基于转录组解析铜驯化对低温胁迫下大黄鱼氧化损伤的影响
作者:
作者简介:

曾霖(1983–),男,博士,研究方向:养殖生理生态学.E-mail:zenglin615@126.com

中图分类号:

S941

基金项目:

国家重点研发计划项目(2019YFDO900904); 国家海水鱼产业技术体系专项(CARS-47); 中国水产科学研究院基本科研业务费专项(2020TD76).


Effects of Cu acclimation on oxidative damage in the large yellow croaker under cold stress based on transcriptome analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨铜驯化对低温胁迫下大黄鱼(Larimichthys crocea)氧化损伤和基因表达水平的影响, 本研究将体重为 (48.92±3.62) g 的大黄鱼暴露在铜浓度为 0 和 10 μg/L 的水体中 14 d, 再暴露在温度为 8 ℃的水体中 24 h。结果显示, 低温胁迫显著增加了活性氧(ROS)和脂质过氧化物(LPO)含量。尽管铜驯化对 ROS 和 LPO 含量不产生影响, 但铜驯化显著增加了低温胁迫下大黄鱼 ROS 和 LPO 含量, 表明铜驯化加剧了低温胁迫对大黄鱼的氧化损伤。从铜驯化相对对照组、低温胁迫相对对照组和铜驯化+低温胁迫相对低温胁迫中分别筛选到 2288 个、1425 个和 1382 个差异基因。GO 和 KEGG 分析发现差异基因主要富集在与脂肪酸代谢、糖类有氧代谢、谷胱甘肽代谢、内质网应激、自噬和凋亡等相关的通路中。聚类分析表明, 低温胁迫上调了不饱和脂肪酸合成、内质网应激、自噬和凋亡等相关通路中的大部分基因表达, 而铜驯化则对低温胁迫下大黄鱼的这些基因表达调控产生了拮抗效应, 表明铜驯化通过抑制不饱和脂肪酸合成、内质网应激、自噬和凋亡来降低大黄鱼的低温胁迫耐受性。研究结果为深入研究铜污染物对大黄鱼低温胁迫耐受性的影响及其分子机制提供科学依据。

    Abstract:

    The large yellow croaker Larimichthys crocea is an important marine fish species. The output of this fish is the highest among the sea cage-cultured fishes in recent years in China, however, this species is susceptible to Cryptocaryon irritans, which causes a high death rate. Although CuSO4 is currently the best treatment for C. irritans, it can lead to Cu pollution in aquaculture water bodies. At the same time, low temperatures have resulted in mass mortality during overwintering. To evaluate the effects of Cu acclimation on oxidative damage and gene expression in the liver of large yellow croaker under cold stress, fish (74.6 ± 4.2 g) were pre-exposed to 0 and 10 μg Cu/L for 14 d and subsequently subjected to cold stress (8 ℃) for 24 h. The results indicated that cold stress enhanced reactive oxygen species (ROS) and lipid peroxidation (LPO), indicating that cold stress had a negative effect on fish. Although Cu acclimation had no effect on ROS and LPO, Cu acclimation with cold stress increased ROS and LPO compared with cold stress alone, suggesting that Cu acclimation exacerbated cold stress-induced oxidative damage. A total of 2288, 1425, and 1382 differentially expressed genes (DEGs) were obtained from the Cu acclimation group vs. control, cold stress group vs. control, and Cu acclimation with cold stress group vs. cold stress group, respectively. The results of GO functional enrichment and KEGG pathway enrichment showed that DEGs were significantly enriched in the PPAR signaling pathway, fatty acid elongation, unsaturated fatty acid biosynthesis, glycolysis/gluconeogenesis, oxidative phosphorylation, glutathione metabolism, endoplasmic reticulum protein processing, FoxO signaling pathway, regulation of autophagy, MAPK signaling pathway, and apoptosis, highlighting the adaptive mechanism of fish in response to Cu and cold stresses involved in fatty acid metabolism, energy metabolism, antioxidant, endoplasmic reticulum stress, autophagy, and apoptosis. Cluster analysis showed that cold stress upregulated the majority of gene expression related to unsaturated fatty acid synthesis, endoplasmic reticulum stress, autophagy, and apoptosis. However, Cu acclimation had an antagonistic effect on the regulation of these genes under cold stress, indicating that Cu acclimation reduced the cold stress tolerance of the large yellow croaker by inhibiting unsaturated fatty acid synthesis, endoplasmic reticulum stress, autophagy, and apoptosis. These results provide a scientific basis for the study of the effects of Cu contamination on cold stress tolerance in the large yellow croaker and the underlying molecular mechanism.

    参考文献
    [1] Pan K,Zhu A J,Xu Z B,et al.Copper contamination in coastal and estuarine waters of China[J].Asian Journal of Ecotoxicology,2014,9(4):618-631.[潘科,朱艾嘉,徐志斌,等.中国近海和河口环境铜污染的状况[J].生态毒理学报,2014,9(4):618-631.]
    [2] Jiao S,Nie M M,Song H B,et al.Physiological responses to cold and starvation stresses in the liver of yellow drum(Nibea albiflora)revealed by LC-MS metabolomics[J].Science of the Total Environment,2020,715:136940.
    [3] Mandil R,Prakash A,Rahal A,et al.In vitro and in vivo effects of flubendiamide and copper on cyto-genotoxicity,oxidative stress and spleen histology of rats and its modulation by resveratrol,catechin,curcumin and α-tocopherol [J].BMC Pharmacology and Toxicology,2020,21(1):29.
    [4] Yang F,Liao J Z,Yu W L,et al.Exposure to copper induces mitochondria-mediated apoptosis by inhibiting mitophagy and the PINK1/parkin pathway in chicken(Gallus gallus)livers[J].Journal of Hazardous Materials,2021,408:124888.
    [5] Long Y,Ge G D,Li X X,et al.Regulation mechanisms for cold stress responses of fish[J].Acta Hydrobiologica Sinica,2021,45(6):1405-1414.[龙勇,葛国栋,李西西,等.鱼类低温应激反应的调控机制[J].水生生物学报,2021,45(6):1405-1414.]
    [6] Zeng L,Zhang J S,Zheng J L,et al.Pre-acclimation to low copper mitigated immunotoxic effects in spleen and headkidney of large yellow croaker(Pseudosciaena crocea)when exposed subsequently to high copper[J].Ecotoxicology and Environmental Safety,2017,144:54-61.
    [7] Zeng L,Ai C X,Zheng J L,et al.Cu pre-exposure alters antioxidant defense and energy metabolism in large yellow croaker Larimichthys crocea in response to severe hypoxia [J].Science of the Total Environment,2019,687:702-711.
    [8] Zhou T,Gui L,Liu M L,et al.Transcriptomic responses to low temperature stress in the Nile Tilapia,Oreochromis niloticus[J].Fish & Shellfish Immunology,2019,84:1145-1156.
    [9] Li C L,Zhao W,Qin C X,et al.Comparative transcriptome analysis reveals changes in gene expression in sea cucumber(Holothuria leucospilota)in response to acute temperature stress[J].Comparative Biochemistry and Physiology Part D:Genomics and Proteomics,2021,40:100883.
    [10] Xing K F,Liu Y J,Yan C C,et al.Transcriptomic analysis of Neocaridina denticulate sinensis hepatopancreas indicates immune changes after copper exposure[J].Fish & Shellfish Immunology,2022,121:23-30.
    [11] Ren X Y,Xu Y,Zhang Y B,et al.Comparative accumulation and transcriptomic analysis of juvenile Marsupenaeus japonicus under cadmium or copper exposure[J].Chemosphere,2020,249:126157.
    [12] Fisheries and Fisheries Administration of the Ministry of Agriculture and Rural Affairs,National Fisheries Technology Promotion Station,China Fisheries Society.2020 China Fishery Statistical Yearbook[M].Beijing:China Agricultural Press,2020,22.[农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2020 中国渔业统计年鉴 [M].北京:中国农业出版社,2020,22.]
    [13] Gui J F,Zhou L,Zhang X J.Research advances and prospects for fish genetic breeding[J].Bulletin of Chinese Academy of Sciences,2018,33(9):932-939.[桂建芳,周莉,张晓娟.鱼类遗传育种发展现状与展望[J].中国科学院院刊,2018,33(9):932-939.]
    [14] Yin F,Bao P B,Liu X,et al.Antiparasitic effect of copper alloy surface on Cryptocaryon irritans in aquaculture of Larimichthys crocea[J].Applied and Environmental Microbiology,2019,85(3):e01982-e01918.
    [15] Tavares-Dias M.Toxic,physiological,histomorphological,growth performance and antiparasitic effects of copper sulphate in fish aquaculture[J].Aquaculture,2021,535:736350.
    [16] Song T,Huang T,Zhang C J,et al.Effects of two kinds of dissolved copper on growth and immune function of Litopenaeus vannamei[J].Journal of Shanghai Ocean University,2019,28(1):75-83.[宋泰,黄艇,张晨捷,等.养殖水体中二种溶解态铜对凡纳滨对虾生长和免疫功能的影响[J].上海海洋大学学报,2019,28(1):75-83.]
    [17] Zeng L,Li W C,Zhang H,et al.Hypoxic acclimation improves mitochondrial bioenergetic function in large yellow croaker Larimichthys crocea under Cu stress[J].Ecotoxicology and Environmental Safety,2021,224:112688.
    [18] Zeng L,Ai C X,Zhang J S,et al.Pre-hypoxia exposure inhibited copper toxicity by improving energy metabolism,antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea[J].Science of the Total Environment,2020,708:134961.
    [19] Wu C W,Zhang D,Kan M Y,et al.The draft genome of the large yellow croaker reveals well-developed innate immunity [J].Nature Communications,2014,5:5227.
    [20] Leng N,Dawson J A,Thomson J A,et al.EBSeq:An empirical Bayes hierarchical model for inference in RNA-seq experiments[J].Bioinformatics,2013,29(8):1035-1043.
    [21] Pfaffl M W.A new mathematical model for relative quantification in real-time RT-PCR[J].Nucleic Acids Research,2001,29(9):e45.
    [22] Jin S R,Wang L,Li X X,et al.Integrating antioxidant responses and oxidative stress of ornamental discus(Symphysodon spp.)to decreased temperatures:Evidence for species-specific thermal resistance[J].Aquaculture,2021,535:736375.
    [23] Ji R L,Xu X,Turchini G M,et al.Adiponectin’s roles in lipid and glucose metabolism modulation in fish:Mechanisms and perspectives[J].Reviews in Aquaculture,2021,13(4):2305-2321.
    [24] Wang D D,Wu F,Zhang L Y,et al.Effects of dietary n-3 PUFA levels in early life on susceptibility to high-fat-dietinduced metabolic syndrome in adult mice[J].The Journal of Nutritional Biochemistry,2021,89:108578.
    [25] Xiong Y H,Dong S L,Huang M,et al.Growth,osmoregulatory response,adenine nucleotide contents,and liver transcriptome analysis of steelhead trout(Oncorhynchus mykiss)under different salinity acclimation methods[J].Aquaculture,2020,520:734937.
    [26] Filice M,Imbrogno S,Gattuso A,et al.Hypoxic and thermal stress:Many ways leading to the NOS/NO system in the fish heart[J].Antioxidants(Basel,Switzerland),2021,10(9):1401.
    [27] Kolbe F,Safarian S,Piórek ?,et al.Cryo-EM structures of intermediates suggest an alternative catalytic reaction cycle for cytochrome c oxidase[J].Nature Communications,2021,12:6903.
    [28] Pacheu-Grau D,Wasilewski M,Oeljeklaus S,et al.COA6 facilitates cytochrome c oxidase biogenesis as thiol-reductase for copper metallochaperones in mitochondria[J].Journal of Molecular Biology,2020,432(7):2067-2079.
    [29] Lushchak V I.Environmentally induced oxidative stress in aquatic animals[J].Aquatic Toxicology,2011,101(1):13-30.
    [30] Li L,Hou M J,Cao L,et al.Glutathione S-transferases modulate Cu tolerance in Oryza sativa[J].Environmental and Experimental Botany,2018,155:313-320.
    [31] Li H Y,Xu W J,Wu L Y,et al.Differential regulation of endoplasmic reticulum stress-induced autophagy and apoptosis in two strains of gibel carp(Carassius gibelio)exposed to acute waterborne cadmium[J].Aquatic Toxicology,2021,231:105721.
    [32] Lu D L,Ma Q,Wang J,et al.Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy[J].The Journal of Physiology,2019,597(6):1585-1603.
    [33] Trivedi S P,Ratn A,Awasthi Y,et al.In vivo assessment of dichlorvos induced histological and biochemical impairments coupled with expression of p53 responsive apoptotic genes in the liver and kidney of fish,Channa punctatus(Bloch,1793)[J].Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2021,245:109032.
    [34] Chu P,Wang T,Sun Y R,et al.Effect of cold stress on the MAPK pathway and lipidomics on muscle of Takifugu fasciatus[J].Aquaculture,2021,540:736691.
    [35] Yu X J,Wu Z H,Guo J S,et al.Replacement of dietary fish meal by soybean meal on growth performance,immunity,anti-oxidative capacity and mTOR pathways in juvenile abalone Haliotis discus Hannai Ino[J].Aquaculture,2022,551:737914.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾霖,王永红,宋炜,谢正丽,张惠.基于转录组解析铜驯化对低温胁迫下大黄鱼氧化损伤的影响[J].中国水产科学,2022,29(10):1425-1436
ZENG Lin, WANG Yonghong, SONG Wei, XIE ZhengLi, ZHANG Hui. Effects of Cu acclimation on oxidative damage in the large yellow croaker under cold stress based on transcriptome analysis[J]. Journal of Fishery Sciences of China,2022,29(10):1425-1436

复制
分享
文章指标
  • 点击次数:643
  • 下载次数: 857
  • HTML阅读次数: 1175
  • 引用次数: 0
历史
  • 在线发布日期: 2022-10-31
文章二维码