基于最大熵模型的南太平洋长鳍金枪鱼栖息地预测
作者:
作者单位:

作者简介:

张嘉容(1995-),女,硕士研究生,从事长鳍金枪鱼渔场研究.E-mail:jrzhang0922@163.com

通讯作者:

杨晓明,副教授,研究方向为渔业GIS.E-mail:xmyang@shou.edu.cn

中图分类号:

基金项目:


Analysis of albacore (Thunnus alalunga) habitat distribution in the south Pacific using maximum entropy model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    长鳍金枪鱼(Thunnus alalunga)是一种高度洄游的中上层鱼类,其分布受环境影响明显,利用海洋环境的变化对其栖息地分布进行预测有重要的科学意义。本研究采用2015—2017年盛渔期中国(不含港澳台地区)渔船在南太平洋140°E~130°W,0°~50°S区域长鳍金枪鱼延绳钓渔捞日志数据,结合同时期海洋环境数据,使用最大熵模型获得了2015—2016年盛渔期(5—8月)长鳍金枪鱼渔获率对各环境因子的反馈曲线以及各环境因子的贡献率,并据此计算出2017年盛渔期其潜在栖息地分布,然后叠加同年真实渔业数据对各模型的预测准确率进行比较。结果表明:(1)由渔获率对各环境因子的反馈曲线发现,25°S以北区域最适宜长鳍金枪鱼栖息的海表温度为28.4~30.6℃,300 m水深温度为13.2~17.6℃,海表面盐度为35.6~36.7,海表风场南北分量为-1.6~5.8 m/s;25°S以南区域最适宜长鳍金枪鱼栖息的海表温度为17.8~23.4℃,300 m水深温度为12.2~16.9℃,海表面盐度为35.2~36.0,海表风场南北分量为-0.7~4.9 m/s,总体相似。(2)25°S以北区域环境因子的重要性排名由高到低依次为海表面温度(因子平均贡献率31.3%)、海表面盐度(30.1%)、300 m水深温度(29.2%)、海表风场南北分量(9.4%);在25°S以南区域依次为海表面温度(60.7%)、海表面盐度(22.4%)、海表风场南北分量(10.6%)和300 m水深温度(6.3%);在25°S以南区域,最重要的环境因子为海表面温度(平均贡献率大于60%),且显著高于以北区域的31%;在25°S以北区域,3个主要环境因子的重要性差异较小,平均贡献率都在30%左右。(3)模型的综合预测准确率在30%~85%,具体以中适生区的预测准确率较高,高、低适生区预测准确率相对较低。

    Abstract:

    Albacore (Thunnus alalunga) is a migratory pelagic species, and its spatio-temporal distribution is vulnerable to environmental variation. Thus, a better understanding of the environmental effects on the albacore habitat is of great scientific importance. We used information from the albacore logbooks of mainland China commercial longline vessels and the oceanographic environmental data in the area of 140°E-130°W, 0°-50°S for the South Pacific fishing season (from May to August) from 2015 to 2017 to analyze the response curves of the environmental factors affecting albacore catch per unit effort (CPUE) and the contribution rate of the environ­mental factors through a maximum entropy model (MaxEnt). We also explored the potential albacore habitat in the main 2017 fishing season and assessed the prediction accuracies compared to the actual catch data. The results showed that:(1) the optimal range of environmental factors were homologous:28.4-30.6℃ of sea surface temperature, 13.2-17.6℃ of sea temperature at 300 m depth, 35.6-36.7 of sea surface salinity, -1.6-5.8 m/s of northward sea surface wind north of 25°N, and 17.8-23.4℃ of sea surface temperature, 12.2-16.9℃ of sea temperature at 300 m depth, 35.2-36.0 of sea surface salinity, -0.7-4.9 m/s of northward sea surface wind north of 25°S. (2) The environmental factors (sorted by importance) north of 25°S were sea surface temperature (31.3%), sea temperature at 300 m depth (30.1%), sea surface salinity (29.2%), and northward sea surface wind (9.4%); north of 25°S, the environmental factors were sea surface temperature(60.7%), sea surface salinity (22.4%), northward sea surface wind (10.6%), and sea temperature at 300 m depth (6.3%). The most important environmental factor north of 25°S was sea surface temperature (over 60%, on average), which was more significant than the same variable north of 25°S. The importance of the first three environmental factors was similar north of 25°S (approximately 30%, on average). (3) The overall prediction accuracy was 30%-85%; the prediction accuracy of the medium potential habitat was relatively high, while prediction accuracies for the high and low potential habitats were low, as a result of the model and limited data.

    参考文献
    相似文献
    引证文献
引用本文

张嘉容, 杨晓明, 田思泉.基于最大熵模型的南太平洋长鳍金枪鱼栖息地预测[J].中国水产科学,2020,27(10):1222-1233
ZHANG Jiarong, YANG Xiaoming, TIAN Siquan. Analysis of albacore (Thunnus alalunga) habitat distribution in the south Pacific using maximum entropy model[J]. Journal of Fishery Sciences of China,2020,27(10):1222-1233

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-04
  • 最后修改日期:2020-03-29
  • 录用日期:
  • 在线发布日期: 2020-10-20
  • 出版日期:
文章二维码