基于线粒体序列的新疆4个河鲈野生群体的遗传现状分析
作者:
作者简介:

徐璞(1997–),硕士研究生,研究方向为水产遗传育种与生物技术.E-mail:1006729167@qq.com

中图分类号:

S931

基金项目:

农业农村部财政专项“西北地区重点水域渔业资源与环境调查”; 国家淡水水产种质资源库项目(FGRC: 18537).


Genetic status of 4 populations of Perca fluviatilis in Xinjiang based on mitochondrial sequences
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解我国新疆地区河鲈(Perca fluviatilis)的遗传现状, 本研究分析了新疆乌伦古河水系和喀啦额尔齐斯河 4 个河鲈野生群体的线粒体 CO I、Cyt b 和 D-loop 3 个区段序列的遗传多样性, 并与欧洲群体进行了比较。结果显示, 新疆 4 个群体的线粒体 CO I、Cyt b 基因和 D-loop 区序列分别有 3、10 和 10 个变异位点(分别占序列总长的 0.49%, 0.90%和 1.92%), 定义了 4、11 和 11 个单倍型, 单倍型多样性分别为 0.065±0.022、0.276±0.049和 0.186± 0.046, 核苷酸多样性分别为 0.00011±0.00004、0.00033±0.00007 和 0.00084±0.00013, 呈现出低水平遗传多样性。中国新疆河鲈群体和欧洲群体不存在共享的单倍型, 单倍型聚类树和网络图也表现出明显分隔, 两者为不同的遗传系谱。 中国新疆乌伦古河水系的乌伦古湖(WL)、吉力湖(JH)和乌伦古河(WR) 3 个群体基于 Cyt b 基因和 D-loop 区序列估计群体间变异分别为?0.005%和 0.44%, 遗传分化系数(Fst)为?0.00045 和 0.00436, 处于低程度分化(Fst<0.05), 两两群体间的遗传分化程度较低(Fst=?0.01158~0.01803), 遗传交流多, 为同一个遗传系谱, 尤其是两湖之间存在共享单倍型, Fst均为负值, 基因交流频繁, 无遗传分化; 喀啦额尔齐斯河(ER)与乌伦古河水系共 4 个群体基于 CO I 基因估计群体间变异为 1.57%, Fst 为 0.01568, 但 ER 群体与 WL 群体处于中度遗传分化(Fst=0.06614>0.05), ER 与 WR 群体处于高度遗传分化(Fst=0.24627>0.15), 可能由于水坝的阻断, 遗传资源得不到补充, 喀啦额尔齐斯河形成了一个独立的遗传系谱。本研究结果可为新疆河鲈种群多样性保护以及种质资源开发利用提供参考。

    Abstract:

    Perca fluviatilis (Perca), which belongs to the Perciformes order and Percidae family, and commonly known as Eurasian perch, is a precious species of freshwater fish favored for its delicious meat, high nutritional value, short growth period, and strong disease resistance. Perca fluviatilis is widely distributed in Europe and North Asia. To determine the genetic status of Perca fluviatilis in Xinjiang, the genetic diversity of four Perca fluviatilis populations in the Wulungu River and Kalaeerqisi River in Xinjiang was analyzed using mitochondrial CO I, Cyt b, and D-loop sequences, and then compared with that of the European populations. The CO I, Cyt b, and D-loop sequences of the four populations in Xinjiang had 3, 10, and 10 variable sites, respectively (accounting for 0.49%, 0.90%, and 1.92%, respectively, of the total sequence length), which defined 4, 11, and 11 haplotypes, respectively. Further, the haplotype diversity was 0.065±0.022, 0.276±0.049, and 0.186±0.046, respectively, and the nucleotide diversity was 0.00011±0.00004, 0.00033±0.00007, and 0.00084±0.00013, respectively, indicating low genetic diversity. No shared haplotype was found between the Chinese Xinjiang and European Perca fluviatilis populations. Further, the haplotype cluster tree and network diagram revealed obvious separation, thereby indicating different genetic pedigrees. Based on the Cyt b and D-loop sequences, the estimated variation among the populations of Wulungu Lake (WL), Jili Lake (JH), and Wulungu River (WR) in the Wulungu River basin in Xinjiang, China, was ?0.005% and 0.44%, respectively, and the coefficient of genetic differentiation (Fst) was ?0.00045 and 0.00436, indicating a low degree of differentiation (Fst<0.05). Of note, the Fst between any population was low (Fst: ?0.01158?0.01803), indicating frequent genetic communication and the same genetic pedigree. In particular, shared haplotypes were identified between the two lakes, with a negative Fst and frequent gene exchanges with no genetic differentiation. Based on the CO I gene, the four populations of Kalaeerqisi (ER) and WR, WL, and JH were estimated to vary by 1.57% among the populations, with an Fst of 0.01568. However, the ER population and WL population had a moderate genetic differentiation (Fst=0.06614>0.05), while the ER and WR populations had a high genetic differentiation (Fst=0.24627>0.15). The replenishing of genetic resources may not occur due to the blockage of the dam. Further, the Kalaeerqisi River formed an independent genetic pedigree. Overall, these findings serve as a reference for the diversity of Xinjiang Perca fluviatilis populations and the development and utilization of germplasm resources.

    参考文献
    [1] Ren M L.Fish Resources and Fisheries in the Irtysh River in China[M].Wulumuqi:Xinjiang Science and Technology Health Press,2002:177-183.[任慕莲.中国额尔齐斯河鱼类资源及渔业[M].乌鲁木齐:新疆科技卫生出版社,2002:177-183.]
    [2] Han X L,Hai S.Biological characteristics of perch and germplasm resources in China[J].Fisheries of Heilongjiang,2020,39(4):26-28.[韩小丽,海萨?艾也力汗.鲈属鱼类生物学特征与我国境内种质资源状况[J].黑龙江水产,2020,39(4):26-28.]
    [3] Xu H R,Wang X B,Li H,et al.Age structure and growth characteristics of invasive Perca fluviatilis in Shuifeng Reservoir[J].Chinese Journal of Fisheries,2021,34(3):66-71.[徐浩然,王兴兵,李赫,等.水丰水库入侵鱼类河鲈的年龄结构与生长特性[J].水产学杂志,2021,34(3):66-71.]
    [4] Liu C C,Niu J G,Liu H,et al.Fish community structure and alien fish distribution in Ertix River[J].Chinese Journal of Fisheries,2021,34(1):46-53.[刘春池,牛建功,刘鸿,等.额尔齐斯河流域鱼类群落结构及外来鱼类分布[J].水产学杂志,2021,34(1):46-53.]
    [5] Cheng L,He P P,Wei B Y,et al.Analysis of the genetic structure of three populations of Guangxi Cyprinus carpio based on mitochondrial D-loop region and Cyt b gene[J].Acta Hydrobiologica Sinica,2021,45(1):54-59.[程磊,何苹萍,韦嫔媛,等.基于线粒体 D-loop 区和 Cyt b 基因分析广西禾花鲤三个群体遗传结构[J].水生生物学报,2021,45(1):54-59.]
    [6] Zhu W L,Xiao S,Yang C L,et al.Genetic structure analysis of Acanthopagrus latus populations along South China coast based on mitochondrial cyt b gene sequences[J].Southwest China Journal of Agricultural Sciences,2021,34(2):446-454.[朱威霖,肖珊,杨春玲,等.基于线粒体 Cyt b 基因序列的华南沿海黄鳍棘鲷种群遗传结构分析[J].西南农业学报,2021,34(2):446-454.]
    [7] Lu C Y,Chen X,Na R B,et al.Genetic diversity of clearhead icefish(Protosalanx hyalocranius)in lakes and reservoirs of Songnen plain by cyt b gene[J].Chinese Journal of Fisheries,2020,33(5):1-6.[鲁翠云,陈昕,那荣滨,等.用 Cyt b 基因分析松嫩平原区湖泊水库大银鱼的遗传多样性[J].水产学杂志,2020,33(5):1-6.]
    [8] Hai S,Meng W,Yang T Y,et al.Genetic diversity analysis of Perca fluviatilis based on MtDNA control region sequences [J].Chinese Journal of Fisheries,2012,25(1):38-41,57.[海萨,孟玮,杨天燕,等.基于控制区序列分析河鲈遗传多样性[J].水产学杂志,2012,25(1):38-41,57.]
    [9] Wu F.A comparative analysis of genetic diverity between the cultivated and natural Perca fluviatilis[D].Shihezi:Shihezi University,2015.[武菲.河鲈野生群体和养殖群体遗传多样性比较研究[D].石河子:石河子大学,2015.]
    [10] Nesb? C L,Fossheim T,Vollestad L A,et al.Genetic divergence and phylogeographic relationships among European perch(Perca fluviatilis)populations reflect glacial refugia and postglacial colonization[J].Molecular Ecology,1999,8(9):1387-1404.
    [11] Li X J,Jia P Y,Niu C Y,et al.Species diversity of freshwater fish and assessment on watershed health in the Irtysh River and Ulungur River basins in Xinjiang,China[J].Biodiversity Science,2020,28(4):422-434.[李雪健,贾佩尧,牛诚祎,等.新疆阿勒泰地区额尔齐斯河和乌伦古河流域鱼类多样性演变和流域健康评价[J].生物多样性,2020,28(4):422-434.]
    [12] Li C,Lu C Y,Zheng X H,et al.A simple and effecient method for preserving fish fins[J].Chinese Journal of Fisheries,2014,27(1):22-24.[李超,鲁翠云,郑先虎,等.一种保存鱼类鳍条的便捷方法[J].水产学杂志,2014,27(1):22-24.]
    [13] Sambrook J.Molecular Cloning:A Laboratory Manual[M].Huang P T.Third edition.Beijing:Science Press,2002:463-470.[萨姆布鲁克.分子克隆实验指南[M].黄培堂译.第三版,下册.北京:科学出版社,2002:463-470.]
    [14] Ward R D,Zemlak T S,Innes B H,et al.DNA barcoding Australia’ fish species[J].Philosophical Transaction of the Royal Society B:Biological Science,2005,360(1462):1847-1857.
    [15] Librado P,Rozas J.DnaSP v5:A software for comprehensive analysis of DNA polymorphism data[J].Bioinformatics,2009,25(11):1451-1452.
    [16] Excoffier L,Laval G,Schneider S.Arlequin(version 3.0):An integrated software package for population genetics data analysis[J].Evolutionary Bioinformatics Online,2007,1:47-50.
    [17] Kumar S,Stecher G,Tamura K.MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J].Molecular Biology and Evolution,2016,33(7):1870-1874.
    [18] Chen P,Ma Y W,Qi F,et al.Survey on habitat characteristics of key perch in early developmental stage of Perca fluviatilis in Bositeng Lake[J].Freshwater Fisheries,2016,46(1):39-45.[陈朋,马燕武,祁峰,等.博斯腾湖河鲈早期发育阶段关键生境特征的调查[J].淡水渔业,2016,46(1):39-45.]
    [19] Chen P,Ma Y W,Xie C G,et al.Preliminary study on community structure of fishes in Bositeng Lake[J].Freshwater Fisheries,2014,44(2):36-42.[陈朋,马燕武,谢春刚,等.博斯腾湖鱼类群落结构的初步研究[J].淡水渔业,2014,44(2):36-42.]
    [20] Tang F J,Jiang Z F,Ke E J,et al.Perch(Perca fluviatilis Linnaeus)growth variation and inducing reasons of Lake Ulungur,Xinjiang Province in the last two decades[J].Journal of Lake Science,2009,21(1):117-122.[唐富江,姜作发,阿达可白克?可尔江,等.新疆乌伦古湖河鲈二十年来种群生长变化及原因[J].湖泊科学,2009,21(1):117-122.]
    [21] Pan X H,Zhou K Q,Chen Z,et al.Genetic diversity and phylogenetic relationship among two populations of Procypris merus and wild carp based on mtDNA D-loop region and COI gene sequences[J].Freshwater Fisheries,2019,49(6):33-40.[潘贤辉,周康奇,陈忠,等.基于线粒体 D-loop 区和COI基因序列研究2个禾花鲤群体和野生鲤群体的遗传多样性与系统进化关系[J].淡水渔业,2019,49(6):33-40.]
    [22] Liu N,Fu J J,Dong Z J,et al.Genetic variation of six Cyprinus carpio populations in China based on mtDNA D-loop sequences[J].Journal of Hydroecology,2017,38(3):75-82.[刘念,傅建军,董在杰,等.中国6个鲤群体的 mtDNA D-loop 序列遗传变异分析[J].水生态学杂志,2017,38(3):75-82.]
    [23] Liang H W,Meng Y,Luo X Z,et al.Genetic diversity of six Monopterus albus populations based on COI gene sequences[J].Journal of Fishery Sciences of China,2018,25(4):837-846.[梁宏伟,孟彦,罗相忠,等.基于线粒体COI基因的6个黄鳝群体遗传多样性[J].中国水产科学,2018,25(4):837-846.]
    [24] Zou H,Wei L J,Huang J,et al.Genetic differences among seven carp populations based on mitochondrial COⅠ gene and D-Loop region sequences[J].Journal of Southern Agriculture,2020,51(5):1209-1216.[邹辉,韦玲静,黄杰,等.基于线粒体COⅠ基因和D-Loop区序列的7个鲤群体遗传差异分析[J].南方农业学报,2020,51(5):1209-1216.]
    [25] Liu L W,Xu Q H,Chen X J.Population genetic structure of Ommastrephes bartramii in the North Pacific Ocean based on the CO I and Cyt b gene sequences analysis[J].Journal of Fisheries of China,2012,36(11):1675-1684.[刘连为,许强华,陈新军.基于线粒体COI和 Cyt b 基因序列的北太平洋柔鱼种群遗传结构研究[J].水产学报,2012,36(11):1675-1684.]
    [26] Crandall K A,Templeton A R.Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction[J].Genetics,1993,134(3):959-969.
    [27] Zhou L X,Xiao Y,Xia W,et al.Analysis of genetic diversity and population structure of oil palm(Elaeis guineensis)from China and Malaysia based on speciesspecific simple sequence repeat markers[J].Genetics and Molecular Research:GMR,2015,14(4):16247-16254.
    [28] Grant W,Bowen B.Shallow population histories in deep evolutionary lineages of marine fishes:Insights from sardines and anchovies and lessons for conservation[J].Journal of Heredity,1998,89(5):415-426.
    [29] Yang T Y,Meng W,Hai S,et al.Population genetic structure of Siberian dace(Leuciscus leuciscus baicalensis)in Irtysh River China based on the cyt b gene sequences[J].Chinese Journal of Zoology,2017,52(2):304-313.[杨天燕,孟玮,海萨,等.基于线粒体 Cyt b 序列对新疆额尔齐斯河贝加尔雅罗鱼遗传结构的分析[J].动物学杂志,2017,52(2):304-313.]
    [30] Wright S.Evolution and the Genetics of Population:Variability within and among Natural Populations[M].Chicago:University of Chicago Press,1978:79-103.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐璞,鲁翠云,孙志鹏,霍堂斌,金洪宇,吴学工,郑先虎.基于线粒体序列的新疆4个河鲈野生群体的遗传现状分析[J].中国水产科学,2022,29(7):980-993
XU Pu, LU Cuiyun, SUN Zhipeng, HUO Tangbin, JIN Hongyu, WU Xuegong, ZHENG Xianhu. Genetic status of 4 populations of Perca fluviatilis in Xinjiang based on mitochondrial sequences[J]. Journal of Fishery Sciences of China,2022,29(7):980-993

复制
分享
文章指标
  • 点击次数:730
  • 下载次数: 835
  • HTML阅读次数: 983
  • 引用次数: 0
历史
  • 在线发布日期: 2022-08-01
文章二维码