国际海洋生物碳汇研究进展
作者:
作者单位:

中国水产科学研究院 黄海水产研究所, 山东 青岛266071

作者简介:

刘慧(1967), 研究员, 研究方向为海水养殖科学. E-mail: liuhui@ysfri.ac.cn


Review on worldwide study of ocean biological carbon sink
Author:
Affiliation:

Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    海洋是地球上最大的碳库。整个海洋中蓄积的碳总量达到占全球碳总量的倍。这些碳或重新进入生物地球化学循环而其中一部分被永久地储存在海底。根据联合国《蓝碳》报告的生物碳或是绿色碳捕获是由海洋生物完成的这些海洋生物包括浮游生物、细菌、海藻、盐沼植物和红树林。本文综述了近年国际上对海洋生物碳汇的研究结果

    Abstract:

    Ocean is the biggest carbon sink in the world. The total carbon load of the ocean is 39×1012t, which is 93% of total global carbon load, and about 53 times of carbon load of the atmosphere. Carbon in the ocean will either join in the biogeochemical cycle again, or be preserved for long periods; while some of the carbon will be stored in the seabed forever. According to the Blue Carbon report by UN, about global biological carbon or green carbon capture is accomplished by marine organisms. These marine organisms include phytoplankton, bacteria, seaweeds, salt marshes and mangroves. Marine plants or flora have high capacity and efficiency for carbon sequestration. The findings on marine biological carbon sink by worldwide studies are reviewed in this paper. Major mechanisms governing the marine biological carbon sink are described, along with its present status and approaches for its restoration. Additionally, the function of seaweed and bivalves mariculture as components of fisheries carbon sink is evaluated.

    参考文献

           Melillo J M, Callaghan T V, Woodward F I. Effects on ecosystems[M]//Houghton J T, Jenkins G J, Ephraums J J. Climate change: the IPCC scientific assessment. Cambridge: Cambridge University Press, 1990: 283–310.

           IPCC. Climate Change 2007: The physical science basis[M]//Solomon S, Qin D, Man­ning M, et al. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2007: 996.

           Nellemann C, Corcoran E, Duarte C M, et al. Blue Carbon[R/OL]. A rapid response assessment. united nations environment programme, GRID-Arendal, 2009. http://www. grida. no.

           Chen C A, Borges A V. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2[J]. Deep-Sea Res

           Drange H. A 3-dimensional isopycnic coordinate model of the seasonal cycling of carbon and nitrogen in the atlantic ocean[J]. Phys Chem Earth, 1996, 21 (5-6): 503–509.

           Riebesell U, Zondervan I, Rost B. Reduced calcification in marine planktonic response to increased atmospheric CO2[J]. Nature, 2000, 407:364–367.

           陈泮勤地球系统碳循环北京科学出版社

           宋金明徐永福胡维平中国近海与湖泊碳的生物地球化学北京科学出版社

           Sogin M L, Morrison H G, Huber J A, et al. Microbial diversity in the deep sea and the underexplored ‘‘rare biosphere’’ [J/OL]. PNAS, 2006 103(32): 12115–12120. www.pnas.org_ cgi_doi_10.1073_pnas.0605127103

        Suttle C A. Marine viruses - major players in the global ecosystem[J]. Nat Rev Microbiol, 2007, 5: 801–812.

        Pomeroy L R, Williams P J, Azam F, et al. The microbial loop. In a sea of microbes[J] Oceanography, 2007, 20(2):28.

        Wiggington N. Critical zone blog: Viruses aplenty?[Z/OL]. Nature Network, 2008[2010-03-27] http://network.nature. com/people/wigginton/blog/2008/02/06/viruses-aplenty.

        Hoyle B D, Robinson R. Microbes in the ocean[M/OL]. Water: Science and Issues, 2003 [2010–03]. http://findarticles. com/p/articles/mi_gx5224/is_2003/ai_n19143480.

        Beja O, Spudich E N, Spudich J L, et al. Proteorhodopsin phototrophy in the ocean[J]. Nature, 2001, 411:786–789.

        González J M, Fernandez-Gomez B, Fendandez-Guerra A, et al. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria): A tale of two environments[J]. Proc Natl Acad Sci USA, 2008, 105: 8724–8729.

        Bishop J K B, Wood T J. Year-round observations of carbon biomass and flux variability in the Southern Ocean[J]. Global Biogeochem Cycles, 2009, 23: 3206–3216.

        Seiter K, Hensen C, Zabel M. Benthic carbon mineralization on a global scale[J]. Global Biogeochem Cycles, 2005, 19: 3173

        朱明远毛兴华吕瑞华黄海海区的叶绿素和初级生产力黄渤海海洋

        金显仕赵宪勇孟田湘黄、渤海生物资源与栖息环境北京科学出版社

        中国科学院《中国自然地理》编委会中国自然地理一海洋地理北京科学出版社

        王其翔黄海海洋生态系统服务评估青岛中国海洋大学

        宋金明李学刚袁华茂中国近海生物固碳强度与潜力生态学报, 2008, 28( 2): 551–

        Duarte C M, Chiscano C L. Seagrass biomass and produc­tion: A reassessment[J]. Aquat Bot, 1999, 65: 159–174.

        Mateo M A, Romero J, Pérez M, et al. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica[J]. Estuar Coastal Shelf Sci, 1997, 44: 103–

        Duarte C M, Middelburg J, Caraco N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2: 1–8.

        张朝晖周骏吕吉斌海洋生态系统服务的内涵与特点海洋环境科学–

        张继红方建光唐启升中国浅海贝藻养殖对海洋碳循环的贡献地球科学进展, 2005, 20(3): 359–

        周毅杨红生烟台四十里湾浅海养殖生物及附着生物的化学组成有机净生产量及其生态效应水产学报, 2002, 26(l): 21–

        李荣冠中国海陆架及邻近海域大型底栖生物北京海洋出版社

        严国安刘永定水生生态系统的碳循环及对大气的汇生态学报, 2001, 21( 5): 827–

        Waycott M, Duarte C M, Carruthers T J B, et al. Accel­erating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proc Natl Acad Sci USA, 2009, 106: 12377–

        Bridgham S D, Megonigal J P, Keller J K, et al. The carbon balance of North American wetlands[J]. Wetlands, 2006, 26: 889–916.

        C M, Dennison W C, Orth R J W, et al. The charisma of coastal ecosystems: addressing the imbalance[J]. Estuaries Coasts, 2008, 31(2): 233–238.

        Valiela I, Bowen J L, Cork J K. Mangrove forests: One of the world’s threatened major tropical environments[J]. Bioscience, 2001, 51: 807–815.

        Achard F, Eva H D, Stibig H J, et al. Determination of deforestation rates of the World’s Humid Tropical Forests[J]. Science, 2002, 297: 999–

        Trumper K, Bertzky M, Dickson B, et al. The Natural Fix? The role of ecosystems in climate mitigation[R/OL]//A UNEP rapid response assessment. United Nations Environment Programme, UNEPWCMC, Cambridge, UK, 2009. http://www.unep.org/pdf/BioseqRRA_scr.pdf

        Hemminga M A, Duarte C M. Seagrass Ecology[M]. Cambridge: Cambridge University Press, 2000.

        Danielsen F, Sørensen M K, Olwig M F, et al. The Asian tsunami: A protective role for coastal vegetation[J]. Science, 2005, 310: 643.

        Xiaonana D, Xiaoke W, Lua F, et al. Primary evalua­tion of carbon sequestration potential of wetlands in China[J]. Acta Ecol Sin, 2008, 28: 463–469.

        Andrews J E, Samways G, Shimmield G B. Historical storage budgets of organic carbon, nutrient and contaminant elements in saltmarsh sediments: Biogeochemical context for managed realignment, Humber Estuary, UK[J]. Sci Total Environ, 2008,405: 1–

        C M. The future of seagrass meadows[J]. Environ Conserv, 29: 192–206.

        Duarte C M. Global loss of coastal habitats: Rates, causes and consequences[M/OL]. Madrid: FBBVA, 2009: 181 (http: //www.fbbva).

        Borum J, Duarte C M, Krause-Jensen D. European seagrasses: an introduction to monitoring and management[R]. Copenhagen: The M&MS project, 2004: 95.

        Hamilton L S, Snedaker S C. Handbook for mangrove area management[M]. Hawaii, USA: East-West Environment and Policy Institute, 1984: 123.

        Melana D M, Atchue J, Yao III C E, et al. Mangrove Management Handbook[R]. Cebú City, The Philippines: Department of Envi­ronment and Natural Resources, Manila, Philippines, Coastal Resource Project, 2000: 96.

        Arnaud-Haond S, Duarte C M, Teixeira S, et al. Genetic recolonization of mangrove: genetic diversity still increasing in the Mekong Delta 30 years after Agent Orange[J]. Mar Ecol Prog Ser, 2009, 390: 129–

        Boorman L, Hazelden J. Salt marsh creation and manage­ment for coastal defence[M]//Healy M G, Doody J P. Directions in European coastal management. John Wiley & Sons, 1995:175–

        Duarte C M, Fourqurean J W, Krause-Jensen D, et al. Dynamics of seagrass stability and change[M]// Larkum A W D, Orth R J, Duarte C M. Seagrasses: Biology, Ecology and Conservation. London: Springer, 2005: 271–294.

        The fate of marine autotrophic pro­duction[J]. Limnol Oceanogr, 1996,41: 1758–1766.

        Bouillon S, Borges A V, Castañeda-Moya E, et al. Mangrove production and carbon sinks: A revision of global budgetestimates[J]. Global Biogeochem Cycles, 2008, 22:3052–3063.

        Fonseca M S, Julius B E, Kenworthy W J. Integrating biology and economics in seagrass restoration: How much is enough and why?[J]. Ecol Eng, 2000, 15: 227–237.

        FAO. The state of world fisheries and aquaculture-2008[R]. Rome: FAO Fisheries and Aquaculture Department, 2009.

        唐启升发展碳汇渔业抢占蓝色低碳经济的技术高地科学时报Houghton R A. 2007. Balancing the global carbon budget[J]. Annu Rev Earth Planet Sci, 35: 313–347.

    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘慧,唐启升.国际海洋生物碳汇研究进展[J].中国水产科学,2011,18(3):695-702
LIU Hui, TANG Qisheng. Review on worldwide study of ocean biological carbon sink[J]. Journal of Fishery Sciences of China,2011,18(3):695-702

复制
分享
文章指标
  • 点击次数:1816
  • 下载次数: 798
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2011-05-09
文章二维码