溶氧变化模式对菲律宾蛤仔鳃组织和血淋巴液氧化应激及生理代谢的影响
作者:
作者简介:

周丽青(1974-),女,博士研究生,研究方向为贝类遗传育种.E-mail:zhoulq@ysfri.ac.cn

基金项目:

国家重点研发计划项目(2018YFD0900702); 中国水产科学研究院黄海水产研究所基本科研业务费项目(20603022022001).


Effects of three dissolved oxygen modes on oxidative stress and physiological metabolism in Ruditapes philippinarum gill tissue and hemolymph
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了探究菲律宾蛤仔(Ruditapes philippinarum)鳃组织和血淋巴液响应溶氧变化的氧化应激反应和生理代谢情况, 并筛选出蛤仔响应溶氧变化的标志性物质, 设置 3 种溶氧变化模式, 分别为一直维持正常溶氧(C)处理、正常溶氧-急性低氧-急性复氧(AHR)处理、正常溶氧-慢性低氧-慢性复氧(CHR)处理。用酶标仪微板法 96 样检测 3 种溶氧变化模式下血淋巴液和鳃组织的超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、谷胱甘肽过氧化物酶 (GSH-px)活性、丙二醛(MDA)含量、丙酮酸激酶(PK)活性、己糖激酶(HK)活性、乳酸脱氢酶(LDH)活性、ATP 酶 (ATPase)活性、脯氨酸羟基化酶(PHD)活性和脂质过氧化物(LPO)含量。结果发现菲律宾蛤仔最先响应溶氧变化的是鳃组织, 其氧化-抗氧化酶体系、代谢相关酶活性和相关产物的含量及变化幅度均明显高于血淋巴液; 鳃组织和血淋巴液中氧化-抗氧化酶体系变化趋势一致, SOD 和 CAT 作为最重要的抗氧化酶能在一定程度上缓解溶氧变化对蛤仔机体的损伤; 氧化应激和能量利用体系在鳃和血淋巴液中的变化趋势也一致, 其中 PK 和 HK 随溶氧变化调节糖酵解代谢效率, LDH 主要调节无氧代谢的效率, MDH 含量能真实反映溶氧变化对蛤仔机体的损伤; 这些参与生理代谢的酶或产物可作为监测菲律宾蛤仔响应环境溶氧变化的有效指标; ATPase 活性、PHD 活性和 LPO 含量变化仅表现出个体间差异, 不同溶氧变化模式之间差异不明显。研究表明, 菲律宾蛤仔机体能迅速调整氧化应激反应和生理代谢反应来响应急性溶氧变化, 慢性溶氧变化会导致蛤仔机体受到持续性损伤。

    参考文献
    [1] Barnett A F,Gledhill J H,Griffitt R J,et al.Combined andindependent effects of hypoxia and tributyltin on mRNAexpression and physiology of the Eastern oyster(Crassostreavirginica)[J].Scientific Reports,2020,10(1):1-13.
    [2] Mu J J,Zhao Q C,Cui X Y,et al.Research on antioxidantactivity of Ruditapes philippinarum protein hydrolysates[J].Modern Food,2020(7):83-86.[穆姣姣,赵前程,崔相勇,等.菲律宾蛤仔蛋白酶解物的抗氧化活性研究[J].现代食品,2020(7):83-86.]
    [3] Zhang L,Liu J R,Tian Y Y,et al.Composition anddistribution of nitrogenous compounds in soft body of Ruditapes philippinarum[J].Food Science,2015,36(24):95-100.[张龙,刘俊荣,田元勇,等.菲律宾蛤仔(Ruditapesphilippinarum)软体部位含氮物的组成及其分布[J].食品科学,2015,36(24):95-100.]
    [4] Jin W N,Xu Y F,Li H D.Research progress on newvarieties of Ruditapes philippenarum[J].Hebei Fisheries,2022(10):40-44.[金万年,许云枫,李宏达.菲律宾蛤仔新品种研究进展[J].河北渔业,2022(10):40-44.]
    [5] Zhang W B,Lü Z B,Zhang Y,et al.Influence of hypoxia stress on physiological metabolism of Ruditapes philippinarum[J].Chinese Journal of Ecology,2014,33(9):2448-2453.[张文斌,吕振波,张莹,等.缺氧胁迫对菲律宾蛤仔(Ruditapes Philippinarum)生理代谢的影响[J].生态学杂志,2014,33(9):2448-2453.]
    [6] Nie H T,Lu C W,Chai C L,et al.Response of the Manilaclam antioxidant enzyme to hypoxia stress under experimentalconditions[J].Marine Sciences,2017,41(11):32-37.[聂鸿涛,卢长炜,柴成林,等.低氧胁迫对菲律宾蛤仔抗氧化酶的影响[J].海洋科学,2017,41(11):32-37.]
    [7] Zenteno-Savín T,Saldierna R,Ahuejote-Sandoval M.Superoxide radical production in response to environmentalhypoxia in cultured shrimp[J].Comparative Biochemistryand Physiology Part C:Toxicology & Pharmacology,2006,142(3-4):301-308.
    [8] Wang H M,Ding J F,Yang D M,et al.Comparison ofhypoxia stress tolerance among Manila clam Ruditapes philippinarum with four shell-colors[J].Journal of DalianOcean University,2018,33(2):181-189.[王化敏,丁鉴锋,杨东敏,等.4 种壳色菲律宾蛤仔在低氧胁迫下的耐受能力比较研究[J].大连海洋大学学报,2018,33(2):181-189.]
    [9] Du S N N,Mahalingam S,Borowiec B G,et al.Mitochondrial physiology and reactive oxygen speciesproduction are altered by hypoxia acclimation in killifish(Fundulus heteroclitus)[J].The Journal of ExperimentalBiology,2016,219(Pt 8):1130-1138.
    [10] Wang X Y,Yang H S,Liu G B,et al.Enzyme responses andlipid peroxidation in gills and hepatopancreas of clam Mactra vereformis,following cadmium exposure[J].ChineseJournal of Oceanology and Limnology,2011,29(5):981-989.
    [11] Wang J Y,Zhu S G,Xu C F.Biochemistry[M].Beijing:Higher Education press.2002,Third Edition,Volume II,83-85.[王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002,第三版,下册,83-85.]
    [12] Sun S M,Fu H T,Zhu J,et al.Molecular cloning andexpression analysis of lactate dehydrogenase from theoriental river prawn Macrobrachium nipponense in responseto hypoxia[J].International Journal of Molecular Sciences,2018,19(7):1990.
    [13] Winston G W,Di Giulio R T.Prooxidant and antioxidantmechanisms in aquatic organisms[J].Aquatic Toxicology,1991,19(2):137-161.
    [14] Sun X J,Tu K,Li L,et al.Integrated transcriptome andmetabolome analysis reveals molecular responses of theclams to acute hypoxia[J].Marine Environmental Research,2021,168:105317.
    [15] Zhang Y,Wu H F,Wei L,et al.Effects of hypoxia in thegills of the Manila clam Ruditapes philippinarum usingNMR-based metabolomics[J].Marine Pollution Bulletin,2017,114(1):84-89.
    [16] Andreyeva A Y,Gostyukhina O L,Kladchenko E S,et al.Acute hypoxic exposure:Effect on hemocyte functionalparameters and antioxidant potential in gills of the Pacificoyster,Crassostrea gigas[J].Marine EnvironmentalResearch,2021,169:105389.
    [17] Li L,Ping X Y,Song W,et al.Toxic effects of copper ion in Mytilus coruscus:An integrated biomarker approach[J].Progress in Fishery Sciences,2020,41(3):32-39.[李磊,平仙隐,宋炜,等.基于IBR模型的Cu2+对厚壳贻贝的毒性效应研究[J].渔业科学进展,2020,41(3):32-39.]
    [18] Velisek J,Stara A,Li Z H,et al.Comparison of the effects offour anaesthetics on blood biochemical profiles andoxidative stress biomarkers in rainbow trout[J].Aquaculture,2011,310(3-4):369-375.
    [19] Stara A,Machova J,Velisek J.Effect of chronic exposure tosimazine on oxidative stress and antioxidant response incommon carp(Cyprinus carpio L.)[J].EnvironmentalToxicology and Pharmacology,2012,33(2):334-343.
    [20] Thomas J P,Maiorino M,Ursini F,et al.Protective action ofphospholipid hydroperoxide glutathione peroxidase againstmembrane-damaging lipid peroxidation.In situ reduction ofphospholipid and cholesterol hydroperoxides[J].Journal ofBiological Chemistry,1990,265(1):454-461.
    [21] Wang L,Cui S,Ma L,et al.Current advances in the novelfunctions of hypoxia-inducible factor and prolyl hydroxylasein invertebrates[J].Insect Molecular Biology,2015,24(6):634-648.
    [22] Wang T.The molecular mechanism of hypoxia signalpathway in the Pacific oyster(Crassostrea gigas)[D].Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2017.[王婷.长牡蛎低氧信号通路分子作用机制研究[D].青岛:中国科学院大学(中国科学院海洋研究所),2017.]
    [23] Wei W L,Liu Q,Zhang C S,et al.Changes of tolerance ofair exposure and immune-related gene expression of Pinctada fucata martensii at different temperatures[J].Journal of Guangdong Ocean University,2021,41(2):69-75.[魏雯璐,刘琪,张丞澍,等.不同温度下马氏珠母贝干露耐受能力及其免疫相关基因表达的变化[J].广东海洋大学学报,2021,41(2):69-75.]
    [24] Wang P,Shi W J,Wan X H,et al.Effects of hypoxia andreoxygenation on respiratory metabolism enzyme andantioxidant enzyme activities in exopalaemon carinicauda[J].Progress in Fishery Sciences,2021,42(4):106-115.[王盼,史文军,万夕和,等.低氧–复氧对脊尾白虾呼吸代谢和抗氧化酶活力的影响[J].渔业科学进展,2021,42(4):106-115.]
    [25] Nilsson G E,Renshaw G M C.Hypoxic survival strategies intwo fishes:Extreme anoxia tolerance in the North Europeancrucian carp and natural hypoxic preconditioning in acoral-reef shark[J].The Journal of Experimental Biology,2004,207(Pt 18):3131-3139.
    [26] Zhang Y,Jiang T Q,Jiang Y Z,et al.Effects of air exposureon enzyme activity related to physiological metabolism injuvenile Scapharca kagoshimensis[J].Marine Fisheries,2022,44(2):219-227.[张扬,江天棋,姜亚洲,等.干露胁迫对毛蚶稚贝生理代谢相关酶活力的影响[J].海洋渔业,2022,44(2):219-227.]
    [27] Li Q,Sun S,Zhang F,et al.Effects of hypoxia on survival,behavior,metabolism and cellular damage of Manila clam(Ruditapes philippinarum)[J].PLoS One,2019,14(4):e0215158.
    [28] Wang Y,Wang W W,Xie S H,et al.The effects of airexposure and recovery on immune parameters of Ruditapes philippinarum[J].Journal of Agriculture,2021,11(4):38-43.[王钰,王文文,谢深涵,等.干露及恢复过程中菲律宾蛤仔免疫指标的变化 [J].农学学报,2021,11(4):38-43.]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周丽青,井浩,葛广玉,吴宙,孙秀俊,李家乐,吴彪,刘志鸿,杨金龙.溶氧变化模式对菲律宾蛤仔鳃组织和血淋巴液氧化应激及生理代谢的影响[J].中国水产科学,2023,30(3):361-370
ZHOU Liqing, JING Hao, GE Guangyu, WU Zhou, SUN Xiujun, LI Jiale, WU Biao, LIU Zhihong, YANG Jinlong. Effects of three dissolved oxygen modes on oxidative stress and physiological metabolism in Ruditapes philippinarum gill tissue and hemolymph[J]. Journal of Fishery Sciences of China,2023,30(3):361-370

复制
分享
文章指标
  • 点击次数:1372
  • 下载次数: 933
  • HTML阅读次数: 956
  • 引用次数: 0
历史
  • 收稿日期:2022-11-15
  • 最后修改日期:2022-11-29
  • 在线发布日期: 2023-05-22
文章二维码