基于LASSO回归方法的南太平洋长鳍金枪鱼补充量预测
CSTR:
作者:
作者单位:

1.上海海洋大学, 海洋生物资源与管理学院, 上海 201306 ;2.上海海洋大学, 农业农村部大洋渔业可持续利用重点实验室, 上海 201306 ;3.上海海洋大学, 国家远洋渔业工程技术研究中心, 上海 201306

作者简介:

王扬(1993-),女,博士后,从事气候变化与鱼类种群动态研究.E-mail:yan-wang@shou.edu.cn

通讯作者:

中图分类号:

S931

基金项目:

国家重点研发计划项目(2024YFD2400602); 农业农村部 2024 年度全球重要鱼种资源动态监测评估项目(D-8025-24-5001)


Prediction of South Pacific albacore Thunnus alalunga recruitment based on the LASSO regression method
Author:
Affiliation:

1.College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306 ,China ;2.Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs , Shanghai OceanUniversity, Shanghai 201306 , China ;3.National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    种群补充是维持资源可持续的关键生物学过程, 准确理解和预测补充量的变异性已经成为渔业管理的核心问题。以往对南太平洋长鳍金枪鱼(Thunnus alalunga)补充量的预测方法在处理环境变量间多重共线性及筛选关键驱动变量方面时存在显著局限性, 容易导致模型过拟合及预测精度下降。为弥补以上不足, 本研究引入 LASSO 回归算法以优化预测变量筛选过程并提升预测精度。基于 2000—2017 年观测数据构建模型, 并结合 CMIP6 多模式气候预测数据, 对 2018—2100 年补充量进行长期预测。结果表明, LASSO 方法通过收缩无关变量, 有效消除变量冗余, 提高了模型预测精度。最佳模型解释率为 45.9%, 其中海表温度(SST)和混合层深度(MLD)为预测补充量的重要因子。预测结果显示, 在二氧化碳较高排放情形下(SSP585, SSP370), 在 2070年代种群补充量趋近于零, 种群崩溃风险显著升高; 在低碳路径(SSP126)下, 补充量仍呈现持续性衰减趋势。本研究结果为渔业资源预测及变量选择介绍了有效方法, 并构建了气候-补充耦合预测模型, 为制定适应性管理策略、规避种群崩溃风险提供了量化决策支持。

    Abstract:

    Recruitment process serves as a critical biological foundation for sustainable resource maintenance. Understanding and accurately predicting the variability in recruitment has become a core challenge in fisheries management. Previous methods for predicting the recruitment of South Pacific albacore (Thunnus alalunga) have challenges in handling multicollinearity among environmental variables and identifying key drivers, often leading to model overfit and reduced predictive accuracy. To address these issues, this study applied the LASSO regression algorithm to optimize variable selection and improve prediction accuracy. Models were developed based on observational data from 2000 to 2017, and then coupled with CMIP6 multi-model climate projections, to predict recruitment trends from 2018 to 2100.The results indicated that LASSO effectively eliminated variable redundancy through shrinkage estimation, enhancing model prediction accuracy. The optimal model explained 45.9% of variance, with sea surface temperature (SST) and mixed layer depth (MLD) identified as critical predictors. Projections revealed that under high-emission scenarios (SSP5-8.5, SSP3-7.0), the population recruitment by the 2070s would approach the ecological threshold lower limit (near zero), significantly elevating collapse risks. In contrast, under the low-carbon pathway (SSP1-2.6), recruitment exhibited persistent decline trends. This study provided with an effective methodological framework for fisheries stock prediction and variable selection, while establishing a climate-recruitment coupled prediction model to provide quantitative decision-making support for formulating adaptive management strategies and mitigating population collapse risks.

    参考文献
    相似文献
    引证文献
引用本文

王扬,朱江峰,张帆,耿喆.基于LASSO回归方法的南太平洋长鳍金枪鱼补充量预测[J].中国水产科学,2025,32(7):914-923
WANG Yang, ZHU Jiangfeng, ZHANG Fan, GENG Zhe. Prediction of South Pacific albacore Thunnus alalunga recruitment based on the LASSO regression method[J]. Journal of Fishery Sciences of China,2025,32(7):914-923

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-07
  • 最后修改日期:2025-04-09
  • 录用日期:
  • 在线发布日期: 2025-10-10
  • 出版日期:
文章二维码