中国水产科学  2024, Vol. 31 Issue (11): 1316-1324  DOI: 10.12264/JFSC2024-0104
0

引用本文 

张驰, 李科, 苏奇. 雅鲁藏布江下游弧唇裂腹鱼的遗传多样性和种群结构[J]. 中国水产科学, 2024, 31(11): 1316-1324. DOI: 10.12264/JFSC2024-0104.
ZHANG Chi, LI Ke, SU Qi. Genetic diversity and population structure of Schizothorax curvilabiatus in the lower reaches of Yarlung Zangbo River[J]. Journal of Fishery Sciences of China, 2024, 31(11): 1316-1324. DOI: 10.12264/JFSC2024-0104.

基金项目

西藏自治区科技重点研发计划项目(XZ202301ZY0012N);农业农村部西南地区重点水域渔业资源与环境调查项目(CJW2023034).

作者简介

张驰,副研究员,研究方向为渔业资源保护与开发利用. E-mail:zc0891@163.com

通信作者

文章历史

收稿日期:2024-05-08
修改日期:2024-08-03
雅鲁藏布江下游弧唇裂腹鱼的遗传多样性和种群结构
张驰1,李科2,苏奇3,     
1. 西藏自治区农牧科学院水产科学研究所,西藏 拉萨 850000
2. 天津科技大学,亚洲区域卤虫参考中心,天津 300450
3. 西北农林科技大学动物科技学院水产科学系,陕西 杨凌 712100
摘要:雅鲁藏布江是青藏高原上最大的河流之一,也是生物多样性保护工作的热点区域,弧唇裂腹鱼(Schizothorax curvilabiatus)主要分布于雅鲁藏布江下游干支流水域,是当地的代表性鱼类。本研究以雅鲁藏布江下游3个江段的弧唇裂腹鱼为研究对象,利用特异性位点扩增片段测序技术(SLAF-seq)开发了单核苷酸多态性(SNP)位点,分析了雅江墨脱干流、帕隆藏布和察隅河3个弧唇裂腹鱼地理群体的遗传多样性和种群结构。遗传多样性结果表明,除等位基因数外的其他指标中(杂合度、Nei’s多样性指数、多态性信息含量、香农指数),墨脱种群的遗传多样性最高,察隅种群次之,帕隆种群最低;连锁不平衡分析表明帕隆种群受到的自然正向选择较大,其适应环境的能力更强;遗传分化分析表明墨脱种群与帕隆种群、察隅种群之间存在低程度的遗传分化(0.05<FST<0.15);系统发育树、Admixture、主成分分析的结果表明,雅鲁藏布江下游3个地理群体的弧唇裂腹鱼同属一个类群。Treemix结果显示最佳基因流数量为2条(模型方差解释率为98.5%),均发生在墨脱种群中。该研究为雅鲁藏布江下游流域弧唇裂腹鱼种质资源保护与渔业资源的合理开发利用提供了理论支撑及基础数据。
关键词弧唇裂腹鱼    SNP    遗传多样性    遗传结构    基因流    
Genetic diversity and population structure of Schizothorax curvilabiatus in the lower reaches of Yarlung Zangbo River
ZHANG Chi,1,LI Ke2,SU Qi3    
1. Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry, Lhasa 850000, China
2. Asia Regional Artemia Reference Center, Tianjin University of Science and Technology, Tianjin 300450, China
3. College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
Abstract:The Yarlung Zangbo River, one of the largest rivers on the Tibetan Plateau, is a hotspot for biodiversity conservation efforts. Schizothorax curvilabiatus is mainly distributed in the waters of the lower trunk and tributaries of the Yarlung Zangbo River, and it is a representative fish of the lower basin. Recently, geological disasters and human activities have caused severe damage to the habitat of the Schizothorax curvilabiatus, leading to a decline in its resources. Consequently, conducting relevant studies to protect the germplasm resources of Schizothorax curvilabiatus is urgently required. In this study, SLAF-seq was used to develop SNPs. Genetic diversity was calculated using a script provided by Beijing Biomarker Technologies Co., Ltd; paired FST values between populations were calculated in Stacks; linkage disequilibrium analysis was performed by Plink; phylogenetic analysis, Admixture population structure analysis, and principal component analysis were used to classify the genetic structure of Artemia; and the TreeMix (v.1.13) software was used to calculate the level of gene flow in the populations. A large number of SNPs were identified in Schizothorax curvilabiatus populations. Overall, the genetic diversity of Schizothorax curvilabiatus was small, with MTXG having the highest genetic diversity. Recent geological events, such as weir collapses and earthquakes, have significantly impacted stock levels. Overfishing and biological invasions have also impacted stock levels. Human activities such as engineering construction and sand mining have altered the localized aquatic ecosystem of the river and reduced the population size of Schizothorax curvilabiatus, thus leading to an overall low genetic diversity of the Schizothorax curvilabiatus in the lower reaches of the Yarlung Zangbo River. Schizothorax curvilabiatus populations showed a low to moderate degree of genetic differentiation. The lower reaches of the Yarlung Zangbo River are characterized by considerable differences in elevation, which may act as a barrier to geographic dispersal and promote differentiation among populations of the Schizothorax curvilabiatus. Unexpectedly, MTLD and MTXR were the furthest apart but had the smallest FST within the Motuo population. Excluding the absence of gene flow and common ancestry between the two populations, we hypothesized that this was due to the local effect of genetic drift, which led to the convergence of genetic structure between the two populations and minimized FST. The LD results indicated that the Motuo populations were subjected to greater natural positive selection, and their ability to adapt to the environment was stronger, while the Palong and Chayu populations were subjected to relatively less natural positive selection. The results of the phylogenetic tree, Admixture, and principal component analysis showed that the Schizothorax curvilabiatus in the lower reaches of the Yarlung Zangbo River belong to the same taxon. TreeMix results showed that the optimal number of gene flow was two, both occurring in the Mutuo populations. Geological disasters have decreased the resources available to Schizothorax curvilabiatus, resulting in smaller populations. Additionally, Schizothorax curvilabiatus migrate over long distances and have limited movement patterns, which restricts inter-individual gene flow. This study provides a database for the conservation and exploitation of the germplasm resources of the Schizothorax curvilabiatus in the Yajiang River Basin.
Key words Schizothorax curvilabiatus     SNP    genetic diversity    genetic structure    gene flow    

裂腹鱼(Schizothoracids)主要分布在青藏高原及其周边地区,是高原水体鱼类的典型代表[1]。目前已知雅鲁藏布江流域分布有9种裂腹鱼类,中上游江段分布有6种,下游江段分布有3种,分别是弧唇裂腹鱼(Schizothorax curvilabiatus)、墨脱裂腹鱼(Schizothorax molesworthi)和全唇裂腹鱼(Schizothorax integrilabiatus),其中弧唇裂腹鱼为雅鲁藏布江下游流域的优势物种,其肉质鲜嫩,味道鲜美,深受当地人民的喜爱[2]。弧唇裂腹鱼喜欢栖息在干流岸边急流或河叉周围,主要刮食着生藻类,个体相对较大,冬季繁殖,怀卵量较大[3]。当前,弧唇裂腹鱼的相关研究较少。刘艳超等[4]描述了察隅河流域弧唇裂腹鱼幼鱼的形态特征,并发现其生长速度缓慢,属于异速生长。近十余年,关于该鱼种的生物学特性[5-8]、营养成分[9]和驯养技术[10]等方面的研究逐渐增多,为其保护和利用提供了重要数据参考。

裂腹鱼类具有一系列特定的生物学特征,例如寿命较长、性成熟晚、繁殖力较低等[2-3],这些特征使得它们对高原河流水资源开发利用引起的环境变化相对敏感[11]。近年来,人类活动、生物入侵、地质灾害[12-13]等一系列因素给雅鲁藏布江下游鱼类的生存和繁衍带来巨大的挑战。例如,2017年11月雅鲁藏布江大峡谷无人区发生地震导致山体滑坡,大量鱼类因水质急剧变化死亡,随后几年的监测结果也表明大峡谷江段的鱼类资源出现了明显的低龄化和小型化现象[14]。其中弧唇裂腹鱼的种群资源下降尤其明显。弧唇裂腹鱼本身为k型选择鱼类[1],资源量一旦衰减,恢复困难。因此,亟需开展弧唇裂腹鱼群体遗传学研究,为下一步制定相关保护措施提供参考依据。

遗传多样性是物种保护研究的核心,也是生存、适应和进化的前提[15-16]。遗传多样性和遗传结构是群体遗传学的重要研究内容,同时也是有效管理种质资源的关键[17-18]。mtDNA、RAPD和SSR等分子标记已被用于研究裂腹鱼类的群体遗传结构和遗传多样性[19-21]。与这些分子标记相比,SNP标记具有数量丰富、稳定性高、多态性强等特点,已成为公认的最受遗传学研究欢迎的分子标记之一[22]。RAD-Seq、GBS、SBG和SLAF-seq等多种高通量测序技术的推广应用,使得需要大量标记的动植物种群遗传分析、种质资源评价、系统发育进化研究成为可能。近年来,学者们使用SLAF-seq技术开发了大量裂腹鱼类的SNP标记,并利用这些高密度、高特异性的标记研究了裂腹鱼种群间的遗传差异,揭示了其与海拔和温度相关的潜在选择机制[23]。目前,SNP标记在弧唇裂腹鱼群体遗传学和分子系统发育研究中的应用仍然有限。马海鑫[24]针对墨脱江段和易贡江段弧唇裂腹鱼开发了SNP标记位点,并开展群体遗传学分析,发现墨脱群体的遗传多样性要高于易贡群体,受到的正向自然选择更大,但仍与易贡群体同属一个类群。因样本量不足,该研究未分析两种群间的基因流。本研究利用在雅鲁藏布江下游3个江段(察隅、墨脱、帕隆)采集的97个样本,运用SLAF-seq技术开发了大量SNP标记,以深入分析弧唇裂腹鱼的遗传多样性、种群结构和基因流,旨在为该物种的科学养护和种质资源开发提供数据支持。

1 材料与方法 1.1 采样与测序

2022年5月从墨脱、帕隆、察隅3个江段采集鱼类样本97尾(表1图1),其中墨脱江段共50尾,采自4个采样点,其中希日18尾、地东6尾、冷多22尾和西贡4尾;察隅河段30尾;帕隆江段17尾。采用组织基因组DNA提取试剂盒进行提取。在1.2%琼脂糖凝胶上检测DNA质量。采用特异性位点扩增片段测序(SLAF-seq)技术[24]对97份材料进行基因分型,根据酶切预测结果,选择了Rsa I和HinC II限制性内切酶组合,得到364~414 bp长度的酶切片段,在37 ℃下进行3ʹ端加A处理、连接Dual-index测序接头、PCR扩增、PCR产物纯化、混样、切胶选取目的片段,文库质检合格后进行测序。根据序列相似性对所有读数进行聚类,将相似性超过95%的序列归入一个SLAF位点。不同样本之间存在序列差异的SLAF标记可定义为多态SLAF标记,可用于开发特定的分子标记。

表1  弧唇裂腹鱼采样信息 Tab. 1  Sampling information of Schizothorax curvilabiatus
图1  调查区域及采样点(蓝色实点标记) Fig. 1  Study area and sampling sites (marked by blue points)
1.2 标记开发

使用每个SLAF标签中的最高深度序列作为参考序列,用Burrows-Wheeler Aligner (BWA) v.0.7.17软件将测序读数与参考基因组进行比对。SNP采用基因组分析工具包(GATK)和SAMtools方法开发。SNP过滤参数设置如下:(1)最小读深不小于10;(2)平均碱基质量大于30。使用这两种方法得到的交集就是最终的SNP数据集。以每个SNP的完整性大于0.5和次要等位基因频率(MAF)大于0.05为阈值筛选高质量的SNP。

1.3 遗传多样性分析与遗传分化分析

基于筛选的SNP在Linux中计算遗传多样性,利用Stacks v.2.1软件计算种群间的FST值。计算遗传多样性指标,包括期望等位基因数(Ea)、期望杂合度(He)、Nei’s多样性指数(Nei’s)、观测等位基因数(Oa)、观测杂合度(Ho)、多态性信息含量(PIC)和香农指数(Shannon)。

1.4 连锁不平衡分析

使用plink进行连锁不平衡分析,先进行全局分析,输入vcf基因型文件,检测窗口大小为1000 kb,随后根据分组进行连锁不平衡分析,根据结果整理R2值,利用R语言绘图。

1.5 种群结构分析

利用MEGA X v.10.2软件,基于开发的SNP标记进行了弧唇裂腹鱼的系统发育分析,采用Kimura 2-parameter模型并进行1000次bootstrap重复,构建系统发育树。同时,利用Admixture软件进行种群结构分析,预先设定亚群数目(K值)为1~10进行聚类,并通过交叉验证确定最优的分群数。此外,运用EIGENSOFT v.7.2.1软件进行主成分分析,以了解样品的聚类情况[24]

1.6 基因流分析

利用TREEMIX v.1.13软件计算种群中的基因流动水平[25]。该方法利用全基因组等位基因频率计算出每对群体之间的实际协方差,以最大似然法绘制聚类树,利用两个种群在树上的关系,计算出协方差的估计值(estimated value),进而推断支系间的分裂和混合事件,并指出系统发生树上基因流动的程度和方向。为确定支系间基因迁移事件的数量,迁移值设定为1~10。为了评估迁移的最佳次数,使用R脚本TreemixVarianceExplained.R (https://github.com)对种群间相关性的方差进行解释。

2 结果与分析 2.1 测序与标记开发

通过测序,共获得1116.27 Mb reads数据,测序平均Q30为94.31%,平均GC含量为37.82%,此外,共开发了966591个SLAF标签,其中多态性的SLAF标签有323989个,平均测序深度为19.04×,共获得2952960个SNP标记。

2.2 遗传多样性

整体来说,弧唇裂腹鱼的遗传多样性偏小,墨脱种群的期望等位基因数和观测等位基因数高于帕隆种群和察隅种群。杂合度以墨脱种群最小,其次是察隅种群,帕隆种群最大。其他遗传多样性指标均以墨脱种群最小,帕隆种群最大(表2)。

表2  三个弧唇裂腹鱼种群的遗传多样性指数 Tab. 2  Genetic diversity indices of three Schizothorax curvilabiatus populations
2.3 遗传分化

雅鲁藏布江下游3个弧唇裂腹鱼种群呈现出低程度的遗传分化。其中,分化程度相对较大的是察隅种群和帕隆种群,FST值为0.096;其次是帕隆种群和墨脱种群,FST值为0.062;墨脱种群和察隅种群的分化程度最小,FST值仅为0.051(表3)。

表3  三个弧唇裂腹鱼种群间的遗传分化指数(FST Tab. 3  Genetic differentiation index (FST) between three Schizothorax curvilabiatus populations
2.4 连锁不平衡分析

就遗传变异度量R2值而言,帕隆种群最大,墨脱种群次之,察隅种群最小。即帕隆种群受到的自然正向选择较大,墨脱种群和察隅种群受到的自然正向选择相对较小(图2)。

图2  弧唇裂腹鱼种群的连锁不平衡衰减图 Fig. 2  Linkage disequilibrium attenuation of Schizothorax curvilabiatus populations
2.5 种群结构

系统发育树结果显示出了3个主要簇,分别是墨脱种群的簇、帕隆种群的簇和察隅种群的簇,系统发育树的结构与地理结构吻合(图3a); PCA结果显示,在PC1/PC2中,除墨脱种群中的个别个体偏离外,这3个地理种群聚类到一起(图3b); Admixture结果显示,雅鲁藏布江下游弧唇裂腹鱼的最优遗传结构为1 (图3c)。

图3  弧唇裂腹鱼的种群结构a. 弧唇裂腹鱼的系统发育树;b. 弧唇裂腹鱼的主成分分析PC1和PC2散点图;c. 弧唇裂腹鱼的Admixture交叉验证值. 红色表示最优的聚类结果,黑色为其余验证结果. Fig. 3  Population structure of Schizothorax curvilabiatus populationsa. Phylogenetic tree of Schizothorax curvilabiatus; b. Scatter plot of two principal components (PC1 & PC2) of Schizothorax curvilabiatus (PC1/PC2) from PCA; c. Admixture of Schizothorax curvilabiatus. Red point indicates the optimal clustering result and black points indicate other verification results.
2.6 基因流

当迁移事件m=2时,模型方差解释了98.5%,因此将该m值作为模型操作的输入值。基因流分析结果表明,两条基因流均在墨脱种群中,一条从墨脱西贡流向墨脱冷多,另一条从墨脱地东流向墨脱希日。本研究中帕隆、墨脱和察隅3个江段之间的弧唇裂腹鱼种群没有相互的基因交流(图4)。

图4  弧唇裂腹鱼的基因流 Fig. 4  Gene flows of Schizothorax curvilabiatus populations
3 讨论 3.1 基于SNP标记的弧唇裂腹鱼遗传多样性分析

遗传多样性是物种多样性保护的基础,是研究任何物种的重要前提,影响着物种或种群的进化和繁殖潜力[26]。本研究中,3个江段弧唇裂腹鱼的Ho均比He小,这表明地质灾害造成了弧唇裂腹鱼种群发生遗传漂变,从而导致了Ho低于He。此外,帕隆种群的杂合度要明显高于其他种群,结合连锁不平衡结果中帕隆种群的高R2值,笔者推测在该流域,弧唇裂腹鱼为提高适应性和生存优势经历了较强烈的自然选择[27-28],一些基因型频率增加,导致帕隆种群的杂合度高于其他种群。

墨脱种群的遗传多样性最高,察隅种群次之,帕隆种群的遗传多样性最低,这与马海鑫[24]的研究结果相似。造成这种趋势的原因可能是青藏高原复杂的地理环境和演化历史对物种生存产生的长期影响,并促进物种适应当地条件[29]。除此之外,连锁不平衡分析结果表明,墨脱种群受生存环境的自然正选择作用大,适应环境变化的能力更强,这也在一定程度上反映出墨脱种群的遗传多样性会更高。

但从整体来看,雅鲁藏布江下游弧唇裂腹鱼的遗传多样性并不高,尤其是杂合度。这可能与近年发生的地质事件有关,2000年易贡藏布堰塞湖塌方对帕隆种群资源影响很大;2017年和2018年,米林、墨脱两地相继发生地质灾害[30-31],对墨脱种群资源产生了巨大的影响,随后的资源监测结果也证实了资源下降的事实。另外近年来该流域,工程建设、采石等人类活动[32-33]改变了河流局部性水生态环境,破坏了鱼类索饵、越冬和繁殖栖息地环境,从而影响了弧唇裂腹鱼种群资源恢复。

3.2 基于SNP标记的弧唇裂腹鱼群体遗传结构

本研究揭示了弧唇裂腹鱼的种群遗传结构,雅鲁藏布江下游流域的弧唇裂腹鱼同属一个类群。这与以往关于弧唇裂腹鱼的研究结果相似[24],表明该物种不同地理群体的亲缘关系很近。在系统发育树结果中,墨脱不同江段种群之间聚类到一起,但是对于最优分群的结果应该结合多种数据,如Admixture和PCA,以确定物种的最终遗传结构[34-35]。结合遗传结构和FST值进一步表明,不同弧唇裂腹鱼种群之间存在中低度的遗传分化。地理障碍和地理距离通常会导致物种的遗传分化[36-38],雅鲁藏布江下游3个弧唇裂腹鱼种群来源海拔差异较大,帕隆群体所处海拔约2000~ 2300 m,察隅群体所处海拔约1500~1800 m,干流墨脱群体海拔较低约500~700 m,海拔的差异可能对地理扩散产生一定的影响[39],故促进了弧唇裂腹鱼种群间的分化。墨脱群体与其他种群的FST值很小,在排除种群间无基因流和有共同祖先的前提下,笔者推测这是由于遗传漂变的局部影响,使得种群间的遗传结构收敛,FST值较小[40]

3.3 基于SNP标记的弧唇裂腹鱼种群历史动态

本研究探明了雅鲁藏布江下游不同弧唇裂腹鱼种群之间存在2条基因流。TreeMix结果显示,基因流发生在墨脱群体之间,一条从墨脱西贡到墨脱冷多,另一条从墨脱地东到墨脱希日。地质灾害导致弧唇裂腹鱼资源量减少,多呈现小群体,不仅如此,弧唇裂腹鱼没有长距离洄游习性,也限制了群体间的基因交流。本研究中察隅群体和帕隆群体之间没有基因流,这两个种群同墨脱群体之间也没有基因流。事实上,雅鲁藏布江下游的地理生境极其复杂,地理上的隔离[41]导致弧唇裂腹鱼种群很难发生基因交流,帕隆藏布江虽然在上游汇入雅江干流,但该江段水流湍急,多处分布有叠水江段,可能使帕隆江段与墨脱江段鱼群无法进行基因交流。察隅河在海拔约100 m附近汇入下游干流,而弧唇裂腹鱼属高原冷水鱼类,无法在汇入口处形成种群,也在一定程度上阻碍了弧唇裂腹鱼种群间的基因交流。

3.4 基于SNP标记的弧唇裂腹鱼种质资源保护策略

弧唇裂腹鱼作为下游鱼类的广布物种,在帕隆藏布、易贡藏布、察隅河以及雅江干流均有分布(海拔550~3000 m),具有重要的经济和生态价值[42]。2015-2022年以来本团队的监测结果表明,察隅河和帕隆藏布江段弧唇裂腹鱼类资源变化不大,而干流墨脱段的弧唇裂腹鱼资源量呈现明显的下降趋势。其原因主要是地质灾害频发,生境变化剧烈。另外,人类活动改变了如江河汇合口等繁育场所栖息地环境,造成了渔业资源量恢复困难。当前,为了更好地构建高原水域生态安全屏障,亟须开展代表性鱼类弧唇裂腹鱼的保护研究工作。

4 结论

本研究利用SLAF-seq技术开发了雅鲁藏布江下游流域弧唇裂腹鱼的SNP标记,进一步群体遗传学分析发现,该流域弧唇裂腹鱼群体遗传多样性不高,3个地理群体(墨脱、帕隆和察隅)的弧唇裂腹鱼同属一个类群。弧唇裂腹鱼种群之间呈现出低度的遗传分化,墨脱种群内部存在一定的基因交流,而本研究中的3个地理群体之间不存在基因交流。连锁不平衡分析表明帕隆种群适应环境的能力更强。本研究结果可为雅鲁藏布江下游流域弧唇裂腹鱼种质资源的开发利用与保护提供理论参考。

参考文献
[1]
迪丽娜·茹斯坦木,袁晓倩,张琪,等. 基于线粒体基因组数据的裂腹鱼类系统发育研究[J]. 中国水产科学,2022, 29(6): 781-791. [Rustam D, Yuan X Q, Zhang Q, et al. Study on the phylogeny of Schizothoracids based on complete mitochondrial genome[J]. Journal of Fishery Sciences of China, 2022, 29(6): 781-791.].》Google Scholar
[2]
Liu F, Li M, Wang J, et al. Species composition and longitudinal patterns of fish assemblages in the middle and lower Yarlung Zangbo River, Tibetan Plateau, China[J]. Ecological Indicators, 2021, 125: 107542..》Google Scholar
[3]
Zhang C, Wang W L, Zhou J S. Primary Color Iconography and Mitochondrial Genomes of Fishes in the Yarlung Zangbo River[M]. Bejing: China Agriculture Press, 2023. [张弛,王万良,周建设. 雅鲁藏布江流域鱼类原色图鉴及其线粒体基因组研究[M]. 北京:中国农业出版社,2023.].》Google Scholar
[4]
Liu Y C, Wei C. Age and growth characteristics of Schizothorax curilabiatus in the Chayu River, Tibet[J]. Hubei Agricultural Sciences, 2022, 61(12): 112-115. [刘艳超,魏聪. 西藏察隅河弧唇裂腹鱼年龄与生长特征[J]. 湖北农业科学,2022, 61(12): 112-115.].》Google Scholar
[5]
Li L, Ma B, Wang J L, et al. Length-weight relationships of four fish species from the MoTuo reach of the Yarlung Zangbo River, southwest China[J]. Journal of Applied Ichthyology, 2016, 32(6): 1313-1314..》Google Scholar
[6]
Wang J, Liu F, Gong Z, et al. Length-weight relationships of five endemic fish species from the lower Yarlung Zangbo River, Tibet, China[J]. Journal of Applied Ichthyology, 2016, 32(6): 1320-1321..》Google Scholar
[7]
Chen F, Liu Y C, Wei C, et al. Relationship between body length and weight of juveniles and young Schizothorax curilabiatus in Chayu Reiver[J]. Xizang Science and Technology, 2020(10): 11-12. [陈锋,刘艳超,魏聪,等. 察隅弧唇裂腹鱼仔稚鱼体长体重关系研究[J]. 西藏科技,2020(10): 11-12.].》Google Scholar
[8]
Zhang J L, Huang J Q, Fang C, et al. The application of tributyrin in carp juveniles compound feed[J]. Hebei Fisheries, 2021(1): 11-16. [张建禄,黄吉芹,方程,等. 弧唇裂腹鱼生物学特征研究[J]. 河北渔业,2021(1): 11-16.].》Google Scholar
[9]
Jin H Y, Li L, Qin D L, et al. Nutritional composition in muscle of Schizothorax curvilabiatus[J]. Biotic Resources, 2022, 44(2): 198-204. [金洪宇,李雷,覃东立,等. 弧唇裂腹鱼肌肉营养成分分析[J]. 生物资源,2022, 44(2): 198-204.].》Google Scholar
[10]
Wang Y B, Liu F, Lun Z, et al. Domestication techniques for wild Schizothorax curvilabiatus[J]. Scientific Fish Farming, 2023(7): 22-23. [王玉冰,刘飞,伦珠,等. 野生弧唇裂腹鱼驯养技术[J]. 科学养鱼,2023(7): 22-23.].》Google Scholar
[11]
Xie C X, Huo B, Wei K J, et al. Biology and Resource Conservation of Schizothoracinae Fishes in the Middle Reaches of the Yarlung Zangbo River[M]. Beijing: Science Press, 2019. [谢从新,霍斌,魏开建,等. 雅鲁藏布江中游裂腹鱼类生物学与资源保护[M]. 北京:科学出版社,2019.].》Google Scholar
[12]
Fan J, Sun W, Zhao Y, et al. Trend analyses of extreme precipitation events in the Yarlung Zangbo River Basin, China Using a High-Resolution Precipitation Product[J]. Sustainability, 2018, 10(5): 1396..》Google Scholar
[13]
Li H, Liu L, Shan B, et al. Spatiotemporal variation of drought and associated multi-scale response to climate change over the Yarlung Zangbo River Basin of Qinghai-Tibet Plateau, China[J]. Remote Sensing, 2019, 11(13): 1596..》Google Scholar
[14]
Li L, Ma B, Jin X, et al. Structural and diversity characteristics of fish communities in the Motuo reach of the Yarlung Zangbo Grand Canyon[J]. Journal of Fishery Sciences of China, 2022, 29(9): 1326-1336. [李雷,马波,金星,等. 西藏雅鲁藏布江大峡谷墨脱江段鱼类群落结构及多样性的空间分布特征[J]. 中国水产科学,2022, 29(9): 1326-1336.].》Google Scholar
[15]
Cao L, Shao W H, Yi W J, et al. A review of conservation status of freshwater fish diversity in China[J]. Journal of Fish Biology, 2024, 104(2): 345-364..》Google Scholar
[16]
David J C, Margaret B, Craig M. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics[J]. Frontiers in Ecology and Evolution, 2018, 6..》Google Scholar
[17]
Naito T, Nakayama K, Takeshima H, et al. The detailed population genetic structure of the rare endangered latid fish akame Lates japonicus with extremely low genetic diversity revealed from single-nucleotide polymorphisms[J]. Conservation Genetics, 2023, 24(4): 523-535..》Google Scholar
[18]
Hermoso V, Kennard M J, Schmidt D J, et al. Species distributions represent intraspecific genetic diversity of freshwater fish in conservation assessments[J]. Freshwater Biology, 2016, 61(10): 1707-1719..》Google Scholar
[19]
Ren Y L, Dai J C, Zhao N H, et al. Genetic diversity analysis of Schizothorax biddulphi based on mitochondrial DNA COII and ND4 genes[J]. Journal of Fisheries of China, 2022, 46(12): 2274-2285. [任永丽,代金彩,赵年桦,等. 基于线粒体COII和ND4基因序列的塔里木裂腹鱼群体遗传多样性分析[J]. 水产学报,2022, 46(12): 2274-2285.].》Google Scholar
[20]
He Y, An M, Li X M, et al. RAPD analysis on gnentic diversity of 2 different Schizothorax grahami populations. [J]. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2009, 33(3): 4-6. [何勇,安苗,李兴美,等. 昆明裂腹鱼两地理群体遗传多样性的随机扩增多态性DNA(RAPD)分析[J]. 贵州畜牧兽医,2009, 33(3): 4-6.].》Google Scholar
[21]
Yang T Y, Meng W, Gao T Y, et al. Genetic polymorphism of microsatellite DNA in Schizothorax biddulphi populations [J]. Arid Zone Research, 2014, 31(6): 1109-1114. [杨天燕,孟玮,高天翔,等. 塔里木裂腹鱼群体的微卫星多态性分析[J]. 干旱区研究,2014, 31(6): 1109-1114.].》Google Scholar
[22]
Robledo D, Palaiokostas C, Bargelloni L, et al. Applications of genotyping by sequencing in aquaculture breeding and genetics[J]. Reviews in Aquaculture, 2018, 10(3): 670-682..》Google Scholar
[23]
Yang T Y, Meng W, Guo B C. Population genomic analysis of two endemic schizothoracins reveals their genetic differences and underlying selection associated with altitude and temperature[J]. Animals, 2020, 3(10): 447..》Google Scholar
[24]
Ma H X. Development of SNP markers and population genetics analysis of Schizothorax curvilabiatus based on SLAF-seq technology[D]. Wuhan: Huazhong Agricultural University, 2019. [马海鑫. 基于SLAF-seq技术的弧唇裂腹鱼SNP位点开发及群体遗传学分析[D]. 武汉:华中农业大学,2019.].》Google Scholar
[25]
Fitak R R. OptM: estimating the optimal number of migration edges on population trees using Treemix[J]. Biology Methods and Protocols, 2021, 6(1): 1-10..》Google Scholar
[26]
Schrieber K, Lachmuth S. The Genetic Paradox of Invasions revisited: the potential role of inbreeding × environment interactions in invasion success[J]. Biological Reviews, 2017, 92(2): 939-952..》Google Scholar
[27]
Shen C Z, Zhang C J, Chen J, et al. Clarifying Recent Adaptive Diversification of the Chrysanthemum-Group on the Basis of an Updated Multilocus Phylogeny of Subtribe Artemisiinae (Asteraceae: Anthemideae) [J]. Frontiers in Plant Science, 2021, 12..》Google Scholar
[28]
Escalante M A, Perrier C, García-de León F J, et al. Genotyping-by-sequencing reveals the effects of riverscape, climate and interspecific introgression on the genetic diversity and local adaptation of the endangered Mexican golden trout (Oncorhynchus chrysogaster) [J]. Conservation Genetics, 2020, 21(5): 907-926..》Google Scholar
[29]
Baxevanis A D, Kappas I, Abatzopoulos T J. Molecular phylogenetics and asexuality in the brine shrimp Artemia[J]. Molecular Phylogenetics and Evolution, 2006, 40(3): 724-738..》Google Scholar
[30]
Lu J Y, Li W L, Liu G, et al. Spatial distribution and susceptibility analysis of geological disasters triggered by the Milinearthquake[J]. Journal of Natural Disasters, 2019, 28(2): 183-190. [卢佳燕,李为乐,刘刚,等. 米林震后地质灾害空间分布特征及易发性分析[J]. 自然灾害学报,2019, 28(2): 183-190.].》Google Scholar
[31]
Bai M Q, Zhaxi S L, Suo L, et al. Study and analysis of the impact of precipitation on geologic hazards in Murdock[J]. Agriculture and Technology, 2019, 39(17): 136-137+164. [白玛乔,扎西索郎,索朗,等. 研究分析降水对墨脱地质灾害的影响[J]. 农业与技术,2019, 39(17): 136-137+164.].》Google Scholar
[32]
Li F. Research on the aquatic organisms and advance estimate of effectsof hydropower engineering in Niyang River Basin, Tibet[D]. Xian: Xibei University, 2009. [李芳.西藏尼洋河流域水生生物研究及水电工程对其影响的预测评价[D]. 西安:西北大学,2009.].》Google Scholar
[33]
Ding H P, Zhang Z M, Xie C X, et al. Effects of fish invasion on aquatic ecosystem of the Yarlung Zangbo River and the prevention and control strategies[J]. Chinese Journal of Ecology, 41(12):2440-2448. [丁慧萍,张志明,谢从新,等. 鱼类入侵对雅鲁藏布江水域生态系统的影响及其防治对策[J]. 生态学杂志,2022, 41(12): 2440-2448.].》Google Scholar
[34]
Zhao W, Sun Y Q, pan J, et al. Effects of landscapes and range expansion on population structure and local adaptation [J]. New Phytologist, 2020, 228(1): 330-343..》Google Scholar
[35]
Liu H, Xiong F, Zhai D, et al. Genetic diversity and population differentiation of Chinese lizard gudgeon (Saurogobio dabryi) in the Upper Yangtze River[J]. Frontiers in Ecology and Evolution, 2022, 10: 890475..》Google Scholar
[36]
Mamat M, Shan W, Dong P, et al. Population genetics analysis of Tolai hares (Lepus tolai) in Xinjiang, China using genome-wide SNPs from SLAF-seq and mitochondrial markers[J]. Frontiers in Genetics, 2023, 13: 1018632..》Google Scholar
[37]
Binks R M, Byrne M, Mcmahon K, et al. Habitat discontinuities form strong barriers to gene flow among mangrove populations, despite the capacity for long-distance dispersal[J]. Diversity and Distributions, 2019, 25(2): 298-309..》Google Scholar
[38]
Fu P C, Sun S S, Hollingsworth P M, et al. Population genomics reveal deep divergence and strong geographical structure in gentians in the Hengduan Mountains[J]. Frontiers in Plant Science, 2022, 13..》Google Scholar
[39]
Yang Y C. Discovery, characterization, and genesis of riverbed waterfalls in the Yarlung Zangbo Grand Canyon[J]. Geographical Research, 1999, 18(4): 342-348. [杨逸畴. 雅鲁藏布大峡谷河床瀑布的发现及其特征和成因[J]. 地理研究,1999, 18(4): 342-348.].》Google Scholar
[40]
Brown S M, Harrisson K A, Clarke R H, et al. Limited Population Structure, Genetic Drift and Bottlenecks Characterise an Endangered Bird Species in a Dynamic, Fire-Prone Ecosystem[J]. PLoS One, 2013, 8(4): e59732..》Google Scholar
[41]
Xie C G, Ma Y W, Guo Y. Analysis of biogeography of fishes in Tarim Basin[J]. Chinese Journal of Fisheries, 2015, 28(2): 40-46. [谢春刚,马燕武,郭焱. 塔里木盆地鱼类生物地理学初步解析[J]. 水产学杂志,2015, 28(2): 40-46.].》Google Scholar
[42]
Jin X, Ma B, Li L. Fishes And Resources In the Lower Reaches of the Yarlung Zangbo River of Xizang Plateau[M]. Beijing: China Agriculture Press, 2020. [金星,马波,李雷. 西藏雅鲁藏布江下游鱼类及资源[M]. 北京:中国农业出版社,2020.].》Google Scholar