低氧胁迫下虾夷扇贝的行为特征及生理生化响应
作者:
作者简介:

夏玉莹(1995–),硕士研究生,研究方向为虾夷扇贝行为生态学.E-mail:952978423@qq.com

中图分类号:

S917

基金项目:

国家自然科学基金项目(41776155, U1906216); 农业农村部农业科研杰出人才及其创新团队培养项目(125A0301); 中央级公益性科研院所基本科研业务费专项资金项目(20603022015017-2).


Behavioral characteristics and physiological responses to hypoxic stress in Patinopecten yessoensis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究低氧胁迫对虾夷扇贝(Patinopecten yessoensis)行为、生理生化(免疫防疫功能及关键呼吸酶)的影响, 设置了 1 mg/L、2 mg/L、4 mg/L、7 mg/L (对照组) 4 个溶解氧梯度, 测定分析了虾夷扇贝行为特征(外壳的开闭合程度大小)、耗氧率、排氨率、抗氧化酶[超氧化物歧化酶(SOD), 过氧化氢酶(CAT)]和呼吸相关酶[乳酸脱氢酶(LDH) 和丙酮酸激酶(PK)]活性的响应情况。结果发现: (1)虾夷扇贝的存活率随着 DO 浓度的降低而降低, DO=1 mg/L 时的存活率仅为 55%; 在 DO=1 mg/L, 2 mg/L 和 4 mg/L 时, 虾夷扇贝的半致死时间分别为 95.97 h、147.37 h 和 209.58 h。 (2)将扇贝行为特征划分为 5 个等级, 按照 0~4 赋分, 评分越高, 代表扇贝状态越好。从扇贝行为特性的量化指标来看, DO 浓度越低, 评分分数越低, 虾夷扇贝状态越差。(3)低氧胁迫对虾夷扇贝耗氧率、排氨率有显著影响(P<0.05), 在 DO≤2 mg/L 下, 氧氮摩尔比<7, 虾夷扇贝主要由蛋白质供能; DO≥4 mg/L, 虾夷扇贝由蛋白质和脂肪氧化供能为主。(4)低氧胁迫对虾夷扇贝 SOD、CAT 和呼吸酶有显著性影响(P<0.05)。24 h 的低氧胁迫使得肝胰腺及闭壳肌的自由基 ROS浓度升高; 48~96 h的低氧胁迫下, SOD、CAT酶活开始降低。不同的溶解氧浓度下代谢途径不同, DO= 2 mg/L 时, 有氧呼吸代谢转变为葡萄糖-丙酮酸-乳酸的呼吸途径; DO=1 mg/L 时, 呼吸代谢途径可能优先选择葡萄糖-琥珀酸途径。从生理生化层次上来看, 免疫功能下降和呼吸代谢途径改变可能会引起虾夷扇贝行为特征改变。

    Abstract:

    This study outlines the effects of hypoxia stress on the behavior, physiology, immunity function, and key respiratory enzymes of Patinopecten yessoensis. To accomplish this, four dissolved oxygen (DO) gradients [1 mg/L, 2 mg/L, 4 mg/L, and 7 mg/L (control group)] were set to determine the behavioral characteristics (the degree of opening and closing of the shell), oxygen consumption rate, ammonia excretion rate, and the activity levels of antioxidant enzymes (SOD, CAT) and respiratory enzymes (LDH and PK). The results were as follows: (1) The survival rate of Patinopecten yessoensis decreased with the decrease in DO concentration; when DO was 1.0 mg/L, the survival rate was only 55%. At 1 mg/L, 2.0 mg/L, and 4.0 mg/L dissolved oxygen concentration, the median lethal time of the scallops was LT50=95.97 h, LT50=147.37 h, and LT50=209.58 h, respectively. (2) The behavioral characteristics of the scallops were divided into five grades numbered from 0 to 4; the higher the score, the better the scallop’s state. From the quantitative indicators of scallop behavioral characteristics, the lower the concentration of DO, the lower the score and the worse the state of the scallops. (3) Hypoxic stress had significant effects on the oxygen consumption rate and ammonia excretion rate of the scallops (P<0.05) under the stress of DO≤2 mg/L. When the molar ratio of oxygen to nitrogen was <7, the energy supply of the scallops was mainly protein; whereas when the DO was ≥4 mg/L, the scallops were mainly sustained by protein and fat oxidation. (4) Hypoxia stress significantly affected the level of SOD, CAT, and respiratory enzymes (P<0.05) in Yesso scallops. Being under 24-h hypoxia stress increased the concentration of reactive oxygen species (ROS) in the hepatopancreas and adductor muscle. After 48–96 h of hypoxia stress, the activity levels of the SOD and CAT enzyme began to decrease. The metabolic pathways are different under different concentrations of dissolved oxygen. The study has found that when DO=2 mg/L, the metabolism associated with aerobic respiration is converted to the glucose-pyruvate-lactic acid respiratory pathway and when DO=1 mg/L, the respiratory metabolic pathway may give priority to the glucose-succinate acid pathway. On physiological and biochemical levels, the decrease in immune function and the change in respiratory metabolic pathways may cause the changes in scallop behavior.

    参考文献
    [1] Diaz R J,Rosenberg R.Marine benthic hypoxia:A review of its ecological effects and the behavioral responses of benthic macrofauna[J].Oceanography and Marine Biology,1995,33:245-303.
    [2] Turner R E,Rabalais N N,Swenson E M,et al.Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995[J].Marine Environmental Research,2005,59(1):65-77.
    [3] Long W C,Brylawski B J,Seitz R D.Behavioral effects of low dissolved oxygen on the bivalve Macoma balthica[J].Journal of Experimental Marine Biology and Ecology.2008;359(1):34-9.
    [4] Brokordt K,Pérez H,Campos F.Environmental hypoxia reduces the escape response capacity of juvenile and adult scallops Argopecten purpuratus[J].Journal of Shellfish Research,2013,32(2):369-376.
    [5] Aguirre-Velarde A,Jean F,Thouzeau G,et al.Effects of progressive hypoxia on oxygen uptake in juveniles of the Peruvian scallop,Argopecten purpuratus(Lamarck,1819)[J].Aquaculture,2016,451:385-389.
    [6] Aguirre-Velarde A,Pecquerie L,Jean F,et al.Predicting the energy budget of the scallop Argopecten purpuratus in an oxygen-limiting environment[J].Journal of Sea Research,2019,143:254-261.
    [7] Altieri A H,Witman J D.Local extinction of a foundation species in a hypoxic estuary:Integrating individuals to ecosystem[J].Ecology,2006,87(3):717-730.
    [8] Yu Z A,Li D C,Wang X Y,et al.Reasons of massive mortality of Japanese scallop(Pationopecten yessoenisis)in raft cultivation in coastal Changhai,Liaoning Province[J].Fisheries Science,2018,37(2):174-180.[于佐安,李大成,王笑月,等.长海县筏养虾夷扇贝大规模死亡原因的初步研究 [J].水产科学,2018,37(2):174-180.]
    [9] Ran X B,Zang J Y,Wei Q S,et al.Hyposia and its cause of formation in the adjacent waters of Rushan Bay[J].Advances in Marine Science,2012,30(3):347-356.[冉祥滨,臧家业,韦钦胜,等.乳山湾邻近海域低氧现象及成因浅析[J].海洋科学进展,2012,30(3):347-356.]
    [10] Laing I,Spencer B E.Bivalve cultivation:criteria for selecting a site[R].Cefas Science Series Technical Report,2006,136:34.
    [11] Zhang Y,Wu H F,Wei L,et al.Effects of hypoxia in the gills of the Manila clam Ruditapes philippinarum using NMR-based metabolomics[J].Marine Pollution Bulletin,2017,114(1):84-89.
    [12] Seto M,Hattori S,Nii H.Basic research on japanese scallop’s ability on purifying water by filtration[J].Proceedings of Civil Engineering in the Ocean,2005,21:247-252.
    [13] Suzuki K,Sawa Y,Kaneda Y,et al.Overexpressed heat shock protein 70 attenuates hypoxic injury in coronary endothelial cells[J].Journal of Molecular and Cellular Cardiology,1998,30(6):1129-1136.
    [14] Hao Z L,Tang X J,Ding J,et al.Effect of high temperature on survival,oxygen consumption,behavior,ammonia-N excretion,and related immune indicators of the Japanese scallop Mizuhopecten yessoensis[J].Aquaculture International,2014,22(6):1863-1876.
    [15] El-Shenawy N S.Heavy-metal and microbial depuration of the clam Ruditapes decussatus and its effect on bivalve behavior and physiology[J].Environmental Toxicology,2004,19(2):143-153.
    [16] Anacleto P,Maulvault A L,Barrento S,et al.Physiological responses to depuration and transport of native and exotic clams at different temperatures[J].Aquaculture,2013,408-409:136-146.
    [17] Li Q,Zhang F,Wang M X,et al.Effects of hypoxia on survival,behavior,and metabolism of Zhikong scallop Chlamys farreri Jones et Preston 1904[J].Journal of Oceanology and Limnology,2020,38(2):351-363.
    [18] Hégaret H,Brokordt K B,Gaymer C F,et al.Effects of the toxic dinoflagellate Alexandrium catenella on histopathogical and escape responses of the Northern scallop Argopecten purpuratus[J].Harmful Algae,2012,18:74-83.
    [19] Artigaud S,Lacroix C,Pichereau V,et al.Respiratory response to combined heat and hypoxia in the marine bivalves Pecten maximus and Mytilus spp[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2014,175:135-140.
    [20] Mayzaud P.Respiration and nitrogen excretion of zooplankton.II.Studies of the metabolic characteristics of starved animals[J].Marine Biology,1973,21(1):19-28.
    [21] Greenway S C,Storey K B.The effect of prolonged anoxia on enzyme activities in oysters(Crassostrea virginica)at different seasons[J].Journal of Experimental Marine Biology and Ecology,1999,242(2):259-272.
    [22] Lushchak V I,Bagnyukova T V,Lushchak O V,et al.Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp(Cyprinus carpio)tissues[J].The International Journal of Biochemistry & Cell Biology,2005,37(6):1319-1330.
    [23] Chen J H,Mai K S,Ma H M,et al.Effects of dissolved oxygen on survival and immune responses of scallop(Chlamys farreri Jones et Preston)[J].Fish & Shellfish Immunology,2007,22(3):272-281.
    [24] Laudien J,Schiedek D,Brey T,et al.Survivorship of juvenile surf clams Donax serra(Bivalvia,Donacidae)exposed to severe hypoxia and hydrogen sulphide[J].Journal of Experimental Marine Biology and Ecology,2002,271(1):9-23.
    [25] Ivanina A V,Nesmelova I,Leamy L,et al.Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs[J].Journal of Experimental Biology,2016,219(11):1659-1674.
    [26] Aguirre-Velarde A,Jean F,Thouzeau G,et al.Feeding behaviour and growth of the Peruvian scallop(Argopecten purpuratus)under daily cyclic hypoxia conditions[J].Journal of Sea Research,2018,131:85-94.
    [27] Larade K,Storey K B.A profile of the metabolic responses to anoxia in marine invertebrates[M]//Cell and Molecular Response to Stress.Amsterdam:Elsevier,2002:27-46.
    [28] Pillet M,Dupont-Prinet A,Chabot D,et al.Effects of exposure to hypoxia on metabolic pathways in northern shrimp(Pandalus borealis)and Greenland halibut(Reinhardtius hippoglossoides)[J].Journal of Experimental Marine Biology and Ecology,2016,483:88-96.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏玉莹,张继红,刘毅.低氧胁迫下虾夷扇贝的行为特征及生理生化响应[J].中国水产科学,2021,28(10):1319-1328
XIA Yuying, ZHANG Jihong, LIU Yi. Behavioral characteristics and physiological responses to hypoxic stress in Patinopecten yessoensis[J]. Journal of Fishery Sciences of China,2021,28(10):1319-1328

复制
分享
文章指标
  • 点击次数:1217
  • 下载次数: 1405
  • HTML阅读次数: 1077
  • 引用次数: 0
历史
  • 在线发布日期: 2021-10-28
文章二维码