基于自动机器学习的黄、渤、东海蓝点马鲛渔场丰度指数研究
CSTR:
作者:
作者单位:

作者简介:

秦元哲(1997?),男,硕士研究生,研究方向为渔业遥感.E-mail:qinyzouc@163.com

通讯作者:

中图分类号:

S931

基金项目:

国家自然科学基金重点项目(41930534); 中央高校基本科研业务费专项(202242001).


Fishery abundance index of Scomberomorus niphonius in the Yellow Sea, Bohai Sea, and East China Sea based on automatic machine learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    蓝点马鲛(Scomberomorus niphonius)是中国近海重要的大型中上层经济鱼类, 精准预测蓝点马鲛渔场分布对渔业资源评估与管理有重要意义。本研究利用蓝点马鲛捕捞数据与卫星遥感海表温度(sea surface temperature, SST) 和海表叶绿素浓度(chlorophyll-a concertation, Chl a)数据, 构建了基于自动机器学习的蓝点马鲛 CPUE 预测模型, 通过与 XGBoost 模型、随机森林模型和广义加性模型(generalized addictive models, GAM)对比, 自动机器学习模型的确定系数(coefficient of determination, R2 )分别提高了 51%、107%和 117%, 均方根误差(root mean squard error, RMSE)分别降低了 15%、28%和 32%。通过模型预测的蓝点马鲛 CPUE, 开发了渔场丰度指数, 分析了渔场丰度时空变动规律。结果显示: 蓝点马鲛渔场丰度高值区在春季由于受到 SST 的影响较大, 呈现向北及向近岸移动的趋势, 这种现象与蓝点马鲛索饵及产卵洄游路线一致; 同时, 蓝点马鲛渔场丰度高值区纬度重心的北移, 也与气候变暖影响下蓝点马鲛索饵和产卵的适宜温度区变动有关。通过气候事件指数分析发现, Ni?o 3.4 指数与蓝点马鲛渔场丰度高值区面积呈显著相关。结合 RCP2.6、RCP4.5、RCP6.0、RCP8.5 4 种情景, 分别预测了 2100 年蓝点马鲛的 CPUE 分布变动, 发现随着全球变暖, 蓝点马鲛 CPUE高值产区北移, 并相比 2010—2015年蓝点马鲛 CPUE预测平均值, 4 种 RCP 情景下分别上升了 0.1、2.2、2.41 和 17.3 kg/h。本研究结果可为中国近海经济鱼种的渔情预报研究提供参考。

    Abstract:

    The Scomberomorus niphonius is an economically important large-scale pelagic fish in the coastal waters of China. The accurate prediction of the fishing distribution of S. niphonius is of great significance for the assessment and management of fishery resources. The development of satellite remote sensing and artificial intelligence has provided strong technical support and convenience for fishery forecasting research. In this study, a S. niphonius CPUE prediction model based on automatic machine learning was constructed using S. niphonius fishing data, satellite remote sensing sea surface temperature (SST), and sea surface chlorophyll-a concentration (Chl-a) data. Through comparison with the XGBoost, random forest, and generalized additive models (GAM), the coefficient of determination (R2 ) of the automatic machine learning model increased by 51%, 107%, and 117%, respectively, and the root mean square error (RMSE) was reduced by 15%, 28%, and 32%, respectively. A fishery abundance index was developed through the CPUE predicted by the model, and the temporal and spatial variation laws of fishery abundance were analyzed. The results showed that the high-abundance area of S. niphonius presented a trend in moving northward and nearshore because of the influence of SST in spring, which is consistent with the feeding and spawning migration route of S. niphonius. The northward shift of the latitudinal center of gravity in the high-abundance area for the S. niphonius fishery was related to the change in the suitable temperature area for feeding and spawning of the S. niphonius under the influence of climate warming. Through the analysis of the climate event index, it was found that the Ni?o 3.4 index was significantly correlated with the area of high abundance of S. niphonius fishery (r=0.58, P<0.05). Combined with RCP2.6, RCP4.5, RCP6.0, and RCP8.5 for the four scenarios, the distribution changes in the CPUE of S. niphonius by 2100 were predicted. It was determined that with global warming, the high-value production area of CPUE of S. niphonius will continue to move northward, and increase by 0.1 kg/h, 2.2 kg/h, 2.4 kg/h, and 17.3 kg/h, respectively, compared with the predicted average value of CPUE of S. niphonius from 2010 to 2015. The results of this study provide a reference for predicting the fishing conditions of economically important fish species in the coastal waters of China.

    参考文献
    相似文献
    引证文献
引用本文

秦元哲,周振佳,刘阳,田永军,程家骅,刘旭东,张勇.基于自动机器学习的黄、渤、东海蓝点马鲛渔场丰度指数研究[J].中国水产科学,2022,29(9):1375-1387
QIN Yuanzhe, ZHOU Zhenjia, LIU Yang, TIAN Yongjun, CHENG Jiahua, LIU Xudong, ZHANG Yong. Fishery abundance index of Scomberomorus niphonius in the Yellow Sea, Bohai Sea, and East China Sea based on automatic machine learning[J]. Journal of Fishery Sciences of China,2022,29(9):1375-1387

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-30
  • 出版日期:
文章二维码