利用贝叶斯动态产量模型评估印度洋长鳍金枪鱼资源状态
CSTR:
作者:
作者单位:

作者简介:

安康(1999?),男,硕士研究生,研究方向为渔业资源评估与管理.E-mail:13869182876@163.com

通讯作者:

中图分类号:

S931

基金项目:

国家自然科学基金项目(32072981).


Status assessment of Thunnus alalunga resources in the Indian Ocean using a Bayesian biomass dynamic model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    印度洋长鳍金枪鱼(Thunnus alalunga)的生物学信息相对较少, 渔业数据存在较多问题, 致使其资源评估结果仍存在较大的不确定性, 从而影响了渔业管理的科学性。为此, 本研究基于印度洋长鳍金枪鱼的渔业捕捞、标准化 CPUE (catch per unit effort)数据及相关种群假设, 利用贝叶斯动态产量模型对该种群进行了资源评估研究, 结果显示: (1) 渔获量的观测误差对模型参数估计、资源状态的判断及渔业管理具有重要影响, 渔获量观测误差的增大使模型评估的过度捕捞概率上升, 导致总可捕量(total allowable catch, TAC)减少; (2) 动态产量模型形状参数、r 的先验分布和资源丰度指数的选择均会影响资源评估的质量, 本研究显示, Fox 模型的资源评估结果比 Schaefer 模型的评估结果更合理, r 先验分布范围的增大使模型评估的资源状态变好, 使用西南海域标准化 CPUE 时的评估结果相对较好; (3) 设置某些年份的资源量比例(φP2017)范围有助于提高数据缺乏下渔业资源评估的质量; (4) 评估结果表明印度洋长鳍金枪鱼发生资源型与捕捞型过度捕捞的概率分别为 34%、50%, 两种过度捕捞同时发生的概率为 32%, 该种群正面临捕捞型过度捕捞的风险; 投影分析显示, 将 TAC 控制在 32658 t (即最后 5 年平均渔获量的 90%)以下时, 印度洋长鳍金枪鱼 10 年后不发生过度捕捞的概率大于 60%。贝叶斯动态产量模型作为一种数据有限的渔业资源评估模型, 适用于印度洋长鳍金枪鱼, 且该模型能较好地考虑参数输入和不确定性因素对资源评估质量、总可捕量估计的影响, 为深入研究印度洋长鳍金枪鱼的资源状态与管理提供了科学依据。

    Abstract:

    There is relatively little information on the biology of Indian Ocean albacore tuna (Thunnus alalunga); further, many problems with the fishery data result in a large uncertainty in its stock assessment results and affect fishery management. In this study, based on the fishery catch, standardized Catch Per Unit Effort (CPUE) data, and relevant stock hypotheses of Indian Ocean albacore tuna, a Bayesian biomass dynamic model was used to conduct a stock assessment. The results showed that: (1) The observation error of catch has an important influence on the estimation of model parameters, judgment of resource status, and fishery management, and an increase in catch observation error increases the probability of overfishing assessed by the model, which leads to a decrease in Total Allowable Catch (TAC); (2) The shape parameters of biomass dynamic model, prior distribution of r, and choice of resource abundance index affect the quality of stock assessment, and this study shows that the stock assessment results of the Fox model are more reasonable than those of the Schaefer model, the increase in the range of r priori distribution makes the resource state assessed by the model better, and the assessment results are relatively better when using the standardized CPUE of the southwest waters; (3) Setting a range of resource proportions (φP2017) for certain years can help improve the quality of fishery stock assessment under the lack data; (4) The probability of overfished and overfishing for albacore tuna in the Indian Ocean are 34% and 50%, respectively, and the probability of both occurring simultaneously is 32%, and the species is at risk of overfishing. The projection analysis showed that the probability of not overfishing for Indian Ocean albacore tuna after 10 years was greater than 60% when the TAC was controlled below 32658 t (i.e., 90% of the final five-year average catch). The Bayesian biomass dynamic model, as a data-limited fishery stock assessment model, is applicable to Indian Ocean albacore tuna, and it can better consider the effects of parameter inputs and uncertainty factors on the quality of stock assessment and the estimation of TAC, providing a scientific basis for an in-depth study of the stock status and management of Indian Ocean albacore tuna.

    参考文献
    相似文献
    引证文献
引用本文

安康,官文江.利用贝叶斯动态产量模型评估印度洋长鳍金枪鱼资源状态[J].中国水产科学,2023,30(9):1142-1154
AN Kang, GUAN Wenjiang. Status assessment of Thunnus alalunga resources in the Indian Ocean using a Bayesian biomass dynamic model[J]. Journal of Fishery Sciences of China,2023,30(9):1142-1154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-12
  • 最后修改日期:2023-08-08
  • 录用日期:
  • 在线发布日期: 2024-02-02
  • 出版日期:
文章二维码