基于16S rRNA高通量测序的长江口日本鳗鲡幼体肠道微生物群落研究
作者:
作者简介:

常亚娟(1996-),女,硕士研究生,研究方向为水生生物学.E-mail:y_j_chang@163.com

中图分类号:

S965

基金项目:

国家重点研发计划项目(2018YFD0900802); 国家自然科学基金项目(31093430).


Study on the intestinal microbial community of Japanese eel larvae in the Yangtze River Estuary based on 16S rRNA high-throughput sequencing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了解长江口日本鳗鲡(Anguilla japonica)幼体肠道微生物的结构特点和多样性组成, 探索其潜在功能,采用 MiSeq 16S rRNA 高通量测序技术对 2022 年 1―4 月每月 VA 期和 VB 期 2 个发育时期的肠道样本进行微生物测序, 分析了肠道微生物的 OTU 数量、菌群组成、丰度及 Alpha 多样性, 并预测其功能。8 个样本共测得 1467 个 OTU, 每个样本平均 396 个。共鉴定出 51 门、140 纲、286 目、414 科、643 属、959 种, 每个样本平均包含 26 门和 229 属, 并表现出随月份递增而门数和属数明显减少的现象。在门水平上, 以变形菌门(Proteobacteria)(81.33%)和拟杆菌门 (Bacteroidota)(10.61%)为优势菌群。在属水平上 , 主要由嗜冷杆菌属 (Psychrobacter)(35.10%)、假单胞菌属 (Pseudomonas)(16.75%)、黄杆菌属(Flavobacterium)(7.99%)、无色杆菌属(Achromobacter)(4.82%)、希瓦氏菌属 (Shewanella)(4.21%)等组成, 显示了一组与其他鱼类不同的肠道微生物群落。1 月组的肠道菌群丰度及多样性显著高于其他月组(P<0.05), 其他 3 个月组之间及 2 个发育期组(VA 期组和 VB 期组)之间均无显著性差异(P>0.05)。 KEGG pathway 注释预测肠道菌群编码的大多数基因与新陈代谢相关, 其中氨基酸转运与代谢功能类群的相对丰度较高。本研究解析了长江口日本鳗鲡幼体的肠道微生物结构组成及其时间变化特征, 并分析了其优势菌群可能的作用途径, 为其苗种繁育及饵料研制提供参考。

    Abstract:

    The aims of this study were to analyze the structure and diversity of intestinal microorganisms in wild Anguilla japonica eel larvae from the Yangtze River Estuary and to explore the function of these intestinal microorganisms. MiSeq 16S rRNA high-throughput sequencing technology was used to sequence the 16S rRNA of microorganisms in wild eel larvae at different pigment development stages from January to April. We then counted the number of operational taxonomic units (OTU) of intestinal microorganisms in the samples, analyzed species composition, abundance, and alpha diversity, and predicted the function of these intestinal microorganisms. A total of 1467 OTUs were identified from the Japanese eel larvae samples, with an average of 396 per sample; these microorganisms were determined to belong to 51 phyla, 140 classes, 286 orders, 414 families, 643 genera, and 959 species. Each sample had an average of 26 phyla and 229 genera; however, a significant decrease in this diversity was observed with increasing months. At the phylum level, the dominant microflora were Proteobacteria (81.33%) and Bacteroidota (10.61%). At the genus level, the dominant bacterial groups were Psychrobacter (35.10%), Pseudomonas (16.75%), Flavobacterium (7.99%), Achromobacter (4.82%), and Shewanella (4.21%), which differed from the intestinal microbial communities observed in other fishes. The abundance and diversity of intestinal microflora in eel larvae from the January group were significantly higher than those in other months (P<0.05). Nonetheless, there was no significant difference in the structure and diversity of the intestinal microbial community among the other three groups or between the VA and VB stages of eel larvae at different pigment development stages (P>0.05). According to KEGG path annotation, it was predicted that most of the genes encoded by the intestinal microflora of Japanese eel larvae were related to metabolism; further, the relative abundance of amino acid transport and metabolic functional groups was high. The composition of microorganisms in the intestinal tract of Japanese eel larvae is complex; therefore, the analysis of these intestinal microorganisms and their corresponding functions helps develop our understanding of the influence of intestinal microflora on Anguilla japonica feeding, thereby providing a theoretical basis for further studies on fish diet.

    参考文献
    [1] Tsukamoto K.Oceanic biology:Spawning of eels near a seamount[J].Nature,2006,439(7079):929.
    [2] Tsukamoto K,Chow S,Otake T,et al.Oceanic spawning ecology of freshwater eels in the western North Pacific[J].Nature Communications,2011,2:179.
    [3] Xie G.Survey and prospect of studies on artificial propagation and rearing eel(Anguilla japonica)fry:A review[J].Journal of Dalian Fisheries University,2001,16(1):42-48.[谢刚.鳗鲡苗种人工繁育的研究概况及其展望[J].大连水产学院学报,2001,16(1):42-48.]
    [4] Tanaka H.Progression in artificial seedling production of Japanese eel Anguilla japonica[J].Fisheries Science,2015,81(1):11-19.
    [5] Guo H Y,Zhang X G,Zhang Y,et al.Effects of environmental variables on recruitment of Anguilla japonica glass eels in the Yangtze Estuary,China[J].Fisheries Science,2017,83(3):333-341.
    [6] Wang S K,Song C,Zhang T T,et al.Spatiotemporal distribution and catching status of elver(Anguilla japonica)in the Yangtze River Estuary[J].Journal of Fisheries of China,2023,47(2):171-182.[王思凯,宋超,张婷婷,等.长江口日本鳗鲡苗的时空分布与捕捞生产现状[J].水产学报,2023,47(2):171-182.]
    [7] Xie Z L,Guo H Y,Tang W Q,et al.Age structure and growth characteristics at seaward migrating periods of Anguilla japonic a in the Yangtze River Estuary[J].Journal of Fisheries of China,2010,34(2):245-254.[谢正丽,郭弘艺,唐文乔,等.长江口降海洄游鳗鲡的年龄结构与生长特征[J].水产学报,2010,34(2):245-254.]
    [8] Guo H Y,Zhang Y,Tang W Q,et al.Pigmentation stages and body proportions of Anguilla japonica glass eels at the Yangtze River Estuary[J].Acta Hydrobiologica Sinica,2015,39(1):197-202.[郭弘艺,张亚,唐文乔,等.长江口日本鳗鲡幼体色素发育时相及其体型变化[J].水生生物学报,2015,39(1):197-202.]
    [9] Cahill M M.Bacterial flora of fishes:A review[J].MicrobialEcology,1990,19(1):21-41.
    [10] Wang A R,Ran C,Ringø E,et al.Progress in fish gastrointestinal microbiota research[J].Reviews in Aquaculture,2018,10(3):626-640.
    [11] Meng X L,Nie G X.Advances of intestinal microbiota and lipid metabolism of fish[J].Journal of Fishery Sciences of China,2019,26(6):1221-1229.[孟晓林,聂国兴.鱼类肠道菌群与机体脂质代谢关系研究进展[J].中国水产科学,2019,26(6):1221-1229.]
    [12] Talwar C,Nagar S,Lal R,et al.Fish gut microbiome:Current approaches and future perspectives[J].Indian Journal of Microbiology,2018,58(4):397-414.
    [13] Meng X L,Li W J,Nie G X.Effect of different factors on the fish intestinal microbiota[J].Journal of Fisheries of China,2019,43(1):143-155.[孟晓林,李文均,聂国兴.鱼类肠道菌群影响因子研究进展[J].水产学报,2019,43(1):143-155.]
    [14] Zhu P,Wong M K S,Lin X,et al.Changes of the intestinal microbiota along the gut of Japanese Eel(Anguilla japonica)[J].Letters in Applied Microbiology,2021,73(4):529-541.
    [15] Liu H Z,Liang Y,Zhai S W.Effect of different starter feeds on intestinal flora of Anguilla rostrata at elver stage[J].Feed Research,2021,44(5):51-55.[刘海姿,梁英,翟少伟.不同开口饵料对美洲鳗鲡白仔苗肠道菌群的影响[J].饲料研究,2021,44(5):51-55.]
    [16] Youssef N,Sheik C S,Krumholz L R,et al.Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys[J].Applied and Environmental Microbiology,2009,75(16):5227-5236.
    [17] Di Bella J M,Bao Y G,Gloor G B,et al.High throughput sequencing methods and analysis for microbiome research[J].Journal of Microbiological Methods,2013,95(3):401-414.
    [18] Evariste L,Barret M,Mottier A,et al.Gut microbiota of aquatic organisms:A key endpoint for ecotoxicological studies[J].Environmental Pollution,2019,248:989-999.
    [19] Wang X F,Zhao Y F,Song Z F,et al.Application of highthroughput sequencing techniques for analyzing bacterial communities in pond-raised mud crab(Scylla paramamosain)intestine and its aquaculture environment[J].Journal of Fishery Sciences of China,2017,24(6):1245-1253.[王贤丰,赵艳飞,宋志飞,等.应用高通量测序技术分析拟穴青蟹肠道及其养殖环境菌群结构[J].中国水产科学,2017,24(6):1245-1253.]
    [20] Chao A.Nonparametric estimation of the number of classes in a population[J].Scandinavian Journal of Statistics,1984,11:265-270.
    [21] Simpson E H.Measurement of diversity[J].Nature,1949,163(4148):688.
    [22] Shannon C E.The mathematical theory of communication[J].Bell Labs Technical Journal,1950,3(9):31-32.
    [23] Lundin D,Severin I,Logue J B,et al.Which sequencing depth is sufficient to describe patterns in bacterial α-and β-diversity?[J].Environmental Microbiology Reports,2012,4(3):367-372.
    [24] Huang L L,Zhang Y,Zhou H,et al.Comparison of intestinal microbial diversity in cold-water fishes in Xinjiang by 16S rRNA high-throughput sequencing[J].Food Science,2018,39(10):138-144.[黄丽丽,张艳,周红,等.基于 16S rRNA 高通量测序方法比较新疆冷水鱼肠道中微生物多样性[J].食品科学,2018,39(10):138-144.]
    [25] Xiao S S,Zhang A J,Liu J D,et al.Analysis on intestine microbial community structure of three carnivorous fishes in Qianxia Lake,China[J].Chinese Journal of Fisheries,2022,35(3):73-79.[肖善势,张爱菊,刘金殿,等.千峡湖三种肉食性鱼类肠道微生物群落结构分析[J].水产学杂志,2022,35(3):73-79.]
    [26] Wu S G,Wang G T,Angert E R,et al.Composition,diversity,and origin of the bacterial community in grass carp intestine[J].PLoS One,2012,7(2):e30440.
    [27] Ye S,Ma D Y,Zhai S W.Revealing the difference of intestinal microbiota composition of cultured european eels(Anguilla anguilla)with different growth rates[J].Israeli Journal of Aquaculture-Bamidgeh,2020,72(3):1-12.
    [28] Yukgehnaish K,Kumar P,Sivachandran P,et al.Gut microbiota metagenomics in aquaculture:Factors influencing gut microbiome and its physiological role in fish[J].Reviews in Aquaculture,2020:raq.12416.
    [29] Zhang Y.Study on pigmentation developmental stages and morphological characteristics and otolith microchemistry of Japanese eels larvae,Anguilla japonica,collected in Yangtze River Estuary[D].Shanghai:Shanghai Ocean University,2013.[张亚.长江口日本鳗鲡幼体的发育时相、形态特征和耳石化学研究[D].上海:上海海洋大学,2013.]
    [30] Givens C E,Ransom B,Bano N,et al.Comparison of the gut microbiomes of 12 bony fish and 3 shark species[J].Marine Ecology Progress Series,2015,518:209-223.
    [31] Dulski T,Zakęś Z,Ciesielski S.Characterization of the gut microbiota in early life stages of pikeperch Sander lucioperca[J].Journal of Fish Biology,2018,92(1):94-104.
    [32] Gajardo K,Rodiles A,Kortner T M,et al.A high-resolution map of the gut microbiota in Atlantic salmon(Salmo salar):A basis for comparative gut microbial research[J].ScientificReports,2016,6:30893.
    [33] Bertucci A,Hoede C,Dassié E,et al.Impact of environmental micropollutants and diet composition on the gut microbiota of wild European eels(Anguilla anguilla)[J].Environmental Pollution,2022,314:120207.
    [34] Wang Y,Zhao P Y,Chen X H,et al.The comparative research on intestinal flora of Anguilla marmorata with different growth rates under intensive culture ponds condition[J].Feed Industry,2021,42(4):48-52.[王悦,赵盼月,陈学豪,等.精养池模式下不同生长速度花鳗鲡的肠道菌群比较研究[J].饲料工业,2021,42(4):48-52.]
    [35] Liu H,Guo X W,Gooneratne R,et al.The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels[J].Scientific Reports,2016,6:24340.
    [36] Wang C,Ni J J,Yan Q Y,et al.Comparison of the intestinal bacterial communities between grass carp(Ctenopharyngodon idellus)and bluntnose black bream(Megalobrama amblycephala)[J].Acta Hydrobiologica Sinica,2014,38(5):868-875.[王纯,倪加加,颜庆云,等.草鱼与团头鲂肠道菌群结构比较分析[J].水生生物学报,2014,38(5):868-875.]
    [37] Zhang H X,Tang H S,Zang Y,et al.Microorganism’s adaptation of crucian carp may closely relate to its living environments[J].Microbiology Open,2019,8(3):e00650.
    [38] Li J,Ni J,Li J,et al.Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits[J].Journal of Applied Microbiology,2014,117(6):1750-1760.
    [39] Hsu H Y,Chang F C,Wang Y B,et al.Revealing the compositions of the intestinal microbiota of three Anguillid eel species using 16S rDNA sequencing[J].Aquaculture Research,2018,49(7):2404-2415.
    [40] Liu Y X,Xie Y H,Li B,et al.Preliminary study on the feeding habit of the upstream migratory elver of Japanese eel(Anguilla japonica)in the estuary of northern Yellow Sea,China[J].Fisheries Science,1992,11(2):4-7.[刘义新,解玉浩,李勃,等.辽东半岛(黄海北部)溯河鳗苗食性的初步研究[J].水产科学,1992,11(2):4-7.]
    [41] Fu L J,Li B,Liu Y X.Preliminary study on feeding habits of eel fry in coastal estuaries of China[J].Reservoir Fisheries,1993,14(4):16-17.[富丽静,李勃,刘义新.中国沿海河口地区鳗苗食性的初步研究[J].水利渔业,1993,14(4):16-17.]
    [42] Lyons P P,Turnbull J F,Dawson K A,et al.Phylogenetic and functional characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings[J].Journal of Applied Microbiology,2017,122(2):347-363.
    [43] Luo M K,An R,Fu J J,et al.Comparative analysis of the gut microbiota in bighead carp under different culture patterns[J].Journal of Applied Microbiology,2022,132(2):1357-1369.
    [44] Xie D Z,Yang L P,Yu R M,et al.Effects of dietary carbohydrate and lipid levels on growth and hepatic lipid deposition of juvenile tilapia,Oreochromis niloticus[J].Aquaculture,2017,479:696-703.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

常亚娟,唐文乔,郭弘艺.基于16S rRNA高通量测序的长江口日本鳗鲡幼体肠道微生物群落研究[J].中国水产科学,2023,30(6):699-710
CHANG Yajuan, TANG Wenqiao, GUO Hongyi. Study on the intestinal microbial community of Japanese eel larvae in the Yangtze River Estuary based on 16S rRNA high-throughput sequencing[J]. Journal of Fishery Sciences of China,2023,30(6):699-710

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-09
  • 最后修改日期:2023-04-19
  • 在线发布日期: 2023-08-28
文章二维码