中国水产科学  2023, Vol. 30 Issue (05): 559-572  DOI: 10.12264/JFSC2023-0016
0

引用本文 

葛建民, 訾方泽, 王新月, 任道全, 宋勇, 孙真, 喻雅丽, 陈生熬. 新疆盐碱水湖塘生态养殖模式下鱼类生长及肌肉营养品质[J]. 中国水产科学, 2023, 30(5): 559-572. DOI: 10.12264/JFSC2023-0016.
GE Jianmin, ZI Fangze, WANG Xinyue, REN Daoquan, SONG Yong, SUN Zhen, YU Yali, CHEN Sheng’ao. A comparative study on fish growth and nutritional composition under pond ecological farming in Xinjiang[J]. Journal of Fishery Sciences of China, 2023, 30(5): 559-572. DOI: 10.12264/JFSC2023-0016.

基金项目

国家自然科学基金项目(31360635);国家重点研发计划“蓝色粮仓科技创新”重点专项(2020YFD0900403).

作者简介

葛建民(1998−),男,硕士研究生,研究方向为渔业生态学. E-mail:728417077@qq.com

通信作者

通信作者:陈生熬,博士,教授,研究方向为渔业资源与环境. E-mail:chenshengao@163.com

文章历史

收稿日期:2023-02-20
修改日期:2023-04-02
新疆盐碱水湖塘生态养殖模式下鱼类生长及肌肉营养品质
葛建民1,訾方泽2,王新月2,任道全2,宋勇2,孙真3,喻雅丽4,陈生熬2,3,     
1. 塔里木大学动物科学与技术学院,新疆维吾尔自治区 阿拉尔 843300
2. 塔里木珍稀鱼类研究中心,新疆维吾尔自治区 阿拉尔 843300
3. 中国水产科学研究院东海水产研究所,上海 200090
4. 中国水产科学研究院长江水产研究所,湖北 武汉 430223
摘要:为探究新疆盐碱水湖塘生态养殖模式下鱼类的生长和肌肉营养品质及鱼类养殖对盐碱湖塘水质的影响,自2022年4月9日起,在新疆阿拉尔市十四团天鹅湖连续开展60 d盐碱水湖塘生态养殖实验,每30 d采集1次鲤(Cyprinus carpio)、鲫(Carassius auratus)、草鱼(Ctenopharyngodon idellus)和叶尔羌高原鳅(Triplophysa yarkandensis),分析盐碱水湖塘生态养殖模式下这4种鱼类的生长性状和肌肉营养品质;连续开展150 d水质检测,每30 d采集水样1次,分析水质理化指标变化。结果显示,盐碱水湖塘生态养殖模式下鲤、鲫、草鱼和叶尔羌高原鳅的特定生长率(SGR)分别为0.77%/d、0.55%/d、0.65%/d和0.89%/d; 3种大宗淡水鱼类肌肉中水分含量介于75.32%~76.13%,显著高于叶尔羌高原鳅(P<0.05),粗蛋白含量介于17.79%~22.35%,显著低于叶尔羌高原鳅(P<0.05), 3种大宗淡水鱼类和叶尔羌高原鳅肌肉中水分和粗蛋白含量存在显著差异(P<0.05); 4种鱼类肌肉中均测出17种氨基酸,3种大宗淡水鱼类肌肉中氨基酸总量(TAA)、必需氨基酸(EAA)和非必需氨基酸含量(NEAA)分别为83.34%~91.13%、35.87%~37.50%和46.71%~55.23%, TAA和EAA显著高于叶尔羌高原鳅(P<0.05); 4种鱼类的EAA/TAA比值变幅在39.36%~45.32%, EAA/NEAA变幅在64.94%~78.42%,鲤、鲫和叶尔羌高原鳅达到了WHO/FAO理想模式的要求,草鱼略低;4种鱼类肌肉中共测出24种脂肪酸,饱和脂肪酸(SFA)、不饱和脂肪酸(MUFA)和多不饱和脂肪酸(PUFA)分别为23.04%~28.95%、30.31%~39.36%和29.80%~34.17%, PUFA/SFA比值介于1.18~1.30之间,肌肉中二十碳五烯酸(C20:5n3, EPA)和二十二碳六烯酸(C22:6n3, DHA)含量丰富,属优质PUFA膳食来源;盐碱水湖塘生态养殖水域中盐度、碱度、Na+、K+、Ca2+、Mg2+、Cl、${\rm{SO}}_4^{2{\rm{ - }}}$、${\rm{SO}}_3^{2{\rm{ - }}}$和${\rm{HCO}}_3^ - $等浓度在4—7月呈持续降低趋势,水域环境优化趋势明显。研究表明,盐碱水湖塘生态养殖模式下草鱼呈匀速生长,鲤、鲫和叶尔羌高原鳅呈异速增长;肌肉中营养成分组成均衡,蛋白质、EAA和PUFA含量丰富,肌肉营养品质得到有效改善;养殖区域盐碱度和离子浓度有效降低,起到“以渔治碱”和“以渔抑碱”的良好水域生态修复作用。
关键词盐碱水    湖塘生态养殖    生长性状    营养成分    营养品质    
A comparative study on fish growth and nutritional composition under pond ecological farming in Xinjiang
GE Jianmin1,ZI Fangze2,WANG Xinyue2,REN Daoquan2,SONG Yong2,SUN Zhen3,YU Yali4,CHEN Sheng’ao,2,3    
1. College of Animal Science and Technology, Tarim University, Alar 843300, China
2. Tarim Research Center of Rare Fishes, Alar 843300, China
3. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
4. Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Wuhan 430223, China
Abstract:To effectively utilize the abandoned saline-alkali water in Xinjiang and establish a model of inland saline–alkali water fishery breeding, we conducted a study from April to September 2022 at Swan Lake of the Fourteenth Regiment in Alar City, Xinjiang. We collected water and fish samples every 30 d to analyze the changes in physical and chemical water quality indices, growth trends, and nutritional components of Cyprinus carpio, Carassius auratus, Ctenopharyngodon idella, and Triplophysa yarkandensis under pond ecological farming. The results indicated that the concentrations of Sal, Alk, Na+, K+, Ca2+, Mg2+, Cl, ${\rm{SO}}_4^{2{\rm{ - }}}$, ${\rm{SO}}_3^{2{\rm{ - }}}$ and ${\rm{HCO}}_3^ - $ in Swan Lake decreased significantly in July (P<0.05), and there were no significant changes in Cu2+ concentration (P>0.05). The specific growth rate (SGR) and weight gain rate (WGR) of Cyprinus carpio, Carassius auratus, and Ctenopharyngodon idella were lower than those of Triplophysa yarkandensis under this breeding mode. The moisture, crude protein, crude ether extract, and crude ash contents in the muscle of Cyprinus carpio, Carassius auratus, and Ctenopharyngodon idella were 75.32%–76.13%, 17.79%–22.35%, 2.74%–4.25%, and 1.67%–4.45%, respectively. The content of delicious amino acids (DAA) in the muscle of the three types of freshwater fish was significantly higher when cultured in saline-alkali water than in freshwater (P<0.05); the essential amino acids (EAA)/total amino acids (TAA) and EAA/non-essential amino acids (NEAA) in the muscles of Cyprinus carpio and Carassius auratus were following the ideal model of the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO). The eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents in the muscles of the four kinds of fish were high, owing to the dietary sources of high quality protein and polyunsaturated fatty acids (PUFA). Principal component analysis indicated that the amino acid and fatty acid composition of Triplophysa yarkandensis was significantly different from that of the three major freshwater fishes (P<0.05). The results showed that the growth rate of bulk freshwater fish was slow under the ecological breeding mode of saline–alkali ponds in Xinjiang, and the nutrient composition of the four kinds of fish was balanced, owing to the dietary source of high quality protein and PUFA. Our study highlights that saline-alkali aquaculture can improve the nutritional quality of bulk freshwater fish, promote effective utilization of saline-alkali water in Xinjiang, and achieve the sustainable development of saline-alkali water fisheries.
Key wordssaline-alkali lake    pond ecological breeding    growth traits    nutritional components    nutrient quality    

我国约有4.6×107 hm2的盐碱水域,由于其盐碱度较高,离子组成复杂,利用率极低,约3× 107 hm2的盐碱水尚未开发利用[1-4]。我国新疆维吾尔自治区盐碱水域分布广泛,多集中于南疆地区[5]。新疆阿拉尔垦区地处天山南麓,塔里木盆地北部,塔里木河上游,属塔里木河冲积细土平原,土地盐渍化严重[6]。新疆湖塘生态养殖示范点-天鹅湖,是阿拉尔垦区的灌溉用水,经灌溉洗盐后渗透排出,在阿拉尔市十四团地势低洼处汇聚,形成约1.33 km2的深浅不一的大型坑塘。在湖塘大水面基础上,设置约0.53 km2围网养殖区域,开展盐碱水湖塘生态养殖模式的构建,持续开展淡水鱼类的盐碱水驯化养殖,以期达到“以渔治碱”和“以渔抑碱”,共同促生态修复和盐碱水渔业可持续发展[7]

水产品是人类膳食中蛋白质、必需氨基酸(EAA)及n-3多不饱和脂肪酸(n-3 PUFA)等营养物质的重要来源[8-10],食用水产品在营养、心血管疾病预防及促进健康等方面具有重要作用[11-15]。鲤(Cyprinus carpio)、鲫(Carassius auratus)和草鱼(Ctenopharyngodon idellus)是我国淡水养殖的主要经济鱼种[16],叶尔羌高原鳅(Triplophysa yarkandensis)是我国特有鱼类,主要分布于塔里木河水系[17]。鲤、鲫和草鱼的主要养殖模式是淡水池塘养殖,普遍存在肌肉松弛和土腥味较重等缺点,严重影响其食用价值和经济价值[18]。研究发现,淡水鱼类也能适应盐碱水养殖[19-23],但由于盐碱水矿化度较高,渗透压较强,鱼类肌肉中粗脂肪和游离氨基酸等营养成分作为供能物质参与机体渗透调节,会影响鱼类生长和肌肉营养成分组成[20,24-26]。据相关研究报道,淡水鱼类经过盐度驯化,能有效改善其肌肉营养品质[24-26]。同时,发展盐碱水养殖能有效降低养殖区域的盐碱度和离子浓度,改善水生态环境[27-30]。因此,开展盐碱水养殖对提高鱼类肌肉营养品质和改善废弃盐碱水生态环境均具有重要意义。

本研究基于新疆盐碱水湖塘生态养殖模式,对3种大宗淡水鱼类和1种土著鱼类的生长性状和肌肉营养品质以及养殖区域水体理化指标变化进行研究,判断盐碱水养殖对大宗淡水鱼类生长和肌肉营养品质的影响及水产养殖活动对盐碱水域生态环境的影响,旨在为盐碱水湖塘生态养殖模式下大宗淡水鱼类肉质改善、盐碱水养殖品种的驯养选育和盐碱水域生态环境的潜在修复等提供科学依据。

1 材料与方法 1.1 样本采集

2022年4月9日—6月8日,在新疆阿拉尔市十四团新疆湖塘生态养殖示范点——天鹅湖(40°58ʹ82″ N, 81°83ʹ68″)内进行每30 d开展1次的周期性采样,使用粘网(2a=4.0 cm)和地笼(2a= 2.0 cm)采集样本,每次随机采集鲤、鲫、草鱼和叶尔羌高原鳅各30尾,测定其生长指标。

2022年4月9日—9月6日,参照《内陆水域渔业自然资源调查手册》[31]和GB/T 14581- 1993[32]的采样方法,在新疆湖塘生态养殖模式示范点——天鹅湖中设置进水口、出水口、深水区、浅水区和沿岸区5个点位,每30 d使用采水器分别采集水样500 mL,并设置2组平行样,用于水质理化指标检测。

1.2 实验方法 1.2.1 生长分析

参照鱼类生态学方法[33],测定鱼类体长和体重,并计算其特定生长率(specific growth rate, SGR)、绝对生长率(absolute growth rate, AGR)、相对生长率(relative growth rate, RGR)、增重率(weight gain rate, WGR)和肥满度(fullness, K)等生长参数,计算公式如下:

SGR=(lnW2–lnW1)/t或SGR=(lnl2–lnl1)/t

AGR=(W2W1)/t或AGR=(l2l1)/t

RGR=(W2W1)/W1×t或RGR=(l2l1)/l1×t

WGR=(W2W1)/W1×100%

K=100(W/L3)×100%

W=aL b

式中,W为体重(g); L为体长(mm); W1为初始体重(g); W2为终末体重(g); l1为初始体长(mm); l2为终末体长(mm); t为实验天数(d); a为条件因子;b为异速生长因子。

1.2.2 营养成分测定

从采集样本中随机选择鲤、鲫、草鱼各5 尾,叶尔羌高原鳅30尾;将鱼类样本麻醉(MS-222)、洗净、去皮,置于冰盘取两侧背部肌肉,用剪刀剪成小碎块,同种实验鱼样本混匀后分成3组,所有样品密封后于–80 ℃储存。用组织捣碎机充分捣碎均匀,然后随机取样用于肌肉营养成分(水分、粗蛋白、粗脂肪、粗灰分、氨基酸和脂肪酸)分析,所有实验均设置3组平行。

采用烘干法测定水分(GB 5009.3-2016),灼烧法测定粗灰分(GB 5009.4-2016),凯氏定氮法测定粗蛋白(GB/T 6432-2018),索氏提取法测定粗脂肪(GB/T 14772-2008),采用JJG1064-2011氨基酸分析仪测定肌肉中17种氨基酸含量(GB5009.124- 2016),采用GC-2010气相色谱仪测定肌肉中30种脂肪酸含量(GB5009.168-2016)。

1.2.3 营养评价

根据联合国粮农组织/世界卫生组织(FAO/WHO)1973年提出的每克氮氨基酸评分标准模式和中国疾病预防控制中心营养与食品安全所提出的鸡蛋蛋白模式进行营养价值评定。蛋白质的氨基酸评分(AAS)、化学评分(CS)和必需氨基酸指数(EAAI)[34]按以下公式计算:

AAS=待测蛋白质氨基酸含量(%)/[FAO/WHO评分模式氨基酸含量(%)]×100;

CS=待评蛋白质氨基酸含量(%)/鸡蛋蛋白质氨基酸含量(%)×100;

EAAI=[(100A/AE)×(100B/BE)×(100C/CE)×, …, × (100G/GE)]1/n×100。

式中,n为比较的必需氨基酸(EAA)数目;A, B, C, …, G为雅罗鱼肌肉蛋白质的EAA含量;AE, BE, CE, …, GE为全鸡蛋蛋白质的EAA含量。

1.2.4 水质分析

采用Aquaprobe AP-800水质监测仪现场测定pH、水温(T)、溶解氧(DO)和盐度(Sal);参照《水和废水检测分析方法(第四版)》[35]中的规范对碱度(Alk)、氨氮(NH3-N)、亚硝酸盐(NIT)、总氮(TN)、总磷(TP)、钠离子(Na+)、钾离子(K+)、钙离子(Ca2+)、镁离子(Mg2+)、氯离子(Cl)、硫酸根离子(${\rm{SO}}_4^{2{\rm{ - }}}$)、碳酸根离子(${\rm{SO}}_3^{2{\rm{ - }}}$)和碳酸氢根离子(${\rm{HCO}}_3^ - $)等水化学指标进行测定。

1.3 数据处理

用SPSS 16.00进行数据单因素方差分析和差异显著性检验,结果以平均值±标准差($\bar x{\rm{ \pm SD}}$)表示。

2 结果与分析 2.1 生长性状

表1可知,叶尔羌高原鳅60 d的SGR和WGR分别为0.89%/d和1.22%/d,高于鲤、鲫和草鱼;草鱼的AGR为7.40 g/d,显著高于其余3种鱼类(P<0.05),但其SGR、RGR和WGR最低;3种大宗淡水鱼类肥满度均有一定幅度上升,叶尔羌高原鳅和3种大宗淡水鱼类存在差异,呈降低趋势;鲤和鲫两组中,鲤的SGR、AGR、RGR、WGR和肥满度等生长指标均显著高于鲫(P< 0.05);如图1所示,利用线性函数回归拟合4种鱼类体长–体重生长关系式,W=0.0014L2.2960 (R2= 0.8324)、W=0.0009L2.3314 (R2=0.7049)、W草鱼= 0.00002L2.9423 (R2=0.9450)和W叶尔羌高原鳅=0.0002L2.4328 (R2=0.8123),草鱼呈匀速增长,鲤、鲫和叶尔羌高原鳅呈异速增长。

表1  新疆湖塘生态养殖示范点——天鹅湖中4种鱼类60 d生长性状 Tab. 1  60 d growth traits of four kinds of fishes in Swan Lake, a demonstration site of lake-pond ecological aquaculture model in Xinjiang, China n=30; $\bar x{\rm{ \pm SD}}$
图1  新疆湖塘生态养殖示范点——天鹅湖中4种鱼类体长-体重生长关系 Fig. 1  The relationship between body length and body weight growth of four fish species in Swan Lake, a demonstration site of lake-pond ecological aquaculture model in Xinjiang, China
2.2 基础营养成分

表2可知,4种鱼类的水分、粗蛋白、粗脂肪和粗灰分的含量均存在差异,其中叶尔羌高原鳅肌肉中水分含量为70.44%,显著低于鲤、鲫和草鱼(P<0.05),粗蛋白含量为25.22%,显著高于鲤、鲫和草鱼(P<0.05);草鱼肌肉中粗脂肪和粗灰分含量分别为4.25%和4.45%,显著高于其余3种鱼类(P<0.05),粗蛋白含量为19.47%,显著低于鲤和叶尔羌高原鳅(P<0.05);鲤肌肉中粗蛋白含量(22.35%)显著高于鲫(P<0.05),水分和粗灰分含量显著低于鲫(P<0.05)。

2.3 氨基酸组成及含量

表3可知,鲤、鲫、草鱼和叶尔羌高原鳅肌肉蛋白质中共检测出17种氨基酸,其氨基酸总量(TAA)分别为83.34%、89.91%、91.13%和79.37%,叶尔羌高原鳅的TAA显著低于3种大宗淡水鱼类(P<0.05);在所测的17种氨基酸中,鲤、鲫、草鱼和叶尔羌高原鳅肌肉蛋白质中谷氨酸(Glu)含量最高,分别为9.70%、10.87%、12.04%和10.03%;在所测的7种必需氨基酸(EAA: Thr、Val、Met、Leu、Ile、Lys和Pre)中,3种大宗淡水鱼类的EAA总量显著高于叶尔羌高原鳅(P<0.05); 4种鱼类肌肉蛋白质中鲜味氨基酸(DAA: Glu和Asp)含量较高,从高到低排序依次为草鱼>鲫>鲤>叶尔羌高原鳅;4种鱼类的EAA/TAA比值变幅在39.36%~45.32%, EAA/NEAA比值变幅在64.94%~ 78.42%,鲤、鲫和叶尔羌高原鳅均达到了WHO/FAO的理想模式(EAA/TAA为40%, EAA/NEAA为60%)要求,草鱼略低。

表2  新疆湖塘生态养殖模式示范点——天鹅湖中4种鱼类肌肉基础营养成分含量(湿重) Tab. 2  Basic nutrient content of four kinds of fish muscle in Swan Lake, a demonstration site of lake-pond ecological aquaculture model in Xinjiang, China (wet weight) n=3; $\bar x{\rm{ \pm SD}}$; %
表3  新疆湖塘生态养殖模式示范点——天鹅湖中4种鱼类氨基酸含量比较(湿重) Tab. 3  Comparison of amino acid content of four kinds of fishes in Swan Lake, a demonstration site of lake-pond ecological aquaculture model in Xinjiang, China (wet weight) n=3; $\bar x{\rm{ \pm SD}}$; %
2.4 肌肉营养品质评价

表4可知,4种鱼类的蛋氨酸+胱氨酸(Met+ Cys)均低于FAO/WHO评分,鲤、鲫、草鱼和叶尔羌高原鳅在赖氨酸(Lys)含量上表现出较高的优势,4种鱼类氨基酸总量均高于FAO/WHO模式的氨基酸含量,低于鸡蛋蛋白氨基酸含量;4种鱼类必需氨基酸指数从高到低依次为草鱼>鲫>鲤>叶尔羌高原鳅。由AAS评分(表5)可以看出,4种鱼类的第一限制氨基酸存在差异,鲤的第一限制氨基酸为苯丙氨酸+酪氨酸(Phe+Tyr),其值为0.81;鲫的第一限制氨基酸为蛋氨酸+胱氨酸(Met+Cys),其值为0.88;草鱼和叶尔羌高原鳅的第一限制氨基酸为亮氨酸(Leu),其值分别为0.88和0.83。化学评分(CS)和AAS存在差异,CS评分中4种鱼类的第一限制氨基酸均为蛋氨酸+胱氨酸(Met+Cys),且鲤的CS值低于0.5。

表4  新疆湖塘生态养殖模式示范点——天鹅湖中4种鱼类肌肉必需氨基酸评分与FAO/WHO评分标准和鸡蛋蛋白模式的比较 Tab. 4  Comparison of muscle essential amino acid scores with FAO/WHO scoring criteria and egg protein patterns of four fish species in Swan Lake, a demonstration site of lake-pond ecological aquaculture model in Xinjiang, China
表5  新疆湖塘生态养殖模式示范点——天鹅湖中4种鱼类肌肉氨基酸AAS和CS评分的比较 Tab. 5  Comparison of AAS and CS scores of muscle amino acids of four kinds of fishes in Swan Lake, a demonstration site of lake-pond ecological aquaculture model in Xinjiang, China n=3; $\bar x{\rm{ \pm SD}}$
2.5 脂肪酸组成及含量

表6可知,从鲤、鲫、草鱼和叶尔羌高原鳅肌肉中共检测出24种脂肪酸,其中饱和脂肪酸(SFA) 8种,总量分别为23.04%、28.95%、24.22%和25.13%,含量最高的为棕榈酸(C16:0),其次是十八烷酸(C18:0),但在叶尔羌高原鳅肌肉中未检测出;单不饱和脂肪酸(MUFA) 7种,总量分别为39.36%、30.31%、37.53%和35.03%, MUFA中油酸(C18:1n9c)含量最高(26.32%~35.18%);共检测出9种高不饱和脂肪酸(PUFA),含量分别为29.80%、34.17%、30.80%和32.70%,其中反式油酸(C18:2n6c)含量最高(16.20%~23.01%),其次是二十二碳六烯酸(C22:6n3, DHA),二十碳三烯酸(C20:3n3)在3种大宗淡水鱼类肌肉中含量也比较丰富。鲤、鲫、草鱼和叶尔羌高原鳅的PUFA/SFA比值分别为1.29、1.18、1.27和1.30,鲫的PUFA/SFA比值显著低于其余3种鱼类(P<0.05)。

表6  新疆湖塘生态养殖示范点——天鹅湖4种鱼类脂肪酸组成及含量(湿重) Tab. 6  Composition and content of fatty acids of four kinds of fishes in Swan Lake, a demonstration site of lake-pond ecological aquaculture model in Xinjiang, China (wet weight) n=3; $\bar x{\rm{ \pm SD}}$; %
2.6 水质分析

表7可知,在新疆阿拉尔十四团新疆湖塘生态养殖示范点——天鹅湖连续开展150 d水质检测,水体中溶解氧含量无显著变化(P>0.05), pH和盐度在7月显著降低(P<0.05),碱度在6月显著降低(P<0.05);氨氮和亚硝酸盐浓度在4—8月呈持续上升趋势,在8月时达到最高值;Na+、K+、Ca2+、Mg2+、${\rm{SO}}_4^{2{\rm{ - }}}$、${\rm{SO}}_3^{2{\rm{ - }}}$和${\rm{HCO}}_3^ - $等在4—7月呈降低趋势;150 d中天鹅湖水体阳离子含量最高的为Na+,阴离子含量最高的为Cl,根据阿列金分类法[36]判断其水型为Na-Cl III型。

表7  新疆湖塘生态养殖模式示范点——天鹅湖150 d水质指标 Tab. 7  Water quality index of Swan Lake in 150 d, a demonstration site of lake-pond ecological farming in Xinjiang, China n=3; $\bar x{\rm{ \pm SD}}$
3 讨论 3.1 盐碱水养殖对鱼类生长性能的影响

水体盐碱度是影响鱼类生存和生长的重要环境因子。目前,关于盐碱水养殖对水产动物生长性能影响的研究报道较多,如盐碱胁迫对尼罗罗非鱼(Oreochromis niloticus)幼鱼[37]、亚东鲑(Salmon trutta)鱼苗[38]和草鱼[39]生长性能的影响,其研究结果均表现出盐碱水环境会抑制鱼类生长。这与盐碱水环境下鱼类的渗透调节机制、消化酶活性和能量分配有关[18]。一般情况下,鱼类通过渗透调节机制来维持体内水分和盐分平衡,在高盐碱水环境下,鱼类面临脱水和高盐碱度风险,易产生盐碱胁迫应激[40]。为应对盐碱胁迫,首先通过调节鳃的盐腺功能和肾脏的排泄功能以平衡体内离子浓度,其次是增加尿液产生和排放,同时减少食物和饮水摄入量,以维持正常生理功能[18]。此外,高盐碱水环境下,鱼类代谢率通常会增加,以满足自身的能量需求,但高盐碱环境会导致鱼类的肠道消化酶活性降低,影响摄食和营养物质消化吸收,进而抑制鱼类生长,导致其生长速度降低[41]

鲤、鲫和草鱼属于盐碱耐受性较强的大宗淡水鱼类,对盐碱水环境适应力较强[42]。有研究表明,经慢性驯化后的鲤、鲫和草鱼在规定的盐碱范围内仍能正常生存,保持一定的生长性能[43]。本研究中,天鹅湖盐度和碱度变幅分别为8~9和2.4~2.5 mmol/L,鲤、鲫和草鱼成活率高达100%,与上述研究结果一致。在生长性能各指标上,盐碱水养殖下鲤、鲫、草鱼和叶尔羌高原鳅仍保持较高的生长速度,增重率分别为1.03%/d、0.68%/d、0.80%/d和1.22%/d,草鱼呈匀速增长,鲤、鲫和叶尔羌高原鳅呈异速增长,与前人研究结果相似[34,44],说明在适宜的盐碱梯度范围内,鲤、鲫和草鱼的生长没有受到明显的抑制,这为盐碱水渔业养殖模式的发展提供了依据。

3.2 盐碱湖塘生态养殖模式下鱼类肌肉营养成分分析

肉质是一个复杂的概念,没有统一的衡量标准,是肌肉感官特征、理化指标和营养价值等的综合评价,受诸多因素影响[10,45-47]。影响因素主要包括鱼类自身因素(品种、年龄、性别等)[48]和生存环境(水温、pH、盐度等)两方面[19]。鱼体肌肉中水分、粗脂肪、粗蛋白和粗灰分含量是评价肌肉营养价值的重要指标[49]。本研究中,盐碱水养殖下鲤、鲫、草鱼肌肉中水分和粗脂肪含量偏低,粗蛋白和粗灰分含量较高;与叶尔羌高原鳅相比,水分含量较高,粗蛋白含量较低。这是因为盐碱水环境下,淡水鱼类受体外渗透压影响较大,肌肉水分大量交换[50];鱼类体内酸碱失调,代谢紊乱,维持代谢平衡能耗大,粗脂肪作为供能物质被消耗而降低,单位蛋白受压缩呈上升趋势[41];此外,天鹅湖养殖区域面积较大,养殖过程不投喂人工饵料,鱼类觅食活动能耗大,导致肌肉脂质含量降低,这与Richard等[51]和McKenzie等[52]的研究结果一致。

氨基酸是构成蛋白质的基本单位,据相关研究报道,一些特定的氨基酸能有效预防疾病和促进人体健康[53]。如甘氨酸(Gly)具有提高人体免疫力、预防治疗机体炎症和保护机体细胞的作用[54];谷氨酸(Glu)具有维持大脑机能,促进伤口愈合的作用[53];脯氨酸(Pro)具有促进代谢活动、抗应激和延缓衰老的作用[55]。本研究中,4种鱼类肌肉蛋白质中共检测出17种氨基酸,包括7种EAA和2种DAA。鱼类肌肉中氨基酸含量一般情况下以Glu含量最高,天门冬氨酸(Asp)和Lys次之[24],而盐碱水养殖下鲤、鲫、草鱼和叶尔羌高原鳅的氨基酸含量排序略有不同,依次为Glu、Pro和Asp。总体而言,Glu含量最高(9.70%~12.04%), Cys含量最低(0.55%~0.99%),氨基酸组成差异主要在于Pro,盐碱水养殖的鲤、鲫和草鱼肌肉中Pro含量相较于淡水养殖更高[56-58],这可能是淡水鱼类在盐碱环境下产生的生理调控所导致,Pro在盐碱胁迫过程中大量积累,与程亚美等[18]和荣华等[59]的研究结果一致,说明在肉质鲜味上盐碱水养殖优于淡水养殖。

鱼类的必需氨基酸含量和适宜的比例是评价其蛋白质营养品质的一个重要指标。在所检测的7种必需氨基酸中,Lys含量最高,这与常玉梅等[24]和Dhaneesh等[44]报道的研究结果一致。Lys是谷类食物的第一限制氨基酸,以谷物为主食的人容易Lys营养缺乏,而鱼类肌肉Lys含量丰富,刚好可以弥补谷类主食中Lys的不足,为人类提供高品质Lys膳食来源,提高蛋白质营养价值[60]。本研究中,鲤、鲫、草鱼和叶尔羌高原鳅的EAAI分别为80.37%、82.98%、84.20%和76.82%,均显著高于FAO/WHO标准(35.38%)和全鸡蛋蛋白质标准(48.08%); 4种鱼类的EAA/TAA比值变幅在39.36%~45.32%, EAA/NEAA变幅在64.94%~78.42%,鲤、鲫和叶尔羌高原鳅均达到了WHO/FAO的理想模式(EAA/TAA为40%, EAA/NEAA为60%)要求[61],草鱼略低,说明盐碱水养殖下鲤、鲫、草鱼和叶尔羌高原鳅的氨基酸组成均衡,含量丰富,属于人体所需的优质蛋白质。

脂肪酸作为人体所需的重要膳食来源,具有调节代谢、增强免疫力和预防疾病等多重功效,以SFA、MUFA和PUFA的形式存在于鱼类肌肉中[62]。盐碱水养殖下鲤、鲫和草鱼的SFA和MUFA中分别以C16 : 0和C18 : 1n9c含量最高,PUFA中C18 : 2n6c含量丰富,该结果与常玉梅等[24]报道的5种雅罗鱼的脂肪酸组成结果相似。据相关研究报道,鱼类肌肉中PUFA具有促进大脑发育、维持人体健康和抑制疾病传播等多重功能,其中EPA和DHA是人类生长发育的必需脂肪酸,与人体健康直接相关[63]。本研究中,鲤、鲫、草鱼和叶尔羌高原鳅肌肉中EPA+DHA含量分别为3.83%、5.24%、3.73%和4.73%,含量较为丰富;且4种鱼类的PUFA/SFA比值分别为1.29、1.18、1.27和1.30,均高于WHO/FAO建议值(0.4~0.5)[64],说明其在PUFA方面具有较高的营养价值,可作为优良的PUFA膳食来源。

3.3 鱼类养殖对盐碱湖塘水体盐碱度与离子浓度影响

水生态环境是水产养殖的基础,盐碱水域内,离子浓度较高,组成复杂,缓冲能力差,水质不易调节控制,一定程度上限制水产养殖业发展[65]。我国盐碱水面积广阔,类型多样,且多数处于荒废状态,亟待合理开发利用。水产养殖作为我国农业的重要生产方式,应用于盐碱地治理是一种创新[40]。据相关研究报道,发展盐碱水养殖可降低水体盐碱度和离子浓度[66]。一般情况下,鱼类在摄食和呼吸过程中,摄入水体盐分,通过肾脏的排泄功能,稀释水体盐度,维持体内酸碱平衡[18];当养殖鱼类被引入高盐碱水域,水域内多样性指数增加,生物量基础增大,作为重要的水产动物,鱼类在摄食过程中产生残渣和粪便,有效的有机物质为水体微生物和水生植物提供充足的碳源和营养物质,促进水体微生物活动和有机物质降解,加快物质循环,促进水生态环境修复[28];此外,鱼类呼吸会增加水体CO2浓度,从而降低水体pH和碱度,使水体趋于中性[66],有利于鱼类生长,生态效益优越化,从而达到“以渔治碱”和“以渔抑碱”等效果[67]

研究表明,水产养殖活动会加快水体物质循环,对周边水域环境因子产生富集作用,进而降低养殖区域盐碱度和离子浓度[28],这与本研究中养殖水域水体盐碱度和离子浓度经过水产动物鱼类活动后呈降低趋势的结果一致。发展水产养殖虽可缓解水体盐碱化程度,但易受周边环境影响,盐碱治理过程较漫长[28,66]。新疆湖塘生态养殖模式示范点——天鹅湖是由阿拉尔垦区灌溉用水和耕地洗盐水渗透经排碱渠汇入起来的低洼盐碱湖塘,灌溉季节大量农用灌溉水渗透洗盐后经排碱渠汇入天鹅湖,导致水体盐碱度和离子浓度短期内大幅度上升,盐碱治理待进一步加强。

4 结论

本研究表明,盐碱水湖塘生态养殖模式下大宗淡水鱼类生长虽受到一定影响,但肌肉营养成分组成相对较均衡,肌肉中蛋白质、TAA、EAA和DAA含量丰富,属于优质蛋白质来源;PUFA/ SFA比值较高,EPA+DHA含量丰富,PUFA营养价值较高;盐碱水域发展水产养殖业后,水体盐碱度和离子浓度呈降低趋势,具有较高生态效益。因此,开展盐碱湖塘生态养殖,利用废弃盐碱水发展水产养殖,是实现经济效益和生态效益双丰收的重要举措,可促进盐碱水渔业可持续发展。

参考文献
[1]
Liu Y J. Effects of low ambient calcium concentrations on the energymetabolism and mR NA expression of calcium regulation genes on juvenile Gymnocypris przewalskii[D]. Shanghai Ocean University, 2016. [刘亚静. 低钙环境下青海湖裸鲤幼鱼能量代谢及钙调节相关基因表达规律研究[D]. 上海:上海海洋大学,2016.].》Google Scholar
[2]
Li B, Wang Z C, Sun Z G, et al. Resources and sustainable resource exploitation of salinized land in China[J]. Agricultural Research in the Arid Areas, 2005(2): 154-158. [李彬,王志春,孙志高,等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究,2005(2): 154-158.].》Google Scholar
[3]
Zhuang Y R, Sun Z, Zhou K, et al. Correlation between inorganic nitrogen transformation and environmental factors in secondary saline-alkali water in northwest China[J]. Journal of Fishery Sciences of China, 2020, 27(12): 1438- 1447. [庄亚润,孙真,周凯,等. 中国西北地区次生盐碱水无机氮转化与环境因子的相关关系[J]. 中国水产科学,2020, 27(12): 1438-1447.].》Google Scholar
[4]
Ni M X, Duan Z R, Xia J X, et al. Runoff variation and water resources risks in the major rivers of southern Xinjiang due to climate change[J]. Journal of Basic Science and Engineering, 2022, 30(4): 834-845. [倪明霞,段峥嵘,夏建新,等. 气候变化下南疆主要河流径流变化及水资源风险[J]. 应用基础与工程科学学报,2022, 30(4): 834-845.].》Google Scholar
[5]
Lu G Z. Growth performance and acid-baseregulation of largemouth bass (Micropterus salmoides) under saline- alkaline stress[D]. Lianyungang: Jiangsu Ocean University, 2022. [逯冠政. 盐碱胁迫下大口黑鲈(Micropterus salmoides)的生长性能、酸碱调节研究[D]. 连云港:江苏海洋大学,2022.].》Google Scholar
[6]
Zhu L Y. Study on the variation characteristics of water resources and reasonable allocation of Alar Irrigation Area[D]. Urumqi: Xinjiang Agricultural University, 2017. [朱连勇. 阿拉尔垦区水资源变化特征及合理配置研究[D]. 乌鲁木齐:新疆农业大学,2017.].》Google Scholar
[7]
Mang Q, Xu G C, Zhu J, et al. Developmental status and prospective vision for China’s aquaculture[J]. Fishery Modernization, 2022, 49(2): 1-9. [莽琦,徐钢春,朱健,等. 中国水产养殖发展现状与前景展望[J]. 渔业现代化,2022, 49(2): 1-9.].》Google Scholar
[8]
Li C, Fang L T, Tao T, et al. Comparative evaluation of nutritional value and flavor quality of muscle in triploid and diploid common carp: Application of genetic improvement in fish quality[J]. Aquaculture, 2021, 541(7): 736780..》Google Scholar
[9]
İbrahim Haliloǧlu H, Bayır A, Necdet Sirkecioǧlu A, et al. Comparison of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater[J]. Food Chemistry, 2004, 86(1): 55-59..》Google Scholar
[10]
Zhang D P, Zhang X Y, Yu Y X, et al. Intakes of omega-3 polyunsaturated fatty acids, polybrominated diphenyl ethers and polychlorinated biphenyls via consumption of fish from Taihu Lake, China: A risk–benefit assessment[J]. Food Chemistry, 2012, 132(2): 975-981..》Google Scholar
[11]
Naomi Y, Koji S, Riki O, et al. Relationship between dietary protein or essential amino acid intake and training-induced muscle hypertrophy among older individuals[J]. Journal of Nutritional Science and Vitaminology, 2017, 63(6): 379-388..》Google Scholar
[12]
Geng J J, Li H, Liu J P, et al. Nutrients and contaminants in tissues of five fish species obtained from Shanghai markets: Risk–benefit evaluation from human health perspectives[J]. Science of the Total Environment, 2015, 535(1): 933-945..》Google Scholar
[13]
Calder P C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance[J]. Biochem Biophys Acta, 2015, 1851(4): 469-484..》Google Scholar
[14]
Peng S M, Chen C, Shi Z H, et al. Amino acid and fatty acid composition of the muscle tissue of yellowfin tuna (Thunnus Albacares) and bigeye tuna (Thunnus Obesus)[J]. Journal of Food and Nutrition Research, 2013, 1(4): 42-45..》Google Scholar
[15]
Aziz A. F, S. Siavash S, Amin N. Comparative assessment of proximate composition, physicochemical parameters, fatty acid profile and mineral content in farmed and wild rainbow trout (Oncorhynchus mykiss)[J]. International Journal of Food Science and Technology, 2011, 46(4): 767-773..》Google Scholar
[16]
Ge X P. Research and progress on pond recirculating aquaculture of bulk freshwater fish[J]. Contemporary fisheries, 2013, 38(11): 48-50. [戈贤平. 大宗淡水鱼池塘循环养殖研究与进展[J]. 当代水产,2013, 38(11): 48-50.].》Google Scholar
[17]
Ma Y W, Guo Y, Zhang R M, et al. Fauna composition and distribution of aboriginal fish in the Tarim River of Xinjiang Uygur Autonomous Region[J]. Journal of Fisheries of China, 2009, 33(6): 949-956. [马燕武,郭焱,张人铭,等. 新疆塔里木河水系土著鱼类区系组成与分布[J]. 水产学报,2009, 33(6): 949-956.].》Google Scholar
[18]
Cheng Y M, Zhao J L, Tang S J, et al. Comparison on meat quality of nile tilapia cultured in saline-alkaline water and freshwater culture modes[J]. Journal of Henan Agricultural Sciences, 2019, 48(4): 125-134. [程亚美,赵金良,唐首杰,等. 盐碱水和淡水养殖模式下尼罗罗非鱼肌肉品质比较[J]. 河南农业科学,2019, 48(4): 125-134.].》Google Scholar
[19]
Md. Al-Amin S, Yoji Y, Yutaka H, et al. Influences of low salinity and dietary fatty acids on fatty acid composition and fatty acid desaturase and elongase expression in red sea bream Pagrus major[J]. Fisheries Science, 2011, 77(3): 385- 396..》Google Scholar
[20]
Indu B, Suresh N, J. J, et al. Adaptation to salinity by fish: Alterations in energy transducing status of muscle mitochondria[J]. Journal of Biosciences, 1980, 2(2): 87-98..》Google Scholar
[21]
Chang Y M, Tang R, Dou X J, et al. Transcriptome and expression profiling analysis of Leuciscus waleckii: An exploration of the alkali-adapted mechanisms of a freshwater teleost[J]. Molecular BioSystems, 2014, 10(3): 491-504..》Google Scholar
[22]
Chen S A, Hou J L, Yao N, et al. Comparative transcriptome analysis of Triplophysa yarkandensis in response to salinity and alkalinity stress[J]. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 2020, 33(C): 1-33..》Google Scholar
[23]
Ding L, Liu Y J, Wei X F, et al. Effects of α-ketoglutarate supplementation on serum metabolism of crucian carp under carbonate alkaline stress based on UPLC-Q-TOF/MS metabolomics[J]. Journal of Fishery Sciences of China, 2023, 30(2): 138-149. [丁璐,刘英杰,魏晓凤,等. 基于UPLC- Q-TOF/MS代谢组学技术探究α-酮戊二酸对碳酸盐碱胁迫下鲫血清代谢的影响[J]. 中国水产科学,2023, 30(2): 138-149.].》Google Scholar
[24]
Chang Y M, Yan H, Su B F, et al. Analysis of muscular nutritional composition in farmed Leuciscus spp. and their hybrids in a low saline-alkaline pond[J]. Journal of Fishery Sciences of China, 2017, 24(2): 332-340. [常玉梅,闫浩,苏宝锋,等. 低盐碱池塘养殖雅罗鱼及其杂交种肌肉营养成分分析[J]. 中国水产科学,2017, 24(2): 332-340.].》Google Scholar
[25]
Guo Z, Liang G J, Yang G, et al. The effects of salinity changes on the nutritional value and flavor of GIFT's muscle[J]. Freshwater Fisheries, 2014, 44(4): 77-82+95. [郭振,梁拥军,杨广,等. 改变水体盐度对吉富罗非鱼肌肉营养和呈味的影响[J]. 淡水渔业,2014, 44(4): 77-82+95.].》Google Scholar
[26]
J. Fonseca M, D. Pineda D, C. Martıínez P, et al. Effect of salinity on the biosynthesis of n-3 long-chain polyunsaturated fatty acids in silverside Chirostoma estor[J]. Fish Physiol Biochem, 2012, 38(4): 1047-1057..》Google Scholar
[27]
Chen X Z, Lai Q F, Me Z L, et al. Saline-alkali water green breeding technology model[J]. China Fisheries, 2020, 538(9): 61-63. [陈学洲,来琦芳,么宗利,等. 盐碱水绿色养殖技术模式[J]. 中国水产,2020, 538(9): 61-63.].》Google Scholar
[28]
Wang J, Cheng G F, Zhu H. Ecological restoration of sandy saline-sodic land by aquaculture technology: An effect evaluation[J]. Chinese Agricultural Science Bulletin, 2019, 35(3): 106-111. [王健,程果锋,朱浩. 沙型盐碱地水产养殖生态修复效果评价[J]. 中国农学通报,2019, 35(3): 106- 111.].》Google Scholar
[29]
Zhang J L, Duan D X. Ecological engineering technology and comprehensive development suggestions of fishing to alkali in Yellow River Delta[J]. Hebei Fisheries, 2009, 183(3): 18-20. [张金路,段登选. 黄河三角洲以渔改碱生态工程技术及综合开发建议[J]. 河北渔业,2009, 183(3): 18-20.].》Google Scholar
[30]
Zhuang Y R, Sun Z, Zhou K, et al. Correlation between inorganic nitrogen transformation and environmental factors in secondary saline-alkali water in northwest China[J]. Journal of Fishery Sciences of China, 2020, 27(12): 1438-1447. [庄亚润,孙真,周凯,等. 中国西北地区次生盐碱水无机氮转化与环境因子的相关关系[J]. 中国水产科学,2020, 27(12): 1438-1447.].》Google Scholar
[31]
Zhang J M, He Z H. Inland Waters Fishery Natural Resources Survey Manual[M]. Beijing: Agriculture Press, 1991. [张觉民,何志辉. 内陆水域渔业自然资源调查手册[M]. 北京:农业出版社,1991.].》Google Scholar
[32]
GB/T 14581-1993, Water Quality-Guidance On Sampling Techniques From Lakes, Natural and Man-made[S]. Beijing, ministry of ecology and environment, 1993. [GB/T 14581- 1993,水质湖泊和水库采样技术指导[S]. 北京,生态环境部,1993.].》Google Scholar
[33]
Yin M C. Fish ecology[M]. Beijing: China Agricultural Publishing House, 1995: 34-55. [殷名称. 鱼类生态学[M]. 北京:中国农业出版社,1995: 34-55.].》Google Scholar
[34]
Qiang J, Yang H, Xu P, et al. Comparative study of the growth and nutrient composition of muscle tissue of two species of tilapia and their reciprocal hybrids[J]. Journal of Fishery Sciences of China, 2015, 22(4): 654-665. [强俊,杨弘,徐跑,等. 吉富罗非鱼与奥利亚罗非鱼完全双列杂交后代生长性能与肌肉营养成分的比较[J]. 中国水产科学,2015, 22(4): 654-665.].》Google Scholar
[35]
State Environmental Protection Administration, Water and Wastewater Monitoring and Analysis Committee. Water and wastewater monitoring methods[M]. 4th ed. Beijing: China Environmental Press, 2022. [国家环境保护总局,水和废水监测分析方法编委会. 水和废水监测方法(第四版)[M]. 北京:中国环境科学出版社,2002.].》Google Scholar
[36]
Kang Z Y, Li X T, Tian W, et al. Type Classification of Surface Water/Formation Water and Its Classified Method[J]. Journal of Earth Sciences and Environment, 2022, 44(1): 65-77. [康志勇,李晓涛,田文,等. 地表水/地层水水型分类及其划分方法[J]. 地球科学与环境学报,2022, 44(1): 65-77.].》Google Scholar
[37]
Zhao L H, Ce J H, Zhang Y H, et al. Growth comparison among three strains of Oreochromis niloticus juvenile in net cage under different salinity-alkalinity waters[J]. South China Fisheries Science, 2013, 9(4): 1-7. [赵丽慧,筴金华,张艳红,等. 不同盐、碱度下 3 品系尼罗罗非鱼幼鱼网箱养殖的生长比较[J]. 南方水产科学,2013, 9(4): 1-7.].》Google Scholar
[38]
Zhang C, Zhang B B, Mu Z B, et al. Effects of salinity on growth and survival of Salmo trutta[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(7):1659-1663. [张 驰,张忭忭,牟振波,等. 盐度对亚东鲑鱼苗生长及存活的影响[J]. 西南农业学报,2019, 32(7): 1659-1663.].》Google Scholar
[39]
Tian Y. Effects of salinity on Ctenopharyngodon idella growth[J]. Northern Chinese Fisheries, 2022, 41(4): 23-25. [田野. 盐度对草鱼生长的影响[J]. 黑龙江水产,2022, 41(4): 23-25.].》Google Scholar
[40]
Xu W L, Wang H Q, Li Y H, et al. Distribution of saline- alkaline waters at home and aquaculture application[J]. China Fisheries, 2021(7): 50-53. [徐文龙,汪惠庆,李月红,等. 国内外盐碱水域分布及水产养殖应用[J]. 中国水产,2021(7): 50-53.].》Google Scholar
[41]
Parra G, Yúfera M. Tolerance response to water pH in larvae of two marine fish species, gilthead seabream, Sparus aurata(L.) and senegal sole, Solea senegalensis (Kaup), during development[J]. Aquaculture Research, 2002, 33(10): 747-752..》Google Scholar
[42]
Lei Y Z, Dong S L, Shen C G. Study on the toxic effect of carbonate alkalinity on fish[J]. Journal of Fisheries of China, 1985, 9(2): 171-183. [雷衍之,董双林,沈成钢. 碳酸盐碱度对鱼类毒性作用的研究[J]. 水产学报,1985, 9(2): 171- 183.].》Google Scholar
[43]
Zhang Z Z, Zhang Z Q, Dong S L, et al. Research progress on the effects of pH, salinity and alkalinity on freshwater aquaculture species[J]. Journal of Fishery Sciences of China, 1999, 6(4): 95-98. [章征忠,张兆琪,董双林,等. pH、盐度、碱度对淡水养殖种类影响的研究进展[J]. 中国水产科学,1999, 6(4): 95-98.].》Google Scholar
[44]
Dhaneesh K V, Noushad K M, Kumar T T. Nutritional evaluation of commercially important fish species of Lakshadweep archipelago, India[J]. PLoS ONE, 2012, 7(9): 1472-1472..》Google Scholar
[45]
Zhao H H, Xia J G, Zhang X, et al. Diet affects muscle quality and growth traits of grass carp (Ctenopharyngodon Idellus): A comparison between grass and artificial Feed[J]. Frontiers in Physiology, 2018, 9(283): 1-13..》Google Scholar
[46]
Huang J F, Xu Q Y, Chang Y M. Effects of temperature and dietary protein on gene expression of Hsp70 and Wap65 and immunity of juvenile mirror carp (Cyprinus carpio)[J]. Aquaculture Research, 2014, 46(11): 1-13..》Google Scholar
[47]
Aziz A F, Amin N S. Siavash S. Proximate composition and fatty acid profile of edible tissues of Capoeta damascina (Valenciennes, 1842) reared in freshwater and brackish water[J]. Journal of Food Composition and Analysis, 2013, 32(2): 150-154..》Google Scholar
[48]
Tao N P, Wang L Y, Gong X, et al. Comparison of nutritional composition of farmed pufferfish muscles among Fugu obscurus, Fugu flavidus and Fugu rubripes[J]. Journal of Food Composition and Analysis, 2012, 28(1): 40-45..》Google Scholar
[49]
Xia Y T, Edwin H C, Brody Z Z, et al. Feeding containing the aerial part of Scutellaria baicalensis promotes the growth and nutritive value of rabbit fish Siganus fuscescens[J]. Food Science & Nutrition, 2021, 9(9): 1-12..》Google Scholar
[50]
Zhu H P, Liu Z G, Gao F Y, et al. Characterization and expression of Na+ /K+ -ATPase in gills and kidneys of the Teleost fish Oreochromis mossambicus, Oreochromis urolepis hornorum and their hybrids in response to salinity challenge[J]. Comparative Biochemistry and Physiology, Part A, 2018, 224(1): 1-10..》Google Scholar
[51]
Richard S R, Maike T H, Grethe H, et al. Moderate exercise of rainbow trout induces only minor differences in fatty acid profile, texture, white muscle fibres and proximate chemical composition of fillets[J]. Aquaculture, 314(1): 159-164..》Google Scholar
[52]
McKenzie D J, Höglund E, Dupont-Prinet A, et al. Effects of stocking density and sustained aerobic exercise on growth, energetics and welfare of rainbow trout[J]. Aquaculture, 2012, 338(1): 216-222..》Google Scholar
[53]
David D C, Katie R H, Sanghee P, et al. Essential amino acids and protein synthesis: Insights into maximizing the muscle and whole-body response to feeding[J]. Nutrients, 2020, 12(12): 3717-3730..》Google Scholar
[54]
Wang W W, Wu Z L, Dai Z L, et al. Glycine metabolism in animals and humans: Implications for nutrition and health[J]. Amino Acids, 2013, 45(3): 463-477..》Google Scholar
[55]
Wu G Y, Bazer F W, Burghardt R C, et al. Proline and hydroxyproline metabolism: implications for animal and human nutrition[J]. Amino Acids, 2011, 40(4): 1053-1063..》Google Scholar
[56]
Chen Z, Ye Y T, Cai C F, et al. Analysis of growth, feed and breeding benefit under polyculture mode of barracuda and crucian carp in pond[J]. Scientific Fish Farming, 2013(9): 51-53. [陈卓,叶元土,蔡春芳,等. 梭鱼鲫鱼池塘混养模式下的生长、饲料与养殖效益分析[J]. 科学养鱼,2013(9): 51-53.].》Google Scholar
[57]
Ji D, Xu J S, Cui W, et al. Analysis and evaluation of nutritional components in muscle of Cyprinus carpio var. field Southeastern Guizhou Province[J]. Journal of Mountain Agriculture and Biology, 2022, 41(1): 72-78. [纪达,许劲松,崔巍,等. 贵州黔东南稻田鲤肌肉营养成分分析与评价[J]. 山地农业生物学报,2022, 41(1): 72-78.].》Google Scholar
[58]
Hu Y, Wang C B, Zhao C F, et al. Comparison of morphological indexes and fillet nutritional quality of female Carassius auratus from rice field reared and earth pond reared modes[J]. Freshwater Fisheries, 2021, 51(6): 77-83. [胡元,王从碧,赵成法,等. 池塘鲫与稻田鲫雌体形态学指数和肌肉营养品质的比较[J]. 淡水渔业,2021, 51(6): 77-83.].》Google Scholar
[59]
Rong H, Xia Y, Wang X W, et al. Effects of dietary proline on growth, body composition and antioxidant capacity of chu's croaker (Nibea coibor)[J]. Journal of Shanghai Ocean University, 2023, 32(1): 89-97]. [荣华,夏优,王晓雯,等. 饲料中添加脯氨酸对浅色黄姑鱼生长、体组成及抗氧化能力的影响[J]. 上海海洋大学学报,2023, 32(1): 89-97.].》Google Scholar
[60]
Xu Y J, Wang K J, Jiang Y, et al. Comparative analysis of the muscle texture characteristics and nutrient compositions among three Seriola fishes[J]. Journal of Fishery Sciences of China, 2022, 29(7): 1022-1032. [徐永江,王开杰,姜燕,等. 三种鰤属鱼类肌肉质构特性及营养成分比较分析[J]. 中国水产科学,2022, 29(7): 1022-1032.].》Google Scholar
[61]
Zhong A S. Composition and nutrient analysis of Charybdis feriatus (Linnaeus) muscle amino acid in Zhoushan[J]. Chinese Agricultural Science Bulletin, 2015, 31(2): 97-100. [钟爱华. 舟山沿海锈斑蟳肌肉氨基酸组成及营养分析[J]. 中国农学通报,2015, 31(2): 97-100.].》Google Scholar
[62]
Arzu O H, Ferbal O, Kenan E, et al. The effects of freshwater rearing on the whole body and muscle tissue fatty acid profile of the European sea bass (Dicentrarchus labrax)[J]. Aquaculture International, 2011, 19(1): 51-61..》Google Scholar
[63]
Zhang Z M, Liu L H, Xie C X, et al. Lipid contents, fatty acid profiles and nutritional quality of nine wild caught freshwater fish species of the Yangtze Basin, China[J]. Journal of Food and Nutrition Research, 2014, 2(7): 388-394..》Google Scholar
[64]
Fereidoon S, Priyatharini A. Omega-3 polyunsaturated fatty acids and their health benefits[J]. Annual Review of Food Science and Technology, 2018, 9(16): 345-381..》Google Scholar
[65]
Xu W, Geng L W, Jiang H F, et al. A review of development and utilization of fish culture in saline-alkaline water[J]. Chinese Journal of Fisheries, 2015, 28(4): 44-47. [徐伟,耿龙武,姜海峰,等. 浅析盐碱水域的鱼类养殖开发利用[J]. 水产学杂志,2015, 28(4): 44-47.].》Google Scholar
[66]
Wang J, Liu X G, Zhu H, et al. Effect of Aquaculture on saline-alkali migration of saline-alkali land in Gansu[J]. Chinese Agricultural Science Bulletin, 2020, 36(12): 152- 158. [王健,刘兴国,朱浩等. 水产养殖对甘肃盐碱区盐碱迁移的影响[J]. 中国农学通报,2020, 36(12): 152-158.].》Google Scholar
[67]
Liu Y X, Fang H, Lai Q F, et al. Present situation and development countermeasures of saline-alkaline water fishery in China[J]. Strategic Study of CAE, 2016, 18(3): 74- 78. [刘永新,方辉,来琦芳,等. 我国盐碱水渔业现状与发展对策[J]. 中国工程科学,2016, 18(3): 74-78.].》Google Scholar