著高于中密度组;亓成龙等[47]在团头鲂(Megalobrama amblycephala)幼鱼的研究中也得出类似结果,这与本研究结果一致。本研究中,密度养殖实验结束后,实验鱼TP浓度随设计密度的增加呈逐渐下降的趋势,而各密度组ALB浓度无显著性变化;在经过6个月的恢复期后,各密度组实验鱼TP浓度基本恢复至实验开始时的浓度水平,而各密度组ALB浓度依旧无显著性变化。这说明为了应对密度胁迫对鱼体造成的应激反应增强了蛋白质分解代谢水平和糖异生作用,将蛋白质转化为GLU为鱼体供能,从而导致鱼体TP浓度下降;在密度胁迫消除后,TP浓度又恢复至正常水平。而张晓等[42]研究发现高密度组杂交鲟幼鱼血浆TP含量显著高于低密度组,他推测这可能由于杂交鲟为应对高养殖密度胁迫而增加某些特定蛋白质如溶菌酶造成的[47]。
血清甘油三酯(TG)和总胆固醇(TC)浓度反应鱼体脂肪代谢水平的重要指标[42]。本研究中,经过12个月的密度养殖实验后,血清TG和TC浓度随养殖密度的增加呈逐渐下降的趋势,恢复期后各密度组TG和TC浓度恢复至同一水平,这表明密度胁迫降低了鱼体摄取或合成甘油三酯和总胆固醇的能力。研究发现,团头鲂幼鱼血清TG随着养殖密度显著增加[9],俄罗斯鲟幼鱼血清TC浓度随着养殖密度升高而降低[13],这与本研究结果基本相同;而高密度组俄罗斯鲟幼鱼血清TG浓度显著高于中、低密度组[13],高密度组大菱鲆[44]、红鳍东方鲀[42]、团头鲂[47]血清TC含量显著升高,这均与本研究结果不同,可能与实验对象、实验条件和实验持续时间不同有关。
3.3 养殖密度对中华鲟性激素水平的影响性激素在鱼类性别分化、性腺发育和成熟以及调节内分泌生殖系统中均起到重要的作用[48-49]。鱼体内性激素含量决定于其在组织中的产生速度和代谢速度,性激素水平的改变可以作为评价鱼类生殖功能是否损伤的重要指标[50-51]。鱼类的性激素主要包括雌二醇(E2)、睾酮(T)、孕酮(P)、17α, 20β-双羟孕酮(17α, 20β-DHP)等几种,有一种或者两种内源性类固醇激素在鱼类性腺发育的过程中会占据优势,并且它们之间可以相互转化[52]。
E2是调控卵巢发育最重要的性类固醇激素之一,能够诱导合成卵黄蛋白原(VTG),促进卵巢发育成熟,血清中E2与性腺成熟系数成正相关[53-55]。VTG是特异存在于卵生非哺乳类成熟动物血液中的一种蛋白,是合成卵黄蛋白的前体物质[56],不仅如此,它是检测雌激素效应的良好的生物标志物[49]。本研究发现,密度养殖实验结束后,中华鲟成鱼血清E2、VTG和P浓度随设计密度升高呈逐渐降低的趋势,且高密度组显著低于中、低密度组,这表明高密度胁迫显著抑制了中华鲟成鱼的性腺发育,并可能损伤了鱼体的生殖功能;恢复期后各密度组实验鱼E2、VTG浓度基本恢复至同一水平,这说明高密度胁迫对生殖功能的损伤是可逆的、可修复的。部分学者在研究饥饿胁迫对鱼类性激素水平影响时也得出类似结论,饥饿胁迫造成的应激反应显著降低了欧洲齿舌鲈(Dicentrarchus labrax)[57]、五条鰤(Seriola quinqueradiata)[58]和银鲑(Oncorhynchus kisutch)[59]等鱼类体内E2含量,造成了卵母细胞生长减慢和卵泡闭锁,进而抑制了鱼类的生殖功能[60]。环境胁迫产生的应激激素被证明可以抑制繁殖相关调控通路,如促肾上腺皮质激素分泌能降低E2分泌量下降[61],同时血浆皮质醇含量上升导致cyp19a1和雌激素受体基因的表达下调[62-63]。
17α, 20β-DHP是一种促进鱼类卵母细胞发育成熟的诱导激素,即一种高效催熟剂[54],而T是合成E2的重要前体物质[64]。在本实验中,经过12个月密度养殖实验后,各密度组实验鱼17α, 20β-DHP浓度无显著性差异,其原因可能是17α, 20β-DHP主要在性成熟阶段起作用,而在性腺发育阶段的作用有限,因此密度胁迫对其造成的影响不大;各密度组T浓度比实验开始时略有升高,这可能与大量分泌睾酮可以削弱鱼体的应激响应有关[65]。P在卵母细胞成熟过程中起重要的调控作用,主要刺激卵泡成熟和排卵作用[66]。而本研究却发现,高密度胁迫显著降低了实验鱼的P含量,本应在性成熟期发挥主要作用的P却在性腺发育阶段显著受到了高密度胁迫的影响,是否说明P在前期性腺发育过程中也可能发挥着重要作用,这需要进一步研究证实。
综上所述,高密度养殖对中华鲟成鱼的生长和性激素水平均产生了显著的负面影响,不仅显著降低了鱼体的生长性能,还显著抑制了中华鲟成鱼的性腺发育,并可能对鱼体生殖功能造成了损伤,而中、低密度组实验鱼未受到显著影响;在经过恢复期后,高密度组实验鱼的生长、血液生化和性激素指标基本恢复至正常水平。因此,在保障中华鲟成鱼性腺正常发育的前提下,为了尽可能实现养殖设施的最大化利用,可以适当舍弃一些生长性能,建议中华鲟成鱼的实时养殖密度不宜超过13.59 kg/m3。
[1] |
Li X Y. Cloning and function of the major histocompatibility complex class II genes’ cDNA of Chinese sturgeon (Acipenser sinensis)[D]. Wenzhou: Wenzhou University, 2018. [李修玉. 中华鲟主要组织相容性复合物Ⅱ(MHC II) cDNA克隆及功能研究[D]. 温州:温州大学,2018.].》Google Scholar
|
[2] |
Wang J, Wei Q W, Zou Y. Conservation strategies for the Chinese sturgeon, Acipenser sinensis: An overview on 30years of practices and future needs[J]. Journal of Applied Ichthyology, 2011, 27(2): 176-180..》Google Scholar
|
[3] |
Qiao Y, Tang X, Brosse S, et al. Chinese Sturgeon (Acipenser sinensis) in the Yangtze River: A hydroacoustic assessment of fish location and abundance on the last spawning ground[J]. Journal of Applied Ichthyology, 2006, 22(s1): 140-144..》Google Scholar
|
[4] |
Zhuang P, Kynard B, Zhang L Z, et al. Ontogenetic behavior and migration of Chinese sturgeon, Acipenser sinensis[J]. Environmental Biology of Fishes, 2002, 65(1): 83-97..》Google Scholar
|
[5] |
Guo B F, Chang J B, Xiao H, et al. The reproductive biology of first filial generation of Acipenser sinensis growing up in the freshwater environment[J]. Acta Hydrobiologica Sinica, 2011, 35(6): 940-945. [郭柏福,常剑波,肖慧,等. 中华鲟初次全人工繁殖的特性研究[J]. 水生生物学报,2011, 35(6): 940-945.].》Google Scholar
|
[6] |
Ma Y Q, Si N, Dong S H, et al. Effects of stocking density on growth performance of Pelteobagrus fulvidraco and water quality in ponds[J]. Journal of Aquaculture, 2021, 42(8): 26- 31. [麻艳群,司楠,董升辉,等. 不同放养密度对黄颡鱼生长性能及水质的影响[J]. 水产养殖,2021, 42(8): 26-31.].》Google Scholar
|
[7] |
Hu Y, Liu Y L, Tian Q Q, et al. Effects of fish meal levels on growth and immunity of black carp (Mylopharyngodon piceus) in different culture densities[J]. Acta Hydrobiologica Sinica, 2020, 44(1): 75-84. [胡毅,刘艳莉,田芊芊,等. 不同养殖密度下鱼粉水平对青鱼幼鱼生长及免疫的影响[J]. 水生生物学报,2020, 44(1): 75-84.].》Google Scholar
|
[8] |
Fauji H, Budiardi T, Ekasari J. Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc-based nursery production with different stocking densities[J]. Aquaculture Research, 2018, 49(3): 1339-1346..》Google Scholar
|
[9] |
Wang Y W, Zhu J, Ge X P, et al. Effects of stocking density on the growth performance, digestive enzyme activities, antioxidant resistance, and intestinal microflora of blunt snout bream (Megalobrama amblycephala) juveniles[J]. Aquaculture Research, 2019, 50(1): 236-246..》Google Scholar
|
[10] |
Khan M S K, Salin K R, Yakupitiyage A, et al. Effect of stocking densities on the growth performance, cannibalism and survival of Asian seabass Lates calcarifer (Bloch, 1790) fry in different nursery rearing system[J]. Aquaculture Research, 2021, 52(11): 5332-5339..》Google Scholar
|
[11] |
Smith H T, Schreck C B, Maughan O E. Effect of population density and feeding rate on the fathead minnow (Pimephales promelas)[J]. Journal of Fish Biology, 1978, 12(5): 449-455..》Google Scholar
|
[12] |
Liu M Y. Effects of stocking density on growth and blood physiology and biochemistry in large-sized juvenile Russian sturgeon[D]. Qingdao: Ocean University of China, 2015. [刘明源. 养殖密度对俄罗斯鲟大规格幼鱼生长及生理生化指标的影响[D]. 青岛:中国海洋大学,2015.].》Google Scholar
|
[13] |
Song Z F. The influence of stocking density on the growth performance, physiological and biochemical indices and nonspecific immunity of juvenile Russian sturgeon in flowing water cultivation[D]. Qingdao: Ocean University of China, 2015. [宋志飞. 养殖密度对流水养殖系统中俄罗斯鲟幼鱼生长、血液生理生化以及非特异性免疫的影响[D]. 青岛:中国海洋大学,2015.].》Google Scholar
|
[14] |
Cao Y, Li E C, Chen L Q, et al. Effects of stocking density on growth, physiological and immune responses in juvenile Russian sturgeon[J]. Acta Hydrobiologica Sinica, 2014, 38(5): 968-974. [曹阳,李二超,陈立侨,等. 养殖密度对俄罗斯鲟幼鱼的生长、生理和免疫指标的影响[J]. 水生生物学报,2014, 38(5): 968-974.].》Google Scholar
|
[15] |
Bu Y, Li J F, Wen H S, et al. Effect of stocking density on body composition and blood biochemistry of hybrid sturgeon[J]. Transactions of Oceanology and Limnology, 2014(3): 69-74. [步艳,李吉方,温海深,等. 养殖密度对大杂交鲟幼鱼体组份和血液生化指标的影响[J]. 海洋湖沼通报,2014(3): 69-74.].》Google Scholar
|
[16] |
Zhao D X, Cheng C, Xiao M, et al. Effects of stocking density on growth, antioxidant enzyme activity and related gene expression of juvenile Siberian hybrid sturgeon [Acipenser baerii(♀) × A. schrenckii(♂)[J]. Journal of Fisheries of China, 2022, 46(9): 1582-1592. [赵大显,程超,肖敏,等. 养殖密度对西伯利亚杂交鲟幼鱼生长、抗氧化酶活性和相关基因表达的影响[J]. 水产学报,2022, 46(9): 1582-1592.].》Google Scholar
|
[17] |
Wang Q S, Sun D J, Zhao C G. Effects of stocking density on growth and muscular composition in Amur sturgeon Acipenser schrenckii in pond culture[J]. Chinese Journal of Fisheries, 2015, 28(2): 22-25. [王秋实,孙大江,赵春刚. 放养密度对池塘养殖施氏鲟幼鱼生长和肌肉成分的影响[J]. 水产学杂志,2015, 28(2): 22-25.].》Google Scholar
|
[18] |
Cheng J J, Li J F, Wen H S, et al. Effect of stocking density on growth, muscle composition and blood parameters of hybrid sturgeon juveniles[J]. Journal of Fishery Sciences of China, 2015, 22(3): 433-441. [程佳佳,李吉方,温海深,等. 养殖密度对杂交鲟幼鱼生长、肌肉组分和血液生理生化指标的影响[J]. 中国水产科学,2015, 22(3): 433-441.].》Google Scholar
|
[19] |
Zhang J M, Guo B F, Gao Y. Effects of chronic crowding stress on growth, feeding, and behavior in Chinese sturgeon Acipenser sinensis F2 juveniles[J]. Journal of Fishery Sciences of China, 2013, 20(3): 592-598. [张建明,郭柏福,高勇. 中华鲟幼鱼对慢性拥挤胁迫的生长、摄食及行为反应[J]. 中国水产科学,2013, 20(3): 592-598.].》Google Scholar
|
[20] |
Zhang X Y, Li L X, Wei Q W, et al. Effects of culturing density on behavior and immunity of captive Acipenser sinensis and on the water quality of their living pool[J]. Resources and Environment in the Yangtze Basin, 2011, 20(11): 1348-1354. [张晓雁,李罗新,危起伟,等. 养殖密度对中华鲟行为、免疫力和养殖环境水质的影响[J]. 长江流域资源与环境,2011, 20(11): 1348-1354.].》Google Scholar
|
[21] |
Ding H M. Effect of stocking density on feeding and growth and physiological function of juvenile hybrid sturgeon[D]. Qingdao: Ocean University of China, 2014. [丁厚猛. 养殖密度对杂交幼鱼鲟摄食、生长及生理机能的影响[D]. 青岛:中国海洋大学,2014.].》Google Scholar
|
[22] |
Zhang X W, Wu Y, He R J, et al. The effects of stocking density on growth and physiological indices of grouper Epinephelus awoara in recirculating aquaculture[J]. Journal of Dalian Ocean University, 2012, 27(6): 518-522. [张曦文,吴垠,贺茹靖,等. 循环水养殖模式下养殖密度对青石斑鱼生长及生理指标的影响[J]. 大连海洋大学学报,2012, 27(6): 518-522.].》Google Scholar
|
[23] |
Nie F, Shi X T, Li D P, et al. The effect of crowding stress on plasma lysozyme activity and complement leves of juveniles Amur sturgeon, Acipenser schrenckii[J]. Acta Hydrobiologica Sinica, 2007, 31(4): 581-584. [聂芬,石小涛,李大鹏,等. 拥挤胁迫对史氏鲟稚鱼血浆溶菌酶活性和补体水平的影响[J]. 水生生物学报,2007, 31(4): 581-584.].》Google Scholar
|
[24] |
Luo J, Du H, Leng X Q, et al. Effect of different stocking densities on growth of Acipenser dabryanus juveniles[J]. Freshwater Fisheries, 2018, 48(3): 107-111. [罗江,杜浩,冷小茜,等. 不同养殖密度对长江鲟稚鱼生长的影响[J]. 淡水渔业,2018, 48(3): 107-111.].》Google Scholar
|
[25] |
Deng C Z. The influences of stocking density and grape proanthocyanidins on growth physiology and biochemistry of red Tilapia[D]. Xiamen: Jimei University, 2015. [邓超准. 养殖密度和原花青素对星洲红鱼生长及生理生化的影响[D]. 厦门:集美大学,2015.].》Google Scholar
|
[26] |
Wang Y Y, Xu P, Nie Z J, et al. Growth, digestive enzymes activities, serum biochemical parameters and antioxidant status of juvenile genetically improved farmed tilapia (Oreochromis niloticus) reared at different stocking densities in in-pond raceway recirculating culture system[J]. Aquaculture Research, 2019, 50(4): 1338-1347..》Google Scholar
|
[27] |
Xue B G, Lou B, Xu D D, et al. Impact of density stress on growth, metabolism and non-specific immune functions of juvenile Nibea albiflora[J]. Progress in Fishery Sciences, 2013, 34(2): 45-51. [薛宝贵,楼宝,徐冬冬,等. 密度胁迫对黄姑鱼幼鱼生长、代谢及非特异性免疫的影响[J]. 渔业科学进展,2013, 34(2): 45-51.].》Google Scholar
|
[28] |
Li D P, Zhuang P, Yan A S, et al. The influences of illumination, water current and stocking density on feeding, behavior and growth in juveniles Acipenser schrenckii[J]. Journal of Fisheries of China, 2004, 28(1): 54-61. [李大鹏,庄平,严安生,等. 光照、水流和养殖密度对史氏鲟稚鱼摄食、行为和生长的影响[J]. 水产学报,2004, 28(1): 54-61.].》Google Scholar
|
[29] |
Shi Y, Hu Y, Tian Q Q, et al. Effects of taurine supplementation on growth, immunity and resistance ability of juvenile black carp(Mylopharyngodon piceus) under different stocking densities[J]. Chinese Journal of Animal Nutrition, 2019, 31(9): 4131-4143. [石勇,胡毅,田芊芊,等. 饲料中添加牛磺酸对不同养殖密度下青鱼幼鱼生长、免疫及抗胁迫能力的影响[J]. 动物营养学报,2019, 31(9): 4131-4143.].》Google Scholar
|
[30] |
Arifin O Z, Prakoso V A, Subagja J, et al. Effects of stocking density on survival, food intake and growth of giant gourami (Osphronemus goramy) larvae reared in a recirculating aquaculture system[J]. Aquaculture, 2019, 509: 159-166..》Google Scholar
|
[31] |
Khan M S K, Salin K R, Yakupitiyage A, et al. Effect of stocking density and tank colour on nursery growth performance, cannibalism and survival of the Asian seabass Lates calcarifer (Bloch, 1790) in a recirculating aquaculture system[J]. Aquaculture Research, 2022, 53(6): 2472-2483..》Google Scholar
|
[32] |
Santos R B, Izel-Silva J, Fugimura M M S, et al. Growth performance and health of juvenile tambaqui, Colossoma macropomum, in a biofloc system at different stocking densities[J]. Aquaculture Research, 2021, 52(8): 3549-3559..》Google Scholar
|
[33] |
Huang Y, Zhu X M, Xie S Q, et al. Compensatory growth in Acipenser baerii, following feed deprivation at high temperature: Temporal patterns in growth, feed intake and body composition[J]. Acta Hydrobiologica Sinica, 2010, 34(6): 1113-1121. [黄莹,朱晓鸣,解绶启,等. 西伯利亚鲟在高温下饥饿后的补偿生长[J]. 水生生物学报,2010, 34(6): 1113-1121.].》Google Scholar
|
[34] |
Liu X C. Effect of starvation and refeeding on growth, gut microbiome and the ability of non-specific immunity in hybrid grouper(Epinephelus fuscoguttatus ♀×E. lanceolatus ♂)[D]. Guangzhou: South China Agricultural University, 2019. [柳小春. 饥饿再投喂对虎龙斑生长、非特异性免疫及肠道微生物群的影响研究[D]. 广州:华南农业大学,2019.].》Google Scholar
|
[35] |
Xie Y X, Zhang M Z, Li M, et al. Effects of starvation and refeeding on growth performance, blood health, antioxidant capacity and immune response of juvenile yellow catfish under ammonia stress[J]. Chinese Journal of Animal Nutrition, 2018, 30(8): 3073-3081. [谢雨欣,张木子,黎明,等. 氨氮胁迫下饥饿和再投喂对黄颡鱼幼鱼生长性能、血液健康、抗氧化能力及免疫应答的影响[J]. 动物营养学报,2018, 30(8): 3073-3081.].》Google Scholar
|
[36] |
Song G, Peng S M, Sun P, et al. Effects of starvation, refeeding, and feeding frequency on growth and digestive enzyme activity of Oplegnathus fasciatus[J]. Journal of Fishery Sciences of China, 2011, 18(6): 1269-1277. [宋国,彭士明,孙鹏,等. 饥饿与再投喂及投喂频率对条石鲷幼鱼生长和消化酶活力的影响[J]. 中国水产科学,2011, 18(6): 1269-1277.].》Google Scholar
|
[37] |
Zhou Y, Guo W C, Yang Z G, et al. Advances in the study of haemotological indices of fish[J]. Journal of Shanghai Fisheries University, 2001, 10(2): 163-165. [周玉,郭文场,杨振国,张凯. 鱼类血液学指标研究的进展[J]. 上海水产大学学报,2001, 10(2): 163-165.].》Google Scholar
|
[38] |
Payne J F, Kiceniuk J W, Squires W R, et al. Pathological changes in a marine fish after a 6-month exposure to petroleum[J]. Journal of the Fisheries Research Board of Canada, 1978, 35(5): 665-667..》Google Scholar
|
[39] |
Almeida J S, Meletti P C, Martinez C B R. Acute effects of sediments taken from an urban stream on physiological and biochemical parameters of the neotropical fish Prochilodus lineatus[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2005, 140(3-4): 356-363..》Google Scholar
|
[40] |
Barton B A, Iwama G K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids[J]. Annual Review of Fish Diseases, 1991(1): 3-26..》Google Scholar
|
[41] |
Ni J H, Zhu X J, Ji Y P, et al. Effects of breeding density on the growth, metabolic enzyme activity and related gene expression level of juvenile Pampus argenteus[J]. Journal of Tropical Oceanography, 2020, 39(2): 54-64. [倪嘉豪,朱晓静,季益平,等. 养殖密度对银鲳幼鱼生长、代谢酶活力及其相关基因表达的影响[J]. 热带海洋学报,2020, 39(2): 54-64.].》Google Scholar
|
[42] |
Zhang X, Liang M Q, Wei Y L, et al. Effects of dietary protein content and stocking density on growth performance, nitrogen excretion, and relevant biochemical parameters of juvenile Takifugu rubripes[J]. Progress in Fishery Sciences, 2021, 42(1): 74-83. [张晓,梁萌青,卫育良,等. 饲料中蛋白质含量及养殖密度对红鳍东方鲀幼鱼生长性能、氮排泄及相关生化指标的影响[J]. 渔业科学进展,2021, 42(1): 74-83.].》Google Scholar
|
[43] |
Lu S W, Liu Z P, Yu Y. Effects of density stress on growth and metabolism of juvenile Epinephelus malabaricus[J]. Journal of Fishery Sciences of China, 2011, 18(2): 322-328. [逯尚尉,刘兆普,余燕. 密度胁迫对点带石斑鱼幼鱼生长、代谢的影响[J]. 中国水产科学,2011, 18(2): 322-328.].》Google Scholar
|
[44] |
Jia R. Study of stress response mechanism of turbot (Scophthatmus maximus) to stocking density, nitrite and ammonia exposure[D]. Nanjing: Nanjing Agricultural University, 2016. [贾瑞. 大菱鲆对养殖密度、亚硝酸盐和氨氮胁迫的应激响应机制的研究[D]. 南京:南京农业大学,2016.].》Google Scholar
|
[45] |
Coma J, Carrion D, Zimmerman D R. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs2[J]. Journal of Animal Science, 1995, 73(2): 472-481..》Google Scholar
|
[46] |
Adham K, Khairalla A, Abu-Shabana M, et al. Environmental stress in lake maryut and physiological response of Tilapia zilli Gerv, [J]. Journal of Environmental Science and Health Part A: Environmental Science and Engineering and Toxicology, 1997, 32(9-10): 2585-2598..》Google Scholar
|
[47] |
Qi C L, Li D P, Tang R. Effects of stocking density on growth, physiological and biochemical levels of juveniles[J]. Livestock and Veterinary, 2014, 46: 147-148. [亓成龙,李大鹏,汤蓉. 养殖密度对团头鲂幼鱼生长及生理生化水平的影响[J].畜牧兽医,2014, 46: 147-148.].》Google Scholar
|
[48] |
Li W S, Lin H R. Effects of sex steroid on the growth hormone (gh) gene expression in the pituitary of common carp (Cyprinus carpio)[J]. Acta Zoologica Sinica, 2000, 46(2): 175-182. [李文笙,林浩然. 性类固醇激素对鲤鱼脑垂体生长激素基因表达的影响[J]. 动物学报,2000, 46(2): 175-182.].》Google Scholar
|
[49] |
Yang Q, Yang X H, Liu J N, et al. Effects of bisphenol A and its substitutes on levels of steroid hormone and vitellogenin in adult male zebrafish[J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(5): 6-13. [杨倩,杨先海,刘济宁,等. 双酚A替代物对雄性斑马鱼性激素及卵黄蛋白原水平的影响[J]. 南京工业大学学报(自然科学版), 2018, 40(5): 6-13.].》Google Scholar
|
[50] |
Fostier A, Jalabert B, Billard R, et al. 7 the gonadal steroids[M]//Fish Physiology. Amsterdam: Elsevier, 1983: 277- 372..》Google Scholar
|
[51] |
Yu L. Endocrine disrupting effects of three triazole fungicides on zebrafish (Danio rerio)[D]. Hangzhou: Zhejiang University, 2013. [喻亮. 三种三唑类杀菌剂对斑马鱼的内分泌干扰效应研究[D]. 杭州:浙江大学,2013.].》Google Scholar
|
[52] |
Fang Y Q, Weng Y Z, Hu X X. Distribution of sex steroid hormones and their receptors in the gonads and nervous system of amphioxus (Branchiostoma belcheri)[J]. Acta Zoologica Sinica, 2001, 47(4): 398-403, 482. [方永强,翁幼竹,胡晓霞. 性类固醇激素及其受体在文昌鱼性腺和神经系统中的分布[J]. 动物学报,2001, 47(4): 398-403, 482.].》Google Scholar
|
[53] |
Weltzien F A, Andersson E, Andersen Ø, et al. The brain- pituitary-gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2004, 137(3): 447-477..》Google Scholar
|
[54] |
Xu W G, Tang Y Z, Zhang J B, et al. Annual ovarian development and changes in the concentration of serum sex hormones in blacktip grouper Epinephelus fasciatus[J]. Journal of Dalian Ocean University, 2020, 35(5): 657-662. [徐文刚,唐永政,张建柏,等. 黑边石斑鱼卵巢周年发育及血清中性激素含量的变化[J]. 大连海洋大学学报,2020, 35(5): 657-662.].》Google Scholar
|
[55] |
Huang S J, Jiang R L, Zhao W X, et al. Annual change of gonadotropin content and estradiol-17 in the serum of common carp[J]. Journal of Fisheries of China, 1987, 11(1): 75-80. [黄世蕉,姜仁良,赵维信,周洪琪. 鲤鱼血清中促性腺激素、17β雌二醇含量的周年变化[J]. 水产学报,1987, 11(1): 75-80.].》Google Scholar
|
[56] |
Utarabhand P, Bunlipatanon P. Plasma vitellogenin of grouper (Epinephelus malabaricus): Isolation and properties[J]. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 1996, 115(2): 101-110..》Google Scholar
|
[57] |
Cerdá J, Carrillo M, Zanuy S, et al. Effect of food ration on estrogen and vitellogenin plasma levels, fecundity and larval survival in captive sea bass, Dicentrarchus labrax: preliminary observations[J]. Aquatic Living Resources, 1994, 7(4): 255-266..》Google Scholar
|
[58] |
Higuchi K, Yoshida K, Gen K, et al. Effect of timing of restricted feeding on sexual maturation in female yellowtail, Seriola quinqueradiata[J]. Aquaculture, 2017, 479: 609-615..》Google Scholar
|
[59] |
Yamamoto Y, Adam Luckenbach J, Goetz F W, et al. Disruption of the salmon reproductive endocrine axis through prolonged nutritional stress: Changes in circulating hormone levels and transcripts for ovarian genes involved in steroidogenesis and apoptosis[J]. General and Comparative Endocrinology, 2011, 172(3): 331-343..》Google Scholar
|
[60] |
Pankhurst N W. Reproduction and development[M]//Fish Physiology. Amsterdam: Elsevier, 2016: 295-331..》Google Scholar
|
[61] |
Alsop D, Ings J S, Vijayan M M. Adrenocorticotropic hormone suppresses gonadotropin-stimulated estradiol release from zebrafish ovarian follicles[J]. PLoS ONE, 2009, 4(7): e6463..》Google Scholar
|
[62] |
Yamaguchi T, Yoshinaga N, Yazawa T, et al. Cortisol is involved in temperature-dependent sex determination in the Japanese flounder[J]. Endocrinology, 2010, 151(8): 3900- 3908..》Google Scholar
|
[63] |
Lethimonier C, Tujague M, Kern L, et al. Peptide insertion in the DNA-binding domain of fish glucocorticoid receptor is encoded by an additional exon and confers particular functional properties[J]. Molecular and Cellular Endocrinology, 2002, 194(1-2): 107-116..》Google Scholar
|
[64] |
Christensen A, Bentley G E, Cabrera R, et al. Hormonal regulation of female reproduction[J]. Hormone and Metabolic Research, 2012, 44(8): 587-591..》Google Scholar
|
[65] |
Handa R J, Weiser M J, Zuloaga D G. A role for the androgen metabolite, 5alpha-androstane-3beta, 17beta-diol, in modulating oestrogen receptor beta-mediated regulation of hormonal stress reactivity[J]. Journal of Neuroendocrinology, 2009, 21(4): 351-358..》Google Scholar
|
[66] |
Zhao W X, Wright R S. Sex steroids production by vitellogenic ovarian follicles of atlantic salmon (Salmo salar) in virto[J]. Journal of fisheries of China, 1986, 10(4): 389- 394. [赵维信,Wright R S. 促性腺激素(GtH)诱发大西洋鲑(Salmo salar)卵黄发生期卵巢滤泡释放性类固醇激素地离体研究. 水产学报,1986, 10(4): 389-394.].》Google Scholar
|