2. 中国水产科学研究院淡水渔业研究中心,农业农村部淡水渔业和种质资源利用重点实验室,江苏 无锡 214081
3. 上海海洋大学水产科学国家级实验教学示范中心,上海 201306
2. Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
翘嘴鲌(Culter alburnus),隶属于鲤形目(Cypriniformes),鲤科(Cyprinidae),鲌属(Culter),广泛分布于长江、珠江等流域的干支流水系及其附属湖泊[1]。作为典型的肉食性鱼类,翘嘴鲌不仅在维持水域生态平衡和生物多样性中发挥着关键作用[2],其生长迅速、个体较大、肉质鲜美的特点也使其逐渐成为淡水养殖的重要品种之一。随着国内外市场对优质鱼类蛋白需求的增加,翘嘴鲌养殖业迅速发展,成为带动区域经济发展的重要产业[3]。
然而,翘嘴鲌养殖产业快速发展的同时,也面临着种质资源退化、遗传改良滞后等瓶颈问题。与野生群体相比,养殖群体因有效群体规模小、人工选择和近亲繁殖等因素,遗传多样性水平通常较低[4-5]。低遗传多样性不仅限制了养殖群体的适应能力和抗病能力,还可能影响其在环境变化中的生存能力和生长性能,进而对养殖产业的可持续发展构成潜在威胁[6]。此外,近亲繁殖导致的遗传缺陷积累,进一步加剧了种质退化。因此,加强养殖群体遗传资源的监测、保护和管理至关重要。当前,翘嘴鲌的遗传学研究集中于采用线粒体DNA标记和微卫星标记等传统方法对野生群体展开分析。李大命等[7]基于线粒体Cyt b基因序列比较分析了长江、淮河下游湖泊的翘嘴鲌群体的遗传多样性;张桂宁等[8]基于线粒体CO II基因序列分析了长江下游5个翘嘴鲌野生群体的遗传多样性;胡玉婷等[9]利用10对微卫星标记分析了4个翘嘴鲌采样群体的遗传多样性与遗传结构。然而,这些早期广泛应用的分子标记方法在揭示群体遗传结构、基因组特征和挖掘关键适应基因方面存在一定的局限性[10-11]。随着测序技术的进步,通过全基因组重测序(whole genome resequencing, WGS)技术获取全基因组范围内的单核苷酸(single nucleotide polymorphism, SNP)位点,为遗传研究提供了新途径。WGS不依赖于预先定义的目标区域或特定的基因,能够检测到所有可能的遗传变异,具有更高的分辨率和更广泛的遗传变异覆盖,从而更准确地评估遗传多样性水平和群体结构,减少了因技术限制导致的遗传信息缺失[12]。目前,该技术已在鱼类、贝类和龟类等多个物种中得到了广泛应用。例如,熊飞等[13]利用WGS获取高通量SNP标记,分析了8个江段瓦氏黄颡鱼(Pelteobagrus vachelli)的遗传多样性和遗传分化水平;林璐等[14]基于WGS技术,系统解析了海湾扇贝(Argopecten irradians)群体南部亚种的遗传结构以及其与北部亚种间的遗传差异;杨华琳等[15]基于全基因组SNPs,从基因组水平评估了拟鳄龟(Chelydra serpentina)养殖群体的遗传多样性水平和群体遗传结构。
基于此,本研究以浙江太湖(TH)、广东清远(QY)和江苏扬州(YZ)三个不同地区的翘嘴鲌养殖群体为研究对象,利用WGS技术获取全基因组SNP标记,比较了三个养殖群体的遗传多样性和遗传特征,以期评估不同地区翘嘴鲌养殖群体的遗传多样性水平,揭示群体间的遗传差异,并挖掘养殖驯化过程中受选择的基因,旨在为优化翘嘴鲌的选育策略和养殖管理措施提供科学依据。
1 材料与方法 1.1 实验内容 1.1.1 测序样本采集及处理从浙江湖州太湖养殖场(TH, 29尾)、江苏扬州翘嘴鲌良种场(YZ, 30尾)和广东清远长湖渔业村(QY, 30尾)共采集89尾翘嘴鲌的鳍条样本,保存于无水乙醇中,随后送至青岛华大进行后续的DNA提取、质检、建库和测序工作。基因组DNA采用苯酚-氯仿法提取[16],并通过琼脂糖凝胶电泳及Qubit和NanoDrop仪器检测其完整性和浓度纯度。使用MGISEQ系列测序仪进行测序,合格的DNA样本经过随机打断、筛选合适长度片段、连接接头、PCR扩增制备DNB (DNA nanoball),然后在阵列化测序芯片上进行测序。原始序列数据利用fastp v0.23.3软件进行质控,生成高质量序列[17]。
1.1.2 序列比对及变异检测使用本团队组装的翘嘴鲌基因组(GCA_040182925.1,大小为1.052 Gb)作为参考基因组[2]。通过BWA软件将高质量读数比对到基因组上[18],利用SAMtools排序[19]和Picard软件的 MarkDuplicates工具去除重复。利用GATK v4.1.4.1的BaseRecalibrator 模块进行碱基质量重校正[20], Qualimap 2软件统计测序深度[21]。利用GATK的HaplotypeCaller工具检测SNP,通过GenotypeGVCFs工具合并和SelectVariants工具处理得到SNPs数据集。最后,使用SnpEff进行变异体注释[22],根据以下筛选标准获得用于后续分析的高质量SNPs: (1)测序深度过滤,平均测序深度≥5X; (2)次要等位基因频率(minor allele frequency, MAF)≥0.05; (3)样品SNP信息完整度为0.70; (4)SNP质量值Q大于30; (5)其他参数:QD<2.0, MQ<40.0, FS>60.0, SOR>6.0, MQRankSum< −12.5, ReadPosRankSum< −8.0,符合参数即保留。
1.2 数据分析 1.2.1 群体遗传多样性分析为评价三个群体的遗传多样性水平,基于过滤后的SNP变异文件,使用软件Stacks v2.59子程序populations的默认参数对私有变异位点数量、变异SNP位点数量、多态性位点的数量、多态性位点的百分比例等群体信息进行统计[23-24],计算群体观测杂合度(observed heterozygosity, Ho)、期望杂合度(expected heterozygosity, He)、多态信息含量(polymorphism information content, PIC)、等位基因数(number of alleles, Na)、有效等位基因数(number of effective allele, Ne)以及次等位基因频率(minor allele frequency, MAF),并比较分析群体核苷酸多样性水平(nucleotide diversity, π)。
1.2.2 亲缘关系与遗传分化分析通过近交系数(inbreeding coefficient, Fis)和IBS距离(identical by state)两个参数衡量群体亲缘关系。利用Stacks v2.59子程序populations的默认参数计算Fis, PLINK v1.9计算成对IBS并构建距离矩阵,再用R语言绘制热图可视化遗传距离结果。采用Arlequin v3.5[25]进行分子变异分析(analysis of molecular variance, AMOVA)。通过VCFtools以10 kb窗口计算pop1和pop2间的遗传分化指数(genetic differentiation coefficient, Fst)。通过高斯近似法从全基因组等位基因频率数据中分析遗传漂变,使用Treemix软件推断3个群体的历史分裂和混合的基因流(Nm)。
1.2.3 群体结构与连锁不平衡分析利用全基因组SNPs标记,通过软件GCTA v1.93.2进行主成分分析(principal component analysis, PCA);利用FastTree v2.1.9中的最大似然法(maximum likelihood, ML)构建进化树;通过Admixture v1.3.0软件对89个个体进行群体遗传结构分析,根据最小CV值对应的最佳K值进行最佳群体结构划分。使用软件PopLDdecay[26]分析全基因组连锁不平衡(linkage disequilibrium, LD),等位基因相关系数的平方(r2)用以衡量不同SNPs之间的连锁程度。
1.2.4 选择性扫描筛选和候选基因注释采用遗传分化指数(Fst)和核苷酸多样性(π)指标对不同群体的选择信号进行成对分析[27],选取Fst前5%和π比值上下各2.5%窗口作为候选基因的潜在选择区域,以TH群体为目标组,QY和YZ群体为参考组,鉴定选择区域内的基因[28]。使用BEDtools软件提取所选区域并进行基因注释,再通过R语言的clusterprofiler程序包[29]进行GO和KEGG富集分析。采用二项分布概率法,经FDR校正后,在P<0.05水平上检测显著富集的基因功能。
2 结果与分析 2.1 测序数据分析与变异鉴定结果三个翘嘴鲌养殖群体的原始序列数据经质控后得到1371.01 Gb的clean data, Q20和Q30平均值分别为97.91%和93.35%。测得的序列中A、T、G、C四种碱基平均值分别为31.15%、30.81%、19.07%和18.97%,碱基组成具有明显的偏倚性,G+C含量(38.04%)明显低于A+T含量(61.96%)。有9.10 Gb clean data定位到了参考基因组上,平均map率高达99.51%,平均覆盖深度为15.10×,平均基因组覆盖深度为14.48× (表1)。所有原始序列数据文件已上传至NCBI SRA数据库(PRJNA1070354)。
![]() |
表1 测序数及其质量统计 Tab. 1 Sequencing data and their quality statistics |
在3个翘嘴鲌群体的89尾个体中,总共鉴定出23156699个SNPs,分布在24条染色体上(图1)。依表2,从变异位点的分布统计来看,有10513077个SNPs (39.37%)位于内含子区域,有12607954个SNPs (47.21%)位于基因间区域,基因上游和下游区域分别有1342357 (5.03%)和1324570 (4.96%)个SNPs,在3′末端非翻译区域(3′UTR)、5′末端非翻译区域(5′UTR)和剪切位点区域分别发现了162837 (0.61%)、38532 (0.14%)和2505 (0.01%)个SNPs。仅713214个SNPs (2.67%)位于外显子区域,同义取代和非同义取代分别占SNPs总数的1.28% (341226)和1.31% (349760)。SNP变异类型以转换为主,转换与颠换类型的SNPs比率约为1.65。
![]() |
图1 SNPs在染色体上的密度分布 Fig. 1 Density distribution of SNPs on chromosomes |
![]() |
表2 按区域和类型划分的SNPs数量 Tab. 2 The number of SNPs by region and type |
在TH、QY和YZ 3个翘嘴鲌养殖群体的遗传多样性分析中,TH群体特有变异位点最多,为3527925个;QY和YZ群体分别有121104和100064个特有变异位点。从多态性位点数量和百分比例、多态信息含量(PIC)、次等位基因频率(MAF)和核苷酸多样性(π)等指标来看,QY群体表现出较高的遗传多样性,TH群体的遗传多样性明显低于QY和YZ群体(表3)。进一步分析发现,YZ群体的平均观测杂合度(Ho=0.210)高于平均预期杂合度(He=0.205),表明YZ群体的遗传多样性保持较好。YZ群体的等位基因数和有效等位基因数为1.653和1.330, QY群体分别为1.684和1.334, TH群体分别为1.460和1.205,等位基因在群体中的分布较为均匀,TH群体的有效等位基因数低于其他两个群体。
![]() |
表3 翘嘴鲌3个养殖群体遗传多样性指标统计 Tab. 3 Statistics on genetic diversity indexes of three cultured Culter alburnus populations |
根据全基因组SNP数据估计的TH、QY和YZ三个群体平均近交系数分别为0.192、0.063和−0.028,其中TH群体的近交系数最高,群体近交程度高于另外两个群体(表3)。IBS遗传距离分析显示,3个群体间遗传距离为0.1876~0.2199 (表4),其中QY和YZ群体的遗传距离最近,距离矩阵可视化结果如图2所示。Fst分析显示,QY群体和YZ群体之间的遗传分化程度较低(0<Fst< 0.05),分化指数为0.0403; TH群体与QY和YZ群体之间的遗传分化程度极高(Fst>0.25),分化指数分别为0.4376和0.4465 (表4)。此外,TH群体与QY和YZ群体之间的基因流Nm很小(Nm<1),分别为0.3213和0.3099,而QY和YZ群体基因交流频繁(Nm>1)(表4)。整体来看,TH群体因缺乏基因交流和其他群体间存在明显的遗传分化。群体间分子变异AMOVA分析显示,75.19%以上的遗传变异来自群体间(表5),表明群体内部的遗传结构较为一致,群体间可能在不同环境或选择压力下产生了遗传差异。
![]() |
图2 3个翘嘴鲌养殖群体89尾样本的个体间遗传距离(IBS)矩阵 Fig. 2 IBS distance matrix for 89 sampled individuals from three cultured Culter alburnus groups |
![]() |
表4 翘嘴鲌群体间遗传距离(IBS)、遗传分化指数(Fst)和基因流动(Nm)统计 Tab. 4 Statistics of genetic distance (IBS), genetic differentiation index (Fst) and gene flow (Nm) between any two of the three cultured Culter alburnus populations |
![]() |
表5 群体间分子变异分析(AMOVA) Tab. 5 Analysis of molecular variation among populations (AMOVA) |
对TH、QY和YZ群体进行遗传结构分析。PCA分析结果显示,采集的翘嘴鲌样本被明确分类为3个独立聚类。其中,TH群体个体紧密聚集,与其他两个群体明显分离(图3a)。QY和YZ群体也分别聚类,但略分散。群体最大似然进化树(ML tree)进一步验证了群体间的遗传关系,3个群体各自聚集成独立分支(图3b)。群体结构聚类分析中,设定祖先群体数量K=1~4,结合PCA和ML 聚类结果来看,确定K=3为最佳群体数量。TH群体被分离为一个独特的聚类,而QY和YZ群体在遗传上可能受到多个祖先群体的影响(图3c)。从种群历史有效群体大小结果可以看出,QY和YZ群体推测出的有效群体大小及变化趋势较为一致(图3d)。LD分析显示,TH群体的连锁程度较高,3个群体的连锁不平衡系数衰减速率差异较大,QY群体的衰减速度比TH和YZ群体慢。在0~500 kb的SNP位点物理区间内,TH群体的连锁不平衡系数远高于QY和YZ群体(图4)。
![]() |
图3 3个翘嘴鲌养殖群体的结构和系统发育分析a. 主成分分析;b. 最大似然树;c. 种群结构聚类图;d. 使用PSMC模型的有效群体大小分析. Fig. 3 Population structure and phylogenetic analysis of Culter alburnus from three cultured groupsa. Principal component analysis; b. Maximum likelihood tree; c. Population structure clustering diagram; d. Demographic histories constructed using the PSMC model. |
![]() |
图4 翘嘴鲌3个养殖群体全基因组连锁不平衡(LD)的衰减 Fig. 4 Decay of linkage disequilibrium (LD) in three cultured populations of Culter alburnus |
结合Fst和不同群体间π比值,检测强选择信号,将前5% Fst和π比率上下各2.5%的窗口作为潜在的选择区域,并对相邻和重叠的窗口进行合并,以筛选出目标基因(图5a、图5b)。以QY和YZ群体作为参考群体,驯化程度较高的TH群体作为目标群体鉴定基因。在QY与TH群体的比较中,扫描到的选择性区域鉴定到了572个候选基因,在Chr 3、Chr 7和Chr 17上扫描到更多的选择性区域(图5c);而YZ与TH群体的比较中鉴定到了602个选择性基因,在Chr 3、Chr 5和Chr 7上有更多的选择性扫描区域(图5d)。对选择扫描区域内或重叠的基因进行GO和KEGG途径富集分析以缩小基因选择范围。QY和TH群体比较的选择性基因在胆固醇生物合成过程(GO: 0006695)、甘油三酯分解代谢过程(GO: 0019433)、乳糜微粒(GO: 0042627)、细胞质应激颗粒(GO: 0010494)、染色质DNA结合(GO: 0031490)、胆固醇转运体活性(GO: 0017127)等条目显著富集(P<0.05) (图6a)。KEGG富集分析显示这些候选基因显著富集到了甘氨酸、丝氨酸和苏氨酸的新陈代谢(map00260)、MAPK信号通路(map04010)、磷脂酰肌醇信号系统(map04070)、脂肪酸生物合成(map00061)、乙醛酸和二羧酸代谢(map00630)、脂肪细胞因子信号途径(map04920)等应激和能量代谢相关通路(P<0.05) (图6b)。而YZ和TH群体比较的选择性基因在GO数据库中显著富集到了甘油三酯分解代谢过程(GO: 0019433)、胆固醇生物合成过程(GO: 0006695)、乳糜微粒(GO:0042627)、高密度脂蛋白颗粒(GO: 0034364)、染色质DNA结合(GO: 0031490)、酸性磷酸酶活性(GO: 0003993) (P<0.05) (图6c)等条目。KEGG富集分析显示这些候选基因在磷脂酰肌醇信号系统(map04070)、胰岛素信号通路(map04910)、脂肪细胞因子信号通路(map04920)、脂肪酸生物合成(map00061)、FoxO信号途径(map04068)、Hedgehog信号通路(map04340)等糖代谢和脂质代谢途径中显著富集(P<0.05) (图6d)。
![]() |
图5 翘嘴鲌群体选择特征分析a. QY vs TH群体的比较中具有强选择性信号的基因组区域;b. YZ vs TH群体的比较中具有强选择性信号的基因组区域;c. QY vs TH每条染色体SNP的移动平均Fst和π值曼哈顿图;d. YZ vs TH每条染色体SNP的移动平均Fst和π值曼哈顿图. Log2(θπ)比值(清远/太湖)和Fst值的分布在100 kb的窗口中以10 kb的步长计算. Fig. 5 Analysis of selection characteristics of Culter alburnusa. Genomic regions with strong selective signals in QY vs TH populations; b. Genomic regions with strong selective signals in YZ vs TH populations; c. Manhattan plot of moving average Fst and π values for SNPs across each chromosome in QY vs TH populations; d. Manhattan plot of moving average Fst and π values for SNPs across each chromosome in YZ vs TH populations; Distribution of log2(θπ) and Fst values calculated in 100 kb windows with 10 kb increments between QY/TH populations. |
![]() |
图6 选择性基因的GO富集分析和KEGG途径分类a. 对基于Fst和θπ方法重叠的QY vs TH群体候选基因进行GO富集分析;b. 对基于Fst和θπ方法重叠的QY vs TH群体候选基因进行KEGG途径分析;c. 对基于Fst和θπ方法重叠的YZ vs TH群体候选基因进行GO富集分析;d. 对基于Fst和θπ方法重叠的YZ vs TH群体候选基因进行KEGG途径分析. Fig. 6 GO enrichment analysis and KEGG pathway classifications of candidate genesa. GO classification analysis of QY vs TH populations candidate genes overlapped by Fst and θπ methods; b. KEGG pathway analysis of QY vs TH populations candidate genes overlapped by Fst and θπ methods; c. GO classification analysis of YZ vs TH populations candidate genes overlapped by Fst and θπ methods; d. KEGG pathway analysis of YZ vs TH populations candidate genes overlapped by Fst and θπ methods. |
单核苷酸多态性(SNP)是基因组中最常见的遗传变异类型,因其具有高密度分布和遗传稳定性,能够有效捕捉群体内部的细微遗传变异,成为解析群体遗传特征的关键工具[30-31]。本研究利用SNP标记,对TH、QY和YZ 3个翘嘴鲌养殖群体的遗传多样性、遗传分化和基因交流状况进行了综合探究。
遗传杂合度是衡量群体遗传多样性的重要指标[32]。基于SNP标记的遗传分析揭示,3个养殖群体的遗传多样性普遍偏低,尤其是TH群体,其观测杂合度低于期望杂合度(Ho<He),表明存在杂合子缺失和较高的近交风险。这与雷双永等[33]针对翘嘴鲌育种群体的研究结果一致,即观察到杂合子缺失现象,群体内近交程度较高。这种情况很可能与强烈的人工选择以及遗传瓶颈效应密切相关。相比之下,YZ群体展现出较高的环境适应潜力,其观测杂合度略高于期望杂合度(Ho=0.210, He=0.205)。TH群体的多态信息含量(PIC)、次等位基因频率(MAF)及核苷酸多态性(π)均低于QY和YZ群体,进一步说明TH群体的遗传多样性较低,并推测其经历了更为强烈的人工选择[34]。3个群体的杂合度均低于大口黑鲈选育群体的对应值(Ho=0.35, He=0.37)[35],提示翘嘴鲌养殖群体在遗传管理上可能普遍面临挑战。此外,3个养殖群体的SNP标记均呈现低度多态性(PIC<0.25),远低于刘士力等[36]先前基于微卫星位点的研究结果(PIC=0.344~0.885,平均0.699),这可能与养殖过程中的遗传选择和瓶颈效应对群体的影响有关。
从遗传分化和基因交流的角度来看,TH群体与其他两个群体存在明显的遗传分化,而QY和YZ群体间存在频繁的基因交流。AMOVA结果显示,群体间遗传变异占主导地位,表明群体间差异性较大。主成分分析、进化树及群体结构分析均显示TH群体独立聚类,与QY和YZ群体存在高度遗传分化(Fst>0.25)。据PSMC分析结果,QY和YZ群体的祖先可能在1万年前才发生分化,这与它们相对较小的遗传分化程度相符。TH群体的独特遗传特征可能源于其养殖过程中特定的人工选择和遗传管理策略,这些策略往往导致有益等位基因的固定、不利变异的淘汰,以及新遗传变异引入的限制,对群体遗传结构都产生了一定的影响[37]。群体近交系数和IBS距离分析进一步支持了TH群体较高的近交程度,而QY和YZ群体间亲缘关系较近。YZ群体平均近交系数为负值,表明群体内杂合子过剩,群体内存在较多的遗传变异[38]。基因流Nm统计显示,TH群体与另两个群体间基因交流极少(Nm=0.3213和Nm=0.3099, Nm<1),而QY和YZ群体间基因交流较为频繁(Nm=5.9586, Nm>1)。这可能与繁殖鱼苗来源的管理有关[39],包括不同养殖场间的鱼苗交流、引进和对野生个体的资源补充[40]。这种基因交流可能引入新的遗传变异,有助于增加群体的遗传多样性,从而提高其适应性和抗逆能力。LD衰减图分析显示,TH群体连锁程度高、选择强度大,而YZ群体连锁程度较低,遗传来源更为丰富,这与人工养殖群体的遗传适应机制相吻合,即遗传多样性、有效种群大小、世代数及选择强度共同决定其遗传适应性[41]。
根据研究结果,群体内部频繁的近亲繁殖与群体间明显的遗传分化是TH群体所特有的现象,这可能与其经历了更强烈的人工选择和较少的基因交流有关。相比之下,QY和YZ群体间有较多的基因交流,遗传多样性相对较高。这些发现对于制定针对性的遗传管理和保护策略具有重要启示,特别是在优化人工选择、引入外源遗传资源和促进不同群体间的基因交流方面。
3.2 翘嘴鲌养殖群体的选择特征分析本研究基于遗传分化指数(Fst)和核苷酸多样性(π)检测扫描选择性消除区域产生的强选择信号,比较驯化程度不同的三个养殖群体,来挖掘与其驯化环境和差异密切相关的功能区,筛选出候选基因。将受选择程度最高的TH群体与QY和YZ群体进行比较时发现,Chr 3和Chr 7表现出更强烈的选择信号,显示出更明显的分化特征,这表明这两条染色体上的区域可能经历了更强的选择。大量比较研究表明,养殖环境会导致鱼类的某些生物学特性发生一系列一致的变化[42]。在TH群体中,我们发现了许多与脂质代谢及能量代谢相关的基因和通路。例如胆固醇生物合成过程、甘油三酯分解代谢过程、胆固醇转运体活性、脂酰肌醇信号系统、脂肪酸生物合成、脂肪细胞因子信号途径等通路以及CBS、ACSL等基因。CBS基因编码的酶在硫氨酸代谢中起关键作用[43],而ACSL基因则调控脂肪酸的代谢[44]。这些发现表明,在翘嘴鲌的养殖驯化过程中,脂质代谢可能是一个重要的适应方向。通过优化脂质代谢相关基因的表达,以应对人工饲养条件下饲料成分和能量需求的变化。肉食性的翘嘴鲌在养殖环境中以摄食饲料为主,其脂质代谢和能量代谢途径的表达提升可能有助于提高翘嘴鲌对饲料中脂肪酸的吸收和转化,从而提高饲料利用效率,降低养殖成本。此外,我们还发现了MAP3K1、MAP2K5、VEGFA等与氧化应激和炎症反应相关的基因。研究表明,MAPK信号通路在鱼类免疫和应激反应中起着关键作用[45],而VEGFA则在低氧应答调节中发挥重要作用[46]。通过调控MAPK和VEGFA等基因的表达,翘嘴鲌可能提高了对环境胁迫的应答能力。在大口黑鲈中,MAPK已被证明参与了对冷应激的响应[47],类似的机制可能也存在于翘嘴鲌中。这些基因的表达变化可能反映了翘嘴鲌在养殖环境中对环境胁迫的适应性调整。
在自然环境中,翘嘴鲌可能通过遗传变异和自然选择来适应不同的生态环境;而在人工养殖条件下,人为的饲养管理和选择压力则可能加速了某些有利性状的固定和遗传结构的改变。未来,通过进一步的研究和分析,我们可以更深入地解析翘嘴鲌养殖驯化过程中的遗传机制和适应性变化。
4 结论本研究对来自3个不同地区的翘嘴鲌养殖群体进行全基因组重测序和分析,共获得了23156699个SNPs位点,并基于这些位点进行了深入的遗传分析。结果表明,3个群体的遗传多样性均较低,群体间的遗传分化和基因交流模式存在明显差异。群体的SNP变异以转换为主,TH群体的遗传多样性低于QY和YZ群体,且群体近交程度较高。相比之下,QY和YZ群体间存在更多的基因交流,遗传多样性相对较高。在遗传分化方面,TH群体与QY和YZ群体之间存在明显的遗传分化,而QY和YZ群体间的亲缘关系较近。此外,通过选择性清除分析和候选基因注释,我们发现了与脂质代谢、能量代谢以及环境胁迫应答相关的多个基因和通路,这可能与翘嘴鲌在养殖驯化过程中的饵料转变和环境适应等有关。未来,应进一步优化人工选择策略,引入外源遗传资源,并促进不同群体间的基因交流,以提高翘嘴鲌养殖群体的遗传多样性和环境适应性。
[1] |
Liu S L, Gu Z M, Jia Y Y, et al. Isolation and characterization of 32 microsatellite loci for topmouth culter (Culter alburnus Basilewsky)[J]. Genetics and Molecular Research, 2014, 13(3): 7480-7483..》Google Scholar
|
[2] |
Zhao H L, Fang D A, Wang Y, et al. A high-quality chromosome-level genome assembly of the topmouth culter (Culter alburnus Basilewsky, 1855)[J]. Scientific Data, 2024, 11(1): Article No.910..》Google Scholar
|
[3] |
Jia Y Y. Topmouth culter (Culter alburnus) all-female breeding system establishment and evaluation[D]. Shanghai: East China Normal University, 2019. [贾永义. 翘嘴鲌(Culter alburnus)全雌育种体系建立与评价[D]. 上海:华东师范大学,2019.].》Google Scholar
|
[4] |
Wang W, Chen L Q, Yang P, et al. Assessing genetic diversity of populations of topmouth culter (Culter alburnus) in China using AFLP markers[J]. Biochemical Systematics and Ecology, 2007, 35(10): 662-669..》Google Scholar
|
[5] |
Chen W, Zhang F Y, Wang J, et al. Genetic diversity of wild and cultured populations of Larimichthys crocea in the East China Sea and Yellow Sea based on CO I sequence[J]. Journal of Fishery Sciences of China, 2016, 23(6): 1255-1267. [谌微,张凤英,王景,等. 基于COⅠ基因序列的东、黄海区野生与养殖大黄鱼遗传多样性分析[J]. 中国水产科学,2016, 23(6): 1255-1267.].》Google Scholar
|
[6] |
Lorenzen K, Beveridge M C M, Mangel M. Cultured fish: Integrative biology and management of domestication and interactions with wild fish[J]. Biological Reviews of the Cambridge Philosophical Society, 2012, 87(3): 639-660..》Google Scholar
|
[7] |
Li D M, Yang Z P, Liu Y S, et al. Study on genetic diversity of Culter alburnus from six freshwater lakes in the lower reaches of the Yangtze and Huaihe Rivers based on mitochondrial DNA Cytb gene[J]. Jiangsu Agricultural Sciences, 2024, 52(3): 213-220. [李大命,杨子萍,刘燕山,等. 基于线粒体Cytb基因的江淮下游6个湖泊翘嘴鲌群体遗传多样性分析[J]. 江苏农业科学,2024, 52(3): 213-220.].》Google Scholar
|
[8] |
Zhang G N, Fang D A, Xue X P, et al. Genetic diversity analysis of Culter alburnus populations in the lower reach of Yangtze River based on COⅡ gene sequences[J]. Journal of Southern Agriculture, 2022, 53(7): 2025-2032. [张桂宁,方弟安,薛向平,等. 基于线粒体COⅡ基因序列的长江下游翘嘴鲌群体遗传多样性分析[J]. 南方农业学报,2022, 53(7): 2025-2032.].》Google Scholar
|
[9] |
Hu Y T, Hou G J. Genetic diversity analysis of wild Culter alburnus in Anhui province[J]. Journal of Biology, 2022, 39(4): 79-83. [胡玉婷,侯冠军. 安徽省翘嘴鲌野生群体的遗传多样性分析[J]. 生物学杂志,2022, 39(4): 79-83.].》Google Scholar
|
[10] |
Jiang H F, Qian Y T, Zhang Z, et al. Chromosome-level genome assembly and whole-genome resequencing of topmouth culter (Culter alburnus) provide insights into the intraspecific variation of its semi-buoyant and adhesive eggs[J]. Molecular Ecology Resources, 2023, 23(8): 1841-1852..》Google Scholar
|
[11] |
Zhou Q, Wang J L, Li J T, et al. Decoding the fish genome opens a new era in important trait research and molecular breeding in China[J]. Science China Life Sciences, 2024, 67(10): 2064-2083..》Google Scholar
|
[12] |
Kurland S, Saha A, Keehnen N, et al. New indicators for monitoring genetic diversity applied to alpine brown trout populations using whole genome sequence data[J]. Molecular Ecology, 2024, 33(2): e17213..》Google Scholar
|
[13] |
Xiong F, Liu H Y, Zhai D D, et al. Population genetic structure of Pelteobagrus vachelli in the upper Yangtze River based on genome re-sequencing[J]. Biodiversity Science, 2023, 31(4): 142-151. [熊飞,刘红艳,翟东东,等. 基于基因组重测序的长江上游瓦氏黄颡鱼群体遗传结构[J]. 生物多样性,2023, 31(4): 142-151.].》Google Scholar
|
[14] |
Lin L, Wang H, Zeng Q F, et al. Genomic analysis of the genetic diversity and signatures of selection in a bay scallop southern subspecies Argopecten irradians concentricus[J]. Journal of Fishery Sciences of China, 2023, 30(6): 669-676. [林璐,王浩,曾启繁,等. 海湾扇贝南部亚种遗传多样性和选择特征的基因组学解析[J]. 中国水产科学,2023, 30(6): 669-676.].》Google Scholar
|
[15] |
Yang H L, Li W, Ji L Q, et al. Analysis Genetic diversity and structural analysis of three aquaculture populations of crocodile turtles based on whole genome resequencing[J]. Journal of Southern Agriculture, 2024, 55(11): 3392-3403. [杨华琳,李伟,纪利芹,等. 基于全基因组重测序拟鳄龟遗传多样性及遗传结构分析[J]. 南方农业学报,2024, 55(11): 3392-3403.].》Google Scholar
|
[16] |
Sambrook J, Russell D W. Molecular cloning: A laboratory manual (volume 2)[M]. The 3rd edition. Huang P T, translated. Beijing: Science Press, 2002: 463-470. [(美)萨姆布鲁克,(美)拉塞尔. 分子克隆实验指南(下册)[M]. 第三版. 黄培堂,译. 北京:科学出版社,2002: 463-470.].》Google Scholar
|
[17] |
Chen S F, Zhou Y Q, Chen Y R, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890..》Google Scholar
|
[18] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-1760..》Google Scholar
|
[19] |
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079..》Google Scholar
|
[20] |
McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303..》Google Scholar
|
[21] |
Price M N, Dehal P S, Arkin A P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix[J]. Molecular Biology and Evolution, 2009, 26(7): 1641-1650..》Google Scholar
|
[22] |
Cingolani P, Platts A, Wang L L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff[J]. Fly, 2012, 6(2): 80-92..》Google Scholar
|
[23] |
Catchen J M, Amores A, Hohenlohe P, et al. Stacks: Building and genotyping Loci de novo from short-read sequences[J]. G3, 2011, 1(3): 171-182..》Google Scholar
|
[24] |
Catchen J, Hohenlohe P A, Bassham S, et al. Stacks: An analysis tool set for population genomics[J]. Molecular Ecology, 2013, 22(11): 3124-3140..》Google Scholar
|
[25] |
Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics, 2005, 1: 47-50..》Google Scholar
|
[26] |
Zhang C, Dong S S, Xu J Y, et al. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J]. Bioinformatics, 2019, 35(10): 1786-1788..》Google Scholar
|
[27] |
Weir B S, Cockerham C C. Estimating F-statistics for the analysis of population structure[J]. Evolution, 1984, 38(6): 1358-1370..》Google Scholar
|
[28] |
Liu C M, Wang S H, Dong X G, et al. Exploring the genomic resources and analysing the genetic diversity and population structure of Chinese indigenous rabbit breeds by RAD-seq[J]. BMC Genomics, 2021, 22(1): Article No.573..》Google Scholar
|
[29] |
Yu G C, Wang L G, Han Y Y, et al. clusterProfiler: An R package for comparing biological themes among gene clusters[J]. OMICS-A Journal of Integrative Biology, 2012, 16(5): 284-287..》Google Scholar
|
[30] |
Gao J, Zhou L, Nie Z J, et al. SNP polymorphisms in Edn1 gene and their associated maxilla length traits in Coilia nasus[J]. Journal of Fishery Sciences of China, 2023, 30(3): 259-267. [高俊,周琳,聂志娟,等. 刀鲚内皮素1基因SNP多态性及其与颌骨性状相关联分析[J]. 中国水产科学,2023, 30(3): 259-267.].》Google Scholar
|
[31] |
Chen S L, Xu W T, Liu Y. Fish genomic research: Decade review and prospect[J]. Journal of Fisheries of China, 2019, 43(1): 1-14. [陈松林,徐文腾,刘洋. 鱼类基因组研究十年回顾与展望[J]. 水产学报,2019, 43(1): 1-14.].》Google Scholar
|
[32] |
Luo H, Fang D A, He M, et al. Genetic diversity and population structure of Gymnocypris przewalskii based on SNP markers[J]. South China Fisheries Science, 2023, 19(1): 86-96. [罗慧,方弟安,何苗,等. 基于SNP标记的青海湖裸鲤遗传多样性及种群结构研究[J]. 南方水产科学,2023, 19(1): 86-96.].》Google Scholar
|
[33] |
Lei S Y, Zhang Y L, Zhou L, et al. Genetic difference analysis of four breeding populations of Culter alburnus[J]. Fisheries Science and Technology Information, 2016, 43(3): 131-135. [雷双永,张友良,周陆,等. 翘嘴鲌四个育种群体的遗传差异分析[J]. 水产科技情报,2016, 43(3): 131-135.].》Google Scholar
|
[34] |
Tang S J, Yang J, Zhao J L, et al. Analysis of genetic diversity and genetic bottleneck in Oreochromis niloticus populations under domestication and selective breeding[J]. Journal of Fisheries of China, 2016, 40(12): 1850-1865. [唐首杰,杨洁,赵金良,等. 尼罗罗非鱼人工驯养、选育群体遗传多样性及瓶颈效应[J]. 水产学报,2016, 40(12): 1850-1865.].》Google Scholar
|
[35] |
Hua J X, Tao Y F, Li Y, et al. Development of fast-growth SNP screening and association analysis with growth traits based on RAD-seq for largemouth bass (Micropterus salmoides) breeding populations[J]. Journal of Fishery Sciences of China, 2024, 31(3): 241-256. [华吉祥,陶易凡,李岩,等. 基于RAD-seq的大口黑鲈选育群体快长SNP挖掘及其与生长性状的关联分析[J]. 中国水产科学,2024, 31(3): 241-256.].》Google Scholar
|
[36] |
Liu S L, Jia Y Y, Liu J L, et al. Molecular characterization of two growth hormone receptor genes, and association analysis between microsatellite polymorphism and growth traits in the topmouth culter (Culter alburnus)[J]. Journal of Fisheries of China, 2020, 44(6): 894-906. [刘士力,贾永义,刘加林,等. 翘嘴鲌两种生长激素受体基因结构及微卫星多态性与生长性状的相关性[J]. 水产学报,2020, 44(6): 894-906.].》Google Scholar
|
[37] |
Xu B W, Yi P P, Fu X J, et al. Morphological characteristics and genetic differences in Quasipaa spinosa[J]. Journal of Fishery Sciences of China, 2024, 31(7): 780-793. [徐博文,易霈霈,傅雪军,等. 棘胸蛙形态特征及遗传差异分析[J].中国水产科学,2024, 31(7): 780-793.].》Google Scholar
|
[38] |
Li J L, Tang Y K, Li H X, et al. The genetic structure and genetic diversity in individuals with different genetic relationship in six families of common carp Cyprinus carpio var. jian[J]. Journal of Dalian Ocean University, 2013, 28(2): 166-170. [李建林,唐永凯,李红霞,等. 6个建鲤家系的遗传结构及不同亲缘关系个体间的遗传差异分析[J]. 大连海洋大学学报,2013, 28(2): 166-170..》Google Scholar
|
[39] |
Zheng L Y, Wei L Y, Yan X, et al. Genetic diversity analysis of cultured Hippocampus abdominalis population[J]. Journal of Fishery Sciences of China, 2024, 31(5): 537-545. [郑乐云,韦丽云,闫旭,等. 膨腹海马养殖群体遗传多样性[J]. 中国水产科学,2024, 31(5): 537-545.].》Google Scholar
|
[40] |
Duong V C, Nguyen N L. Development history of hybrid catfish farming in the Mekong Delta and the perception of farmers on hybrid issues[J]. Can Tho University Journal of Science, 2017(50): 91-96..》Google Scholar
|
[41] |
Frankham R, Ballou J D, Briscoe D A, et al. Introduction to conservation genetics[J]. Zoologica Africana, 2002, 38(1): 192-192..》Google Scholar
|
[42] |
Huntingford F A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes[J]. Journal of Fish Biology, 2004, 65: 122-142..》Google Scholar
|
[43] |
Shaposhnikov M V, Zakluta A S, Zemskaya N V, et al. Deletions of the cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) genes, involved in the control of hydrogen sulfide biosynthesis, significantly affect lifespan and fitness components of Drosophila melanogaster[J]. Mechanisms of Ageing and Development, 2022, 203: 111656..》Google Scholar
|
[44] |
Yang Z G, Zhu H B, Huang X P, et al. Molecular characterization, tissue distribution profile, and nutritional regulation of ACSL gene family in golden pompano (Trachinotus ovatus)[J]. International Journal of Molecular Sciences, 2022, 23(12): 6437..》Google Scholar
|
[45] |
Tian Y, Wen H S, Qi X, et al. Identification of mapk gene family in Lateolabrax maculatus and their expression profiles in response to hypoxia and salinity challenges[J]. Gene, 2019, 684: 20-29..》Google Scholar
|
[46] |
Liu B H, Li G L, Li X H, et al. The responsive mechanisms of DNA methylation and transcriptional regulation to acute hypoxia stress in HIF-1/VEGFA signal pathway of Japanese flounder (Paralichthys olivaceus)[J]. Aquaculture, 2024, 578: 740021..》Google Scholar
|
[47] |
Yu J J, Li Y, Zhang Z H, et al. Genome-wide identification of MKK and MAPK gene families and their expression analysis under abiotic stress in largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2022, 561: 738688..》Google Scholar
|