2. 浙江海洋大学海洋科学与技术学院,浙江 舟山 316022
2. College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
随着全球温室效应的日益加剧,海洋呈现出持续暖化的趋势。在这一背景下,热浪事件的频发对海洋生物,特别是营固着生活的潮间带生物,构成了前所未有的威胁[1-3]。随着潮间带春季连续低潮期温度的升高,一些海洋物种也会通过适应性的改变来应对极端天气条件 [4-5]。作为潮间带营固着生活的代表性物种,双壳贝类经过长期的自然选择和进化,已展现出强大的热适应能力,这对全球变暖背景下的生物学研究具有至关重要的价值[6-7]。生物的热耐受性具有可塑性,具体分为长期热适应与短期“热硬化”。值得一提的是,“热硬化”是双壳贝类在春季连续低潮期面临热胁迫时维持生存的关键策略[8-11]。
热硬化现象指的是生物体在经历短暂的亚致死热压力后,能够更迅速且有效地增强其对高温的耐受力[12-13]。例如,生活在热带沙漠的高耐热物种撒哈拉银蚁(Cataglyphis bombycina)已经进化出独特的“热硬化”机制,其机体能够通过多种途径提高细胞内大分子的稳定性,以应对体温的升高,从而在极端环境中展现出非凡的热适应能力[14]。热硬化同样出现在黑腹果蝇(Drosophila melanogaster)中,它们能够在短期内提高个体交配的成功率,并在不同的生命周期阶段(如无法自由活动的胚胎阶段)表现出显著的热耐受能力可塑性[15-16]。此外,爬行动物中也存在“热硬化”现象。与黑腹果蝇类似,爬行动物在胚胎阶段不活动的特性可能使其成为“热硬化”现象的最大受益者。Gleason等[17]研究发现,经过热暴露后的沙氏变色蜥(Anolis sagrei)胚胎在短时间内表现出热耐受能力的快速提升,与对照组相比,“热硬化”胚胎在极端高温暴露后的存活率显著提高。
近年来,学者们在翡翠贻贝(Perna viridis)、缢蛏(Sinonovacula constricta)、紫贻贝(Mytilus galloprovincialis)等海洋双科贝类中开展了“热硬化”相关研究[9-10,18-19],得到如热硬化处理会影响生物体的死亡率、心率等生理指标的结果。然而,尚未见关于其生物学过程及代谢通路等的深入研究。以翡翠贻贝为例,Dunphy等[20]通过对比“热硬化”群体与对照群体在高温暴露后的死亡率,证实了“热硬化”现象在增强机体耐热性方面的重要作用。另一方面,Georgoulis等[19]以紫贻贝为研究对象,发现经过“热硬化”处理的贻贝群体在高温暴露后能够保持较高的存活率,这进一步表明“热硬化”现象有助于提高贻贝在极端温度下的生存能力。除了死亡率,心率变化也是评估热耐受性的重要生理指标之一。在正常的热耐受范围内,生物的心率会随着温度的升高而增加,但一旦超过机体的承受范围,则可能会出现心跳停止现象,由此产生的心率的断点所对应的温度称为阿累尼乌斯断点温度(ABT)[9]。Zhang等[9]通过对“热硬化”缢蛏的心率信号采集分析发现,经历“热硬化”的缢蛏ABT指标会升高,并且这种升高的程度可能与季节变化密切相关。
近年来,转录组测序技术广泛应用于研究温度对海洋物种的影响。Zhang等[21]利用转录组学分析发现,高温胁迫能够诱导珍珠贝(Pinctada fucata)耐热相关基因的表达,从而改变其免疫反应、呼吸代谢、抗氧化系统,以应对热胁迫。Jesus等[22]通过转录组测序发现,在热胁迫条件下,卡氏雅罗鱼(Squalius carolitertii)可能通过增加转录相关基因的表达和促进应激反应来调节代谢,以维持体内稳态。此外,转录组测序通常与其他组学联合分析,研究热应激对水生生物的影响。Yang等[23]通过转录组与16S全长扩增子联合分析,揭示了热应激对鲟(Acipenser sturio Linnaeus)皮肤不良影响主要表现为粘液分泌减少和粘膜微生物群紊乱。由于地形原因,潮间带的温度变化相当剧烈,而贻贝这种固着生物进化出了热硬化的适应机制,以适应这种波动性温度。Dong等[11]通过转录组分析发现,热硬化厚壳贻贝(Mytilus coruscus)的Toll样受体信号通路、花生四烯酸代谢通路等多条与耐热相关途径基因显著上调表达,表明热硬化能更好地维持贻贝鳃的完整性和血管扩张现象。紫贻贝(Mytilus galloprovincialis),隶属于软体动物门(Mollusca)、贻贝科(Mytilidae)、贻贝属(Mytilus),广泛分布在大西洋、北美洲沿岸、亚洲等地[24]。贻贝的鳃组织是与外部环境接触的重要组织,具有摄食和呼吸的功能[25-26]。本研究为探索热硬化紫贻贝的热耐受性增强的调控机制,对热硬化紫贻贝的鳃组织进行转录组测序,筛选并鉴定了热硬化相关的生物学过程和代谢通路,为理解紫贻贝热硬化调节机制提供了研究基础,同时为水产养殖业如何应对高温胁迫提供了新的视野。
1 材料与方法 1.1 样品采集本研究所用贻贝于2021年11月采自辽宁省大连市长海县獐子岛(122°30ʹE, 39°0ʹN),壳长约为(80±20) mm,体重约为(55±20) g。将贻贝置于装有100 L人工海水的充气水箱中进行为期一周的驯化处理,每天更换一次海水。驯化期间,保持水温为18 ℃,盐度为25,并每日定时投喂螺旋藻粉。
1.2 热硬化处理取暂养的紫贻贝180只,分别标记为热硬化组(H组)和对照组(N组),每组3个平行,每个平行各30只贻贝。在实验期间,H组的热硬化条件如下:将H组的贻贝放入27 ℃人工海水中3 h,后置于18 ℃人工海水中21 h,连续处理5 d。对照组在18 ℃下进行养殖[10-11,17]。第6天,每平行组各随机取1只贻贝进行解剖。
1.3 总RNA提取使用Trizol (Solarbio)提取两组紫贻贝的鳃组织总RNA。后用1%琼脂糖凝胶电泳检测RNA样品完整性,并采用Nanodrop 2000检测RNA的纯度、浓度。将合格的RNA样品保存于−80 ℃条件下备用。
1.4 转录组测序及分析文库构建及测序委托华大基因股份(深圳)有限公司进行。为保证后续分析的准确性和可靠性,使用SOAPnukev (1.4.0)对低质量、接头污染以及未知碱基N含量过高的reads进行过滤。用HISAT (v2.1.0)[27]将得到的clean reads比对至紫贻贝的参考基因组(NCBI登录号:GCA_025277285.1),建立索引后进行注释。使用Bowtie2 (v2.2.5)将clean reads比对到参考基因序列,之后用RSEM计算基因和转录本的表达水平[28]。
运用DESeq2 (v1.4.5)(http://www.bioconductor.org/packages/release/bioc/html/)进行差异表达分析[29]。以差异倍数|log2(FC)|≥1且P<0.05作为差异表达基因检测的显著性阈值。利用华大基因的Dr. Tom自主分析平台进行差异表达基因的KEGG和GO数据库的功能分类和富集。基于平台注释结果,进行本物种GO注释集构建,并采用GSEA 4.3.2软件(https://www.gsea-msigdb.org/gsea)对紫贻贝鳃转录组基因集进行富集分析,并筛选显著富集通路(|NES|>1, P<0.05, FDR< 0.25),当FDR<0.01时表现为极显著富集。
1.5 实时荧光定量PCR (RT-qPCR)验证选择5个差异表达基因,用Primer Premier 6软件设计引物(表1),并以β-actin作为内参进行RT-qPCR实验。每个基因进行3次平行实验,采用2−ΔΔCt法计算组间差异表达基因的相对表达量。
![]() |
表1 实时荧光定量RT-PCR引物 Tab. 1 Primers for qRT-PCR |
热硬化组和对照组分别平均产生46.61 M和45.44 M条raw reads。过滤后分别平均产生43.24 M和42.67M条clean reads。过滤后的转录库Q20平均为97.08%, Q30平均为91.38%, clean reads ratio平均为93.39%, GC含量占比为35.61%~37.95% (表2)。将样品比对到参考基因组上,总比对率平均为58.29%,唯一比对率平均为26.06%,表明所选样本参考基因组符合后续测序分析。
![]() |
表2 热硬化组与对照组紫贻贝鳃转录组测序质量统计 Tab. 2 Quality statistics of transcriptome sequencing for the heat-hardening group and the control group of Mytilus galloprovincialis gills |
热硬化组较于对照组有651个差异表达基因[log2(fold change)≥1、P≤0.05],其中159个差异表达基因表达上调,492个差异表达基因表达下调(图1a),两组差异表达趋势见图1b。
![]() |
图1 热硬化组与对照组紫贻贝鳃转录组的基因表达结果a. 组间差异表达基因表达火山图;b. 组间基因表达热图. Fig. 1 Gene expression results of the gills transcriptome of heat-hardening group and control group of Mytilus galloprovincialisa. Volcano plot of differentially expressed genes between groups; b. heatmap of gene expression between groups. |
对两组间差异表达基因进行GO分析,651个差异表达基因共注释到24个GO term,分为生物过程、细胞组分和分子功能3个类别(图2)。在生物过程类别中,细胞过程、代谢过程和生物调节富集到最多的差异表达基因;细胞组分中以细胞结构体富集到的差异表达基因最多;分子功能类别中以DNA连接过程、催化活性和转录调节活性3个条目中富集的差异表达基因最多。差异表达基因显著富集的GO功能主要与代谢过程、离子运输、信号转导有关。显著富集的条目中有9个均为代谢过程,涉及大分子代谢、物质代谢以及能量代谢(图3)。为深入探索与热硬化相关的生物学过程,将紫贻贝鳃转录组中显著富集的GO term基因表达谱转换为表达矩阵进行GSEA分析,结果显示,与对照组相比,热硬化组在细胞大分子代谢过程、核酸代谢过程、细胞芳香族化合物代谢过程、含核碱化合物代谢过程、细胞氮化合物代谢过程等代谢过程以及阴离子运输均表现上调(图4)。
![]() |
图2 热硬化组与对照组紫贻贝鳃转录组差异表达基因GO分类柱状图 Fig. 2 Bar chart of GO classification for differentially expressed genes in the gills transcriptome of heat-hardening group and control group of Mytilus galloprovincialis |
![]() |
图3 热硬化组与对照组紫贻贝鳃转录组差异表达基因GO富集气泡图 Fig. 3 Bubble chart of GO enrichment for differentially expressed genes in the gills transcriptome of the heat-hardening group and control group of Mytilus galloprovincialis |
![]() |
图4 基于GO分析的GSEA分析结果GO: 0003676核酸结合,GO: 0006139含核碱化合物代谢过程,GO: 0006725细胞芳香族化合物代谢过程,GO: 0006820阴离子运输,GO: 00160420中枢神经系统神经元发育,GO: 0034641细胞氮化合物代谢过程,GO: 0044260细胞大分子代谢过程,GO: 0046483杂环代谢过程,GO: 1901360有机环状化合物代谢过程,GO: 0090304核酸代谢过程. Fig. 4 GSEA analysis results based on GO analysisGO: 0003676 nucleic acid binding, GO: 0006139 nucleobase-containing compound metabolic process, GO: 0006725 cellular aromatic compound metabolic process, GO: 0006820 anion transport, GO: 00160420 central nervous system neuron development, GO: 0034641 cellular nitrogen compound metabolic process, GO: 0044260 cellular nitrogen compound metabolic process, GO: 0046483 heterocycle metabolic process, GO: 1901360 organic cyclic compound metabolic process, GO: 0090304 nucleic acid metabolic process. |
鳃转录组中的差异表达基因共富集到188条通路。富集的代谢通路分为5类:细胞过程、环境信息处理、遗传信息处理、代谢、有机系统(图5)。显著差异表达基因富集到Rap1信号通路、细胞凋亡–多物种、MAPK信号通路、Ras通路、TNF信号通路、HIF-1信号通路等(图6a)。上述显著富集的通路与渗透调节、离子运输、细胞应答、代谢调节都有一定的相关性。其中细胞凋亡通路Caspase家族的casp3、casp7、casp8、casp9 4个基因均表现上调。为深入研究热硬化对紫贻贝差异表达基因表达的影响,本研究对显著富集通路的(细胞凋亡–多物种、Rap1、HIF-1、MAPK等)差异表达基因进行分析以揭示这些其表达模式(图6b)。结果显示,所选通路基因在两组间存在差异表达。
![]() |
图5 热硬化组与对照组紫贻贝鳃转录组差异表达基因KEGG通路分类图 Fig. 5 KEGG pathway classification diagram of differentially expressed genes in the transcriptomes of the heat-hardening group and the control group of gills of Mytilus galloprovincialis |
![]() |
图6 热硬化组与对照组紫贻贝鳃转录组KEGG富集分析结果a. KEGG富集气泡图;b. KEGG关键通路的差异表达基因分析. Fig. 6 KEGG enrichment analysis results of the transcriptome of Mytilus galloprovincialis gills in the heat-hardening group and the control groupa. KEGG enrichment bubble chart; b. differentially expressed gene analysis of KEGG key pathways. |
运用RT-qPCR技术对随机选取的5个差异表达基因进行定量验证(图7)。结果表明,较于对照组,热硬化组中aPKC、Caveolin、RTK、casp3和ECM 5个差异表达基因均上调表达,NMDAR、GPCR均下调表达,实验结果与测序结果基本一致,证明了转录组测序结果的准确性。
![]() |
图7 RT-qPCR验证RNA-Seq结果 Fig. 7 The results of RNA-Seq verified by RT-qPCR |
温度是影响水生生物生存和分布的关键生态因素,对于贝类等无脊椎动物具有极其重要的影响[30-32]。极端热胁迫对海洋脊椎动物和无脊椎动物的组织均会造成损害[33-34],同时也会引发生物的生理应激和降低其抵抗捕食能力[35-36]。
江天琪等[37]发现高温胁迫下,厚壳贻贝的排氨率增大,而排氨率是反应贝类代谢和胁迫程度的重要因素[38],说明在高温胁迫下,厚壳贻贝通过调控己身代谢水平维持体内稳态。鳃具有排泄和摄食以及呼吸的功能,将氧气吸入后排出二氧化碳。对于双壳类软体动物,血管分布在整个鳃丝。当水流过鳃时,会产生气体交换反应[37]。这种生物体发生的物质交换现象在应对各种应激因子时,可能会通过调控新陈代谢相关通路以增强其生存能力。GSEA结果中多个大分子代谢过程均表现上调,表明热硬化可能导致紫贻贝的代谢活动增加,通过调控自身物质代谢与能量代谢为后期高温胁迫做出生理响应。阴离子运输的上调可能与调节细胞内外离子平衡有关。在高温环境下,细胞内外的离子浓度可能会发生变化,而阴离子运输通路的上调可能有助于维持细胞内部的稳态[39]。
热硬化后厚壳贻贝会通过调控细胞凋亡–多物种、HIF-1等信号通路以提高热耐受性[11]。本研究通过对热硬化紫贻贝的差异表达基因进行KEGG分析,发现差异表达基因显著富集于Rap1、细胞凋亡-多物种、MAPK等与代谢调节、渗透调节相关的信号通路。细胞凋亡作为一种生理保护机制,可以在不损伤周围组织和细胞的情况下去除氧化应激下受损的细胞,以维持内部环境的稳定[40-41]。研究发现该通路中的casp3、casp7、casp8、casp9等基因显著上调。凋亡作为一种多基因严格控制的过程,涉及p38MAPK、Bcl-2家族、JNKcaspase家族、抑癌基因p53等基因[42-45]。其中,caspase家族作为一类半胱氨酸蛋白酶在凋亡过程中发挥核心作用。该家族分为起始组和效应组,起始组caspase包括caspase-2, -8,-9,-10,-11和-12,与促凋亡信号紧密相连,激活后,这些酶会切割并激活下游的效应组caspase,包括casp-3,-6,-7。casp3和casp7被上游启动子casp8和casp9激活,进而触发细胞死亡,这一过程不依赖于凋亡途径的内外源性差异[46]。Dong等[11]通过转录组分析发现,与非热硬化厚壳贻贝相比,热硬化厚壳贻贝caspase家族基因显著上调表达。这种上调可能有助于维持贻贝体内细胞的稳态。热硬化紫贻贝该家族的基因表达显著上调,反映了它们对于环境变化和生态压力的适应性反应。说明热硬化加强了紫贻贝去除受损或老化细胞的能力。Rap1信号通路存在于许多重要的细胞过程中,被发现与葡萄糖代谢、脂质代谢、胰岛素分泌等多个关键的新陈代谢过程相关联。热硬化后的紫贻贝,该通路中的Rac、aPKC两个关键功能基因显著上调。葡萄糖通过Vav2激活刺激Rac1活性,然后介导肌动蛋白细胞骨架重塑以促进胰岛素释放并改变宿主葡萄糖代谢[47]。Rac1活性的变化与炎症反应的调节有关。Mao等[48]发现缢蛏(Sinonovacula constricta)在副溶血性弧菌胁迫下,其Rap1信号通路中的Vav2、Rac、aPKC基因显著上调。aPKC和Par3以及aPKC和Par6可以协同地改变顶-底极性以影响个体防御和运输效应[49-50]。说明贻贝通过前期的热硬化生存策略,在后期受到高温胁迫后可防御胁迫造成的炎症反应,从而提高自身热耐受性。这些基因分布在该途径的上游和下游,说明该通路可能通过调节代谢途径的方式以提供贻贝提高热耐受性需要的能量及防御。
4 结论本实验通过转录组测序探究紫贻贝的热硬化调节机制,解析了热硬化相关的分子调控通路及生物学过程。已有研究表明,作为近源种的厚壳贻贝,热硬化会导致其呼吸率增强。而鳃组织是呼吸保护器官,在响应环境不利条件中发挥重要作用。本研究中GO条目显著富集到多种大分子代谢过程,进一步GSEA富集分析表明,该类代谢过程表现上调,说明热硬化贻贝通过提高多种大分子代谢增强组织的功能发挥,为后期高温胁迫做出了早期生理调节和适应性反应。KEGG分析表明,热硬化紫贻贝通过上调细胞凋亡–多物种通路,加强鳃组织主动清除损伤细胞以保障组织完整性的能力,与代谢调节相关的Rap1、MAPK等信号通路也表现为上调,表明贻贝可能通过调控新陈代谢提供细胞调控所需能量,以平衡细胞在高温环境中生存和死亡的需求。本研究为解析紫贻贝在热硬化下如何应对高温胁迫提供了研究基础,同时为揭示贻贝适应高温胁迫参与调节的代谢过程提供了有效途径。
[1] |
Frölicher T L, Fischer E M, Gruber N. Marine heatwaves under global warming[J]. Nature, 2018, 560(7718): 360-364..》Google Scholar
|
[2] |
Tan H J, Cai R S, Du J G, et al. Climate change and marine ecosystems: Impacts, adaptation, and vulnerability[J]. Transactions of Atmospheric Sciences, 2022, 45(4): 489-501. [谭红建,蔡榕硕,杜建国,等. 气候变化与海洋生态系统:影响、适应和脆弱性——IPCC AR6 WG II报告之解读[J]. 大气科学学报,2022, 45(4): 489-501.].》Google Scholar
|
[3] |
Wang J, Ma L X, Dong Y W. Coping with harsh heat environments: Molecular adaptation of metabolic depression in the intertidal snail Echinolittorina radiata[J]. Cell Stress & Chaperones, 2023, 28(5): 477-491..》Google Scholar
|
[4] |
Pasparakis C, Davis B E, Todgham A E. Role of sequential low-tide-period conditions on the thermal physiology of summer and winter laboratory-acclimated fingered limpets, Lottia digitalis[J]. Marine Biology, 2016, 163(2): 23..》Google Scholar
|
[5] |
Sorte C J B, Davidson V E, Franklin M C, et al. Long-term declines in an intertidal foundation species parallel shifts in community composition[J]. Global Change Biology, 2017, 23(1): 341-352..》Google Scholar
|
[6] |
Wang Y X, Lin S R, Xu L Z, et al. Comparative transcriptomic analysis revealed changes in multiple signaling pathways involved in protein degradation in the digestive gland of Mytilus coruscus during high-temperatures[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2023, 46: 101060..》Google Scholar
|
[7] |
Domínguez R, Olabarria C, Woodin S A, et al. Contrasting responsiveness of four ecologically and economically important bivalves to simulated heat waves[J]. Marine Environmental Research, 2021, 164: 105229..》Google Scholar
|
[8] |
Fuentes K, Brante A. Megadisturbances and ecological recovery in the intertidal zone: The role of interspecific competition between bioengineer mussel species[J]. Marine Ecology Progress Series, 2014, 515: 161-172..》Google Scholar
|
[9] |
Zhang W Y, Storey K B, Dong Y W. Synchronization of seasonal acclimatization and short-term heat hardening improves physiological resilience in a changing climate[J]. Functional Ecology, 2021, 35(3): 686-695..》Google Scholar
|
[10] |
Georgoulis I, Bock C, Lannig G, et al. Metabolic remodeling caused by heat hardening in the Mediterranean mussel Mytilus galloprovincialis[J]. Journal of Experimental Biology, 2022, 225(24): jeb244795..》Google Scholar
|
[11] |
Dong Z Y, Li H F, Wang Y J, et al. Transcriptome profiling reveals the strategy of thermal tolerance enhancement caused by heat-hardening in Mytilus coruscus[J]. Science of the Total Environment, 2023, 903: 165785..》Google Scholar
|
[12] |
Bilyk K T, Evans C W, DeVries A L. Heat hardening in Antarctic notothenioid fishes[J]. Polar Biology, 2012, 35(9): 1447-1451..》Google Scholar
|
[13] |
Bowler K. Acclimation, heat shock and hardening[J]. Journal of Thermal Biology, 2005, 30(2): 125-130..》Google Scholar
|
[14] |
Willot Q, Gueydan C, Aron S. Proteome stability, heat hardening and heat-shock protein expression profiles in Cataglyphis desert ants[J]. Journal of Experimental Biology, 2017, 220(Pt 9): 1721-1728..》Google Scholar
|
[15] |
Moghadam N N, Ketola T, Pertoldi C, et al. Heat hardening capacity in Drosophila melanogaster is life stage-specific and juveniles show the highest plasticity[J]. Biology Letters, 2019, 15(2): 20180628..》Google Scholar
|
[16] |
Stazione L, Norry F M, Sambucetti P. Heat-hardening effects on mating success at high temperature in Drosophila melanogaster[J]. Journal of Thermal Biology, 2019, 80: 172-177..》Google Scholar
|
[17] |
Gleason G S, Starr K, Sanger T J, et al. Rapid heat hardening in embryos of the lizard Anolis sagrei[J]. Biology Letters, 2023, 19(7): 20230174..》Google Scholar
|
[18] |
Moyen N E, Crane R L, Somero G N, et al. A single heat-stress bout induces rapid and prolonged heat acclimation in the California mussel, Mytilus californianus[J]. Proceedings Biological Sciences, 2020, 287(1940): 20202561..》Google Scholar
|
[19] |
Georgoulis I, Feidantsis K, Giantsis I A, et al. Heat hardening enhances mitochondrial potential for respiration and oxidative defence capacity in the mantle of thermally stressed Mytilus galloprovincialis[J]. Scientific Reports, 2021, 11(1): 17098..》Google Scholar
|
[20] |
Dunphy B J, Ruggiero K, Zamora L N, et al. Metabolomic analysis of heat-hardening in adult green-lipped mussel (Perna canaliculus): A key role for succinic acid and the GABAergic synapse pathway[J]. Journal of Thermal Biology, 2018, 74: 37-46..》Google Scholar
|
[21] |
Zhang H, Jia H X, Xiong P P, et al. Transcriptome and enzyme activity analyses of tolerance mechanisms in pearl oyster (Pinctada fucata) under high-temperature stress[J]. Aquaculture, 2022, 550: 737888..》Google Scholar
|
[22] |
Jesus T F, Grosso A R, Almeida-Val V M F, et al. Transcriptome profiling of two Iberian freshwater fish exposed to thermal stress[J]. Journal of Thermal Biology, 2016, 55: 54-61..》Google Scholar
|
[23] |
Yang S Y, Xu W Q, Tan C L, et al. Heat stress weakens the skin barrier function in sturgeon by decreasing mucus secretion and disrupting the mucosal microbiota[J]. Frontiers in Microbiology, 2022, 13: 860079..》Google Scholar
|
[24] |
Liu M K, Que H Y, Zhang G F, et al. The current standing of the Mediterranean mussel industry, the obstacles posed and its potential restoration[J]. Marine Sciences, 2022, 46(3): 135-144. [刘明坤,阙华勇,张国范,等. 紫贻贝养殖产业的现状、问题与对策[J]. 海洋科学,2022, 46(3): 135-144.].》Google Scholar
|
[25] |
Cannuel R, Beninger P G, McCombie H, et al. Gill development and its functional and evolutionary implications in the blue mussel Mytilus edulis (Bivalvia: Mytilidae)[J]. Biological Bulletin, 2009, 217(2): 173-188..》Google Scholar
|
[26] |
de Oliveira David J A, Salaroli R B, Fontanetti C S. Fine structure of Mytella falcata (Bivalvia) gill filaments[J]. Micron, 2008, 39(3): 329-336..》Google Scholar
|
[27] |
Kim D, Langmead B, Salzberg S L. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360..》Google Scholar
|
[28] |
Langmead B, Salzberg S L. Fast gapped-read alignment with bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359..》Google Scholar
|
[29] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550..》Google Scholar
|
[30] |
Khan F U, Hu M H, Kong H, et al. Ocean acidification, hypoxia and warming impair digestive parameters of marine mussels[J]. Chemosphere, 2020, 256: 127096..》Google Scholar
|
[31] |
Nie H T, Jiang K Y, Li N, et al. Transcriptomic analysis of Ruditapes philippinarum under aerial exposure and reimmersion reveals genes involved in stress response and recovery capacity of the Manila clam[J]. Aquaculture, 2020, 524: 735271..》Google Scholar
|
[32] |
Xu C X, Li Q, Chong J D. Combined effect of temperature, salinity, and rearing density on the larval growth of the black shell strain and wild population of the Pacific oyster Crassostrea gigas[J]. Aquaculture International, 2020, 28(1): 335-347..》Google Scholar
|
[33] |
Roychowdhury P, Aftabuddin M, Pati M K. Thermal stress-induced oxidative damages in the liver and associated death in fish, Labeo rohita[J]. Fish Physiology and Biochemistry, 2021, 47(1): 21-32..》Google Scholar
|
[34] |
Wang J, Dong B, Yu Z X, et al. The impact of acute thermal stress on green mussel Perna viridis: Oxidative damage and responses[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2018, 222: 7-15..》Google Scholar
|
[35] |
Liu X X, Zhang X M, Wang Y H. Effects of temperature on the respiratory metabolism, feeding and expression of three heat shock protein genes in Anadara broughtonii[J]. Journal of Oceanology and Limnology, 2021, 39(2): 755-769..》Google Scholar
|
[36] |
Wu L L, Chen Y S, Li S H. Effects on the filtration rate of Pinctada martensii with the algae concentration, weight and temperature[J]. Guangxi Sciences, 2010, 17(3): 267-270. [吴黎黎,陈元松,李树华. 饵料浓度、体重和温度对马氏珠母贝滤水率的影响[J]. 广西科学,2010, 17(3): 267-270.].》Google Scholar
|
[37] |
Jiang T Q, Zhang Y, Jiang Y Z, et al. Effects of heat stress on feeding, metabolism and related enzyme activities of Mytilus coruscus[J]. Chinese Journal of Ecology, 2020, 39(9): 3048-3056. [江天棋,张扬,姜亚洲,等. 高温胁迫对厚壳贻贝摄食、代谢和相关酶活性的影响[J]. 生态学杂志,2020, 39(9): 3048-3056.].》Google Scholar
|
[38] |
Yang J, Wei W, Tang B J. Effects of temperature stress on oxygen consumption rate and ammonia excretion rate of Meretrix meretrix[J]. Fishery Information & Strategy, 2018, 33(4): 279-283. [杨俭,魏伟,唐保军. 温度胁迫对文蛤耗氧率和排氨率的影响[J]. 渔业信息与战略,2018, 33(4): 279-283.].》Google Scholar
|
[39] |
Gao W, Shang Z L. Role of cytosolic ions in stomatal movement[J]. Chinese Bulletin of Botany, 2010, 45(5): 632-639. [高巍,尚忠林. 细胞内离子在气孔运动中的作用[J]. 植物学报,2010, 45(5): 632-639.].》Google Scholar
|
[40] |
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins[J]. Nature Reviews Molecular Cell Biology, 2019, 20(3): 175-193..》Google Scholar
|
[41] |
Witkop E M, Proestou D A, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge[J]. BMC Genomics, 2022, 23(1): 201..》Google Scholar
|
[42] |
Fang F, Chen X C, Zhu Y G, et al. The activation of JNK may be a signal transduction pathway in MPP+-induced apoptosis[J]. Chinese Journal of Pathophysiology, 2003, 19(2): 198-202. [方芳,陈晓春,朱元贵,等. JNK的激活在MPP+诱导SHSY5Y细胞凋亡的信号转导中的作用[J]. 中国病理生理杂志,2003, 19(2): 198-202.].》Google Scholar
|
[43] |
Moosavi M A, Yazdanparast R, Lotfi A. ERK1/2 inactivation and p38 MAPK-dependent caspase activation during guanosine 5’-triphosphate-mediated terminal erythroid differentiation of K562 cells[J]. The International Journal of Biochemistry & Cell Biology, 2007, 39(9): 1685-1697..》Google Scholar
|
[44] |
Newhouse K, Hsuan S L, Chang S H, et al. Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells[J]. Toxicological Sciences, 2004, 79(1): 137-146..》Google Scholar
|
[45] |
Matsumoto N, Imamura R, Suda T. Caspase-8-and JNK-dependent AP-1 activation is required for Fas ligand-induced IL-8 production[J]. The FEBS Journal, 2007, 274(9): 2376-2384..》Google Scholar
|
[46] |
Thornberry N A, Lazebnik Y. Caspases: Enemies within[J]. Science, 1998, 281(5381): 1312-1316..》Google Scholar
|
[47] |
Hornstein I, Alcover A, Katzav S. Vav proteins, Masters of the world of cytoskeleton organization[J]. Cellular Signalling, 2004, 16(1): 1-11..》Google Scholar
|
[48] |
Mao Y, Wang J P, Shi X Z, et al. Energy metabolism pathways control the fate of Sinonovacula constricta and induction of immune response under Vibrio parahaemolyticus challenge[J]. Aquaculture, 2023, 569: 739364..》Google Scholar
|
[49] |
Tep C, Kim M L, Opincariu L I, et al. Brain-derived neurotrophic factor (BDNF) induces polarized signaling of small GTPase (Rac1) protein at the onset of Schwann cell myelination through partitioning-defective 3 (Par3) protein[J]. Journal of Biological Chemistry, 2012, 287(2): 1600-1608..》Google Scholar
|
[50] |
Chen J, Zhang M J. The Par3/Par6/aPKC complex and epithelial cell polarity[J]. Experimental Cell Research, 2013, 319(10): 1357-1364..》Google Scholar
|