鱼类卵子发育与卵泡闭锁的研究进展
作者:
作者简介:

强俊(1984–),男,副研究员,博士研究生,研究方向为水产生物技术.E-mail:qiangjunn@163.com

基金项目:

国家自然科学基金项目(31502143); 中国水产科学研究院基本科研业务费项目(2020TD37).


Research progress of egg development and follicle atresia in fish
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [107]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    鱼类种群繁衍离不开优质卵子的产出。卵子质量问题限制了许多海洋和淡水鱼类养殖业的发展。卵子质量主要受卵黄形成与卵母细胞发育的影响。亲本营养、管理以及其他内源或外源因素可能会影响卵黄组成与卵泡发育。与哺乳动物相比, 鱼类卵母细胞发育与调控机制的研究尚不清晰。本文分析了鱼类卵子发育特点, 探讨了亲本来源、育龄、环境因子以及营养等因素对鱼类卵子发生、发育与受精后仔鱼成活率的影响及其生理适应策略; 又从基因、miRNA 与蛋白表达等分子层面阐述了影响卵母细胞发育的分子调控机制; 解析了闭锁与过熟是卵泡发育的重要现象。本文在总结已有卵母细胞发育研究进展的基础上, 提出了闭锁卵泡的形成与调控可能的影响因素, 以期为深入理解卵泡闭锁在鱼类繁育生物学中的作用与其调控机制的研究提供理论参考。

    参考文献
    [1] Bromage N, Jones J, Randall C, et al. Broodstock management, fecundity, egg quality and the timing of egg production in the rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 1992, 100(1-3): 141-166.
    [2] Bromage N R, Roberts R J. Broodstock Management and Egg and Larval Quality[M]. Oxford: Blackwell Science,1995: 424. [3] Rise M L, Nash G W, Hall J R, et al. Variation in embryonic mortality and maternal transcript expression among Atlantic cod (Gadus morhua) broodstock: A functional genomics study[J]. Marine Genomics, 2014, 18: 3-20.
    [4] Tsadik Getinet G. Effects of maternal age on fecundity,spawning interval, and egg quality of Nile tilapia, Oreochromis niloticus (L.)[J]. Journal of the World Aquaculture Society, 2008, 39(5): 671-677.
    [5] Taranger G L, Carrillo M, Schulz R W, et al. Control of puberty in farmed fish[J]. General and Comparative Endocrinology, 2010, 165(3): 483-515.
    [6] Wang N, Teletchea F, Kestemont P, et al. Photothermal control of the reproductive cycle in temperate fishes[J]. Reviews in Aquaculture, 2010, 2(4): 209-222.
    [7] Wu C L, Guo Y J, Xu H Q, et al. Autophagy and mammalian follicular atresia[J]. Chinese Journal of Cell Biology, 2013, 35(9): 1397-1404. [吴春丽, 郭燕君, 徐海琦, 等.自噬与哺乳动物卵泡闭锁[J]. 中国细胞生物学学报,2013, 35(9): 1397-1404].
    [8] Tyler C R, Sumpter J P. Oocyte growth and development in teleosts[J]. Reviews in Fish Biology and Fisheries, 1996,6(3): 287-318.
    [9] Caswell H, Naiman R J, Morin R. Evaluating the consequences of reproduction in complex salmonid life cycles[J]. Aquaculture, 1984, 43(1-3): 123-134.
    [10] Siddique M A M, Butts I A E, Linhart O, et al. Fertilization strategies for sea bass Dicentrarchus labrax (Linnaeus, 1758): Effects of pre-incubation and duration of egg receptivity in seawater[J]. Aquaculture Research, 2017, 48(2):386-394.
    [11] Cai Z P, Li M, Hu C Q. A preliminary study on reproductive characteristics and induced spawning of mangrove red snapper Lutjanus argentimaculatus[J]. Journal of Tropical Oceanography, 2002, 21(4): 22-29. [蔡泽平, 李沫, 胡超群.紫红笛鲷繁殖特性及诱导产卵的初步研究[J]. 热带海洋学报, 2002, 21(4): 22-29.
    [12] Liu H W, Stickney R R, Dickhoff W W, et al. Effects of environmental factors on egg development and hatching of Pacific halibut Hippoglossus stenolepis[J]. Journal of the World Aquaculture Society, 1994, 25: 317-321.
    [13] Coward K, Bromage N R. Reproductive physiology of female tilapia broodstock[J]. Reviews in Fish Biology and Fisheries, 2000, 10(1): 1-25.
    [14] Weber M J, Brown M L. Maternal effects of common carp on egg quantity and quality[J]. Journal of Freshwater Ecology, 2012, 27(3): 409-417.
    [15] Gao X Q, Liu Z F, Huang B, et al. Reproductive property of the American shad, Alosa sapidissima, under reared conditions[J]. Open Journal of Fisheries Research, 2018, 5(2): 98-111. [高小强, 刘志峰, 黄滨, 等. 美洲鲥繁殖特性研究[J]. 水产研究, 2018, 5(2): 98-111.
    [16] Páll M K, Hellqvist A, Schmitz M, et al. Changes in reproductive physiology and behaviour over the nesting cycle in male three-spined sticklebacks[J]. Journal of Fish Biology,2005, 66(5): 1400-1410.
    [17] Eding E H, van Zanten G H, Bongers A B J, et al. Induction of ovarian development in European eel (Anguilla anguilla) with low dosages of carp pituitary suspensions[C]// Proceedings of the 4th International Symposium on Reproductive Physiology of Fish. Sheffield: University of Sheffield Press,1991: 321.
    [18] de Graaf G J, Galemoni F, Huisman E A. Reproductive biology of pond reared Nile tilapia, Oreochromis niloticus L. [J]. Aquaculture Research, 1999, 30(1): 25-33.
    [19] Reading B J, Andersen L K, Ryu Y W, et al. Oogenesis and egg quality in finfish: Yolk formation and other factors influencing female fertility[J]. Fishes, 2018, 3(4): 45.
    [20] Selman K, Wallace R A. Cellular aspects of oocyte growth in teleosts[J]. Zoological Science, 1989, 6: 211-231.
    [21] Gallagher M L, Paramore L, Alves D, et al. Comparison of phospholipid and fatty acid composition of wild and cultured striped bass eggs[J]. Journal of Fish Biology, 1998,52(6): 1218-1228.
    [22] Grung M, Svendsen Y S, Liaaen-Jensen S. The carotenoids of eggs of wild and farmed cod (Gadus morhua)[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 106(2): 237-242.
    [23] Salze G, Tocher D R, Roy W J, et al. Egg quality determinants in cod (Gadus morhua L.): Egg performance and lipids in eggs from farmed and wild broodstock[J]. Aquaculture Research, 2005, 36(15): 1488-1499.
    [24] Czesny S, Dabrowski K. The effect of egg fatty acid concentrations on embryo viability in wild and domesticated walleye (Stizostedion vitreum)[J]. Aquatic Living Resources, 1998, 11(6): 371-378.
    [25] Ashton H J, Farkvam D O, March B E. Fatty acid composition of lipids in the eggs and alevins from wild and cultured Chinook salmon (Oncorhynchus tshawytscha)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(3):648-655.
    [26] Navot D, Drews M R, Bergh P A, et al. Age-related decline in female fertility is not due to diminished capacity of the uterus to sustain embryo implantation[J]. Fertility and Sterility, 1994, 61(1): 97-101.
    [27] Koenig J L, Stormshak F. Cytogenetic evaluation of ova from pubertal and third-estrous gilts[J]. Biology of Reproduction, 1993, 49(6): 1158-1162.
    [28] Brooks S, Tyler C R, Sumpter J P. Egg quality in fish: What makes a good egg?[J]. Reviews in Fish Biology and Fisheries, 1997, 7(4): 387-416.
    [29] Dabrowski K, Blom J H. Ascorbic acid deposition in rainbow trout (Oncorhynchus mykiss) eggs and survival of embryos[J]. Comparative Biochemistry and Physiology Physiology Part A: Physiology, 1994, 108(1): 129-135.
    [30] Taranger G L, Haux C, Stefansson S O, et al. Abrupt changes in photoperiod affect age at maturity, timing of ovulation and plasma testosterone and oestradiol-17β profiles in Atlantic salmon, Salmo salar[J]. Aquaculture, 1998,162(1-2): 85-98.
    [31] Bonnet E, Montfort J, Esquerre D, et al. Effect of photoperiod manipulation on rainbow trout (Oncorhynchus mykiss) egg quality: A genomic study[J]. Aquaculture, 2007,268(1-4): 13-22.
    [32] El-Sayed A F M, Kawanna M. Effects of photoperiod on growth and spawning efficiency of Nile tilapia (Oreochromis niloticus L.) broodstock in a recycling system[J]. Aquaculture Research, 2007, 38(12): 1242-1247.
    [33] Brown N P, Bromage N R, Shields R J. The effect of spawning temperature on egg viability in the Atlantic halibut (Hippoglossus hippoglossus)[C]// Proceedings of the Fifth International Symposium on the Reproductive Physiology of Fish. Austin: Fish Symposium 95, 1995: 181.
    [34] Pountney S M, Lein I, Migaud H, et al. High temperature is detrimental to captive lumpfish (Cyclopterus lumpus, L) reproductive performance[J]. Aquaculture, 2020, 522: 735121.
    [35] Ashton N K, Jensen N R, Ross T J, et al. Temperature and maternal age effects on burbot reproduction[J]. North American Journal of Fisheries Management, 2019, 39(6):1192-1206.
    [36] Tveiten H, Solevåg S E, Johnsen H K. Holding temperature during the breeding season influences final maturation and egg quality in common wolffish[J]. Journal of Fish Biology,2001, 58(2): 374-385.
    [37] Atse C B, Audet C, de la Noüe J. Effects of temperature and salinity on the reproductive success of Arctic charr, Salvelinus alpinus (L.): Egg composition, milt characteristics and fry survival[J]. Aquaculture Research, 2002, 33(4): 299-309.
    [38] Su M L, Duan Z Y, Shi H W, et al. The effects of salinity on reproductive development and egg and larvae survival in the spotted scat Scatophagus argus under controlled conditions[J]. Aquaculture Research, 2019, 50(7): 1782-1794.
    [39] Siddiqui A Q, Al-Hafedh Y S, Ali S A. Effect of dietary protein level on the reproductive performance of Nile tilapia,Oreochromis niloticus (L.)[J]. Aquaculture Research, 1998,29(5): 349-358.
    [40] Al Hafedh Y S. Effects of dietary protein on growth and body composition of Nile tilapia, Oreochromis niloticus L.[J]. Aquaculture Research, 1999, 30(5): 385-393.
    [41] Watanabe T, Takeuchi T, Saito M, et al. Effect of low protein-high calory or essential fatty acid deficiency diet on reproduction of rainbow trout[J]. Nippon Suisan Gakkaishi, 1984, 50(7): 1207-1215.
    [42] Abidin M Z, Hashim R, Chong Shu Chien A. Influence of dietary protein levels on growth and egg quality in broodstock female bagrid catfish (Mystus nemurus Cuv. & Val.)[J]. Aquaculture Research, 2006, 37(4): 416-418.
    [43] Afzal Khan M, Jafri A K, Chadha N K. Effects of varying dietary protein levels on growth, reproductive performance,body and egg composition of rohu, Labeo rohita (Hamilton)[J]. Aquaculture Nutrition, 2005, 11(1): 11-17.
    [44] Manissery J K, Krishnamurthy D, Gangadhara B, et al.Effect of varied levels of dietary protein on the breeding performance of common carp Cyprinus carpio[J]. Asian Fisheries Science, 2001, 14: 317-322.
    [45] Santiago C B, Camacho A S, Laron M A. Growth and reproductive performance of bighead carp (Aristichthys nobilis) reared with or without feeding in floating cages[J]. Aquaculture, 1991, 96(2): 109-117.
    [46] Bentley C D, Watanabe W O, Rezek T C, et al. Preliminary investigations on the effects of dietary lipid on the spawning performance and egg quality of black sea bass Centropristis striata L.[J]. Aquaculture Research, 2009, 40(16): 1873-1883.
    [47] Durland E R, Quintero H E, Davis D A, et al. Influence of forage fish and dietary lipid supplements on egg quality and fry production in channel catfish (Ictalurus punctatus) × blue catfish (Ictalurus furcatus) hybridization[J]. Aquaculture Nutrition, 2010, 16(2): 153-162.
    [48] Bogevik A S, Natário S, Karlsen Ø, et al. The effect of dietary lipid content and stress on egg quality in farmed Atlan-tic cod Gadus morhua[J]. Journal of Fish Biology, 2012,81(4): 1391-1405.
    [49] Furuita H, Unuma T, Nomura K, et al. Lipid and fatty acid composition of eggs producing larvae with high survival rate in the Japanese eel[J]. Journal of Fish Biology, 2006,69(4): 1178-1189.
    [50] Cruzado I H, Herrera M, Quintana D, et al. Total lipid and fatty acid composition of brill eggs Scophthalmus rhombus L. relationship between lipid composition and egg quality[J].Aquaculture Research, 2011, 42(7): 1011-1025.
    [51] Sargent J R. Origin and functions of egg lipids: nutritional implications[M]//Bromage N R, Roberts R J. Broodstock Management and Eggs and Larval Quality. London: Blackwell Science, 1995: 353-372.
    [52] Sargent J, McEvoy L, Estevez A, et al. Lipid nutrition of marine fish during early development: Current status and future directions[J]. Aquaculture, 1999, 179(1-4): 217-229.
    [53] Carrillo M, Zanuy S. Manipulación de la reproducción de los teleósteosy calidad de las puestas[C]//Sant Carles de la Rápita: Proceedings of the Actas del V Congreso Nacionalde Acuicultura, 1995: 1-9.
    [54] Fernández-Palacios H, Izquierdo M S, Robaina L, et al.Effect of n-3 HUFA level in broodstock diets on egg quality of gilthead sea bream (Sparus aurata L.)[J]. Aquaculture,1995, 132(3-4): 325-337.
    [55] Fontagné-Dicharry S, Lataillade E, Surget A, et al. Effects of dietary vitamin A on broodstock performance, egg quality, early growth and retinoid nuclear receptor expression in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2010,303(1-4): 40-49.
    [56] Craik J C A. Egg quality and egg pigment content in salmonid fishes[J]. Aquaculture, 1985, 47(1): 61-88.
    [57] Watanabe T, Kiron V. Broodstock management and nutritional approaches for quality offsprings in the Red Sea Bream[M]//Bromage N R, Roberts R J. Broodstock Management and Egg Larval Quality. Oxford: Blackwell Science, 1995.
    [58] Takeuchi M, Ishii S, Ogiso T. Effect of dietary vitamin E on growth, vitamin E distribution, and mortalities of the fertilized eggs and fry in ayo, Plecoglossus altivelis[J]. Bulletin of the Tokai Regional Fisheries Research Laboratory, 1981,104: 111-122.
    [59] Watanabe T, Lee M J, Mizutani J, et al. Effective components in cuttlefish meal and raw krill for improvement of quality of red seabream Pagrus major eggs[J]. Nippon Suisan Gakkaishi, 1991, 57(4): 681-694.
    [60] Watanabe T. Effect of broodstock diets on reproduction of fish[J]. Advances in Tropical Aquaculture, 1990, 9: 542-543.
    [61] Izquierdo M S, Fernández-Palacios H, Tacon A G J. Effect of broodstock nutrition on reproductive performance of fish[J]. Aquaculture, 2001, 197(1-4): 25-42.
    [62] Eskelinen P. Effects of different diets on egg production and egg quality of Atlantic salmon (Salmo salar L.)[J]. Aquaculture, 1989, 79(1-4): 275-281.
    [63] Tingaud-Sequeira A, Chauvigné F, Lozano J, et al. New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis[J]. BMC Genomics, 2009, 10: 434.
    [64] Chapman R W, Reading B J, Sullivan C V. Ovary transcriptome profiling via artificial intelligence reveals a transcriptomic fingerprint predicting egg quality in striped bass, Morone saxatilis[J]. PLoS ONE, 2014, 9(5): e96818.
    [65] Sullivan C V, Chapman R W, Reading B J, et al. Transcriptomics of mRNA and egg quality in farmed fish: Some recent developments and future directions[J]. General and Comparative Endocrinology, 2015, 221: 23-30.
    [66] Żarski D, Nguyen T, Le Cam A, et al. Transcriptomic profiling of egg quality in sea bass (Dicentrarchus labrax) sheds light on genes involved in ubiquitination and translation[J]. Marine Biotechnology, 2017, 19(1): 102-115.
    [67] Aegerter S, Jalabert B, Bobe J. Messenger RNA stockpile of cyclin B, insulin-like growth factor I, insulin-like growth factor II, insulin-like growth factor receptor Ib, and p53 in the rainbow trout oocyte in relation with developmental competence[J]. Molecular Reproduction and Development,2004, 67(2): 127-135.
    [68] Mathavan S, Lee S G, Mak A, et al. Transcriptome analysis of zebrafish embryogenesis using microarrays[J]. PLoS Genetics, 2005, 1(2): e29.
    [69] Fernández C G, Roufidou C, Antonopoulou E, et al. Expression of developmental-stage-specific genes in the gilthead sea bream Sparus aurata L.[J]. Marine Biotechnology,2013, 15(3): 313-320.
    [70] Ramachandra R K, Salem M, Gahr S, et al. Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss): Their expression during early embryonic development[J]. BMC Developmental Biology, 2008, 8: 41.
    [71] Juanchich A, Le Cam A, Montfort J, et al. Identification of differentially expressed miRNAs and their potential targets during fish ovarian development[J]. Biology of Reproduction, 2013, 88(5): 128.
    [72] Jamnongjit M, Hammes S R. Ovarian steroids: The good, the bad, and the signals that raise them[J]. Cell Cycle, 2006,5(11): 1178-1183.
    [73] Bobe J, Nguyen T, Jalabert B. Targeted gene expression profiling in the rainbow trout (Oncorhynchus mykiss) ovary during maturational competence acquisition and oocyte maturation[J]. Biology of Reproduction, 2004, 71(1): 73-82.
    [74] Kanamori A. Systematic identification of genes expressed during early oogenesis in medaka[J]. Molecular Reproduction and Development, 2000, 55(1): 31-36.
    [75] Kawaguchi M, Yasumasu S, Shimizu A, et al. Conservation of the egg envelope digestion mechanism of hatching enzyme in euteleostean fishes[J]. The FEBS Journal, 2010,277(23): 4973-4987.
    [76] Ma H, Weber G M, Hostuttler M A, et al. MicroRNA expression profiles from eggs of different qualities associated with post-ovulatory ageing in rainbow trout (Oncorhynchus mykiss)[J]. BMC Genomics, 2015, 16(1): 201.
    [77] Xiao J, Zhong H, Zhou Y, et al. Identification and characterization of microRNAs in ovary and testis of Nile tilapia(Oreochromis niloticus) by using Solexa sequencing technology[J]. PLoS ONE, 2014, 9(1): e86821
    [78] Wang P P, Wang L, Yang J, et al. Sex-biased miRNAs of yellow catfish (Pelteobagrus fulvidraco) and their potential role in reproductive development[J]. Aquaculture, 2018,485: 73-80.
    [79] Yilmaz O, Patinote A, Nguyen T V, et al. Scrambled eggs:Proteomic portraits and novel biomarkers of egg quality in zebrafish (Danio rerio)[J]. PLoS ONE, 2017, 12(11):e0188084.
    [80] Castets M D, Schaerlinger B, Silvestre F, et al. Combined analysis of Perca fluviatilis reproductive performance and oocyte proteomic profile[J]. Theriogenology, 2012, 78(2):432-442.
    [81] Jalabert B. Particularities of reproduction and oogenesis in teleost fish compared to mammals[J]. Reproduction, Nutrition, Development, 2005, 45(3): 261-279.
    [82] Habibi H R, Andreu-Vieyra C V. Hormonal regulation of follicular atresia in teleost fish[M]//Babin P J, Cerdà J,Lubzens E. The Fish Oocyte: From Basic Studies to Biotechnological Applications. Dordrecht: Springer, 2007:235-253.
    [83] Hunter J R, Macewicz B J. Rates of atresia in the ovary of captive and wild northern anchovy, Engraulis mordax[J].Fishery Bulletin, 1985, 83: 119-136.
    [84] Ganias K, Nunes C, Stratoudakis Y. Use of late ovarian atresia in describing spawning history of sardine, Sardina pilchardus[J]. Journal of Sea Research, 2008, 60(4): 297-302.
    [85] Qiang J, Duan X J, Zhu H J, et al. Some ‘white’ oocytes undergo atresia and fail to mature during the reproductive cycle in female genetically improved farmed tilapia (Oreochromis niloticus)[J]. Aquaculture, 2021, 534: 736278.
    [86] Wood A W, van der Kraak G J. Apoptosis and ovarian function: Novel perspectives from the teleosts[J]. Biology of Reproduction, 2001, 64(1): 264-271.
    [87] Corriero A, Zupa R, Bello G, et al. Evidence that severe acute stress and starvation induce rapid atresia of ovarian vitellogenic follicles in Atlantic bluefin tuna, Thunnus thynnus (L.) (Osteichthyes: Scombridae)[J]. Journal of Fish Diseases, 2011, 34(11): 853-860.
    [88] McCormick J H, Stokes G N, Hermanutz R O. Oocyte atresia and reproductive success in fathead minnows(Pimephales promelas) exposed to acidified hardwater environments[J]. Archives of Environmental Contamination and Toxicology, 1989, 18(1-2): 207-214.
    [89] Coward K, Bromage N R, Little D C. Inhibition of spawning and associated suppression of sex steroid levels during confinement in the substrate-spawning tilapia zillii[J]. Journal of Fish Biology, 1998, 52(1): 152-165.
    [90] Mylonas C C, Bridges C, Gordin H, et al. Preparation and administration of gonadotropin-releasing hormone agonist(GnRHa) implants for the artificial control of reproductive maturation in captive-reared Atlantic bluefin tuna (Thunnus thynnus thynnus)[J]. Reviews in Fisheries Science, 2007,15(3): 183-210.
    [91] Carragher J F, Sumpter J P, Pottinger T G, et al. The deleterious effects of cortisol implantation on reproductive function in two species of trout, Salmo trutta L. and Salmo gairdneri Richardson[J]. General and Comparative Endocrinology, 1989, 76(2): 310-321.
    [92] Foo J T W, Lam T J. Retardation of ovarian growth and depression of serum steroid levels in the tilapia, Oreochromis mossambicus, by cortisol implantation[J]. Aquaculture, 1993, 115(1-2): 133-143.
    [93] Carragher J F, Sumpter J P. Corticosteroid physiology in fish[J]. Progress in Clinical and Biological Research, 1990,342: 487-492.
    [94] Carragher J F, Sumpter J P. The effect of cortisol on the secretion of sex steroids from cultured ovarian follicles of rainbow trout[J]. General and Comparative Endocrinology,1990, 77(3): 403-407.
    [95] Campbell P M, Pottinger T G, Sumpter J P. Stress reduces the quality of gametes produced by rainbow trout[J]. Biology of Reproduction, 1992, 47(6): 1140-1150.
    [96] Schreck C B, Contreras-Sanchez W, Fitzpatrick M S. Effects of stress on fish reproduction, gamete quality, and progeny[J]. Aquaculture, 2001, 197(1-4): 3-24.
    [97] Aegerter S, Jalabert B, Bobe J. Large scale real-time PCR analysis of mRNA abundance in rainbow trout eggs in relationship with egg quality and post-ovulatory ageing[J]. Mo- lecular Reproduction and Development, 2005, 72(3): 377-385.
    [98] Clearwater S J, Pankhurst N W. The response to capture and confinement stress of plasma cortisol, plasma sex steroids and vitellogenic oocytes in the marine teleost, red gurnard[J]. Journal of Fish Biology, 1997, 50(2): 429-441.
    [99] Mommens M, Storset A, Babiak I. Some quantitative indicators of postovulatory aging and its effect on larval and juvenile development of Atlantic salmon (Salmo salar)[J].Theriogenology, 2015, 84(1): 170-176.
    [100] Donato D M, Hiramatsu N, Arey K M, et al. Atresia in temperate basses: Cloning of hatching enzyme (choriolysin)homologues from atretic ovaries[J]. Fish Physiology and Biochemistry, 2003, 28(1-4): 329-330.
    [101] Thomé R G, Santos H B, Arantes F P, et al. Dual roles for autophagy during follicular atresia in fish ovary[J]. Autophagy, 2009, 5(1): 117-119.
    [102] Degterev A, Yuan J Y. Expansion and evolution of cell death programmes[J]. Nature Reviews Molecular Cell Biology, 2008, 9(5): 378-390.
    [103] Huettenbrenner S, Maier S, Leisser C, et al. The evolution of cell death programs as prerequisites of multicellularity[J].Mutation Research/Reviews in Mutation Research, 2003,543(3): 235-249.
    [104] Maiuri M C, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: Crosstalk between autophagy and apoptosis[J].Nature Reviews Molecular Cell Biology, 2007, 8(9): 741-752.
    [105] Debnath J, Baehrecke E H, Kroemer G. Does autophagy contribute to cell death?[J]. Autophagy, 2005, 1(2): 66-74.
    [106] Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights disease through cellular self-digestion[J]. Nature,2008, 451(7182): 1069-1075.
    [107] Lockshin R A, Zakeri Z. Apoptosis, autophagy, and more[J].The International Journal of Biochemistry & Cell Biology,2004, 36(12): 2405-2419.
    [108] Mommens M, Storset A, Babiak I. Some quantitative indicators of postovulatory aging and its effect on larval and juvenile development of Atlantic salmon (Salmo salar)[J].Theriogenology, 2015, 84(1): 170-176.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

强俊,马俊蕾,曹哲明,朱昊俊,陶易凡,徐跑,何杰,包景文.鱼类卵子发育与卵泡闭锁的研究进展[J].中国水产科学,2021,28(2):239-252
QIANG Jun, MA Junlei, CAO Zheming, ZHU Haojun, TAO Yifan, XU Pao, HE Jie, BAO Jingwen. Research progress of egg development and follicle atresia in fish[J]. Journal of Fishery Sciences of China,2021,28(2):239-252

复制
分享
文章指标
  • 点击次数:2164
  • 下载次数: 3993
  • HTML阅读次数: 3908
  • 引用次数: 0
历史
  • 在线发布日期: 2021-02-10
文章二维码