东海北部小黄鱼异方差生长模型
DOI:
CSTR:
作者:
作者单位:

中国水产科学研究院 东海水产研究所, 农业部海洋与河口渔业重点开放实验室, 上海 200090

作者简介:

刘尊雷(1982), 男, 研究实习员, 研究方向为渔业资源管理. E-mail: zunlei@yahoo.com.cn

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年基金项目(31101901); 农业部近海渔业资源监测调查专项(2007-2008); 中央级公益性科研院所基本科研业务费专项基金资助(2009T02, 2008T03).


Modeling variance heterogeneity in growth: An example for small yellow croaker, Larimichthys polyactis in the northern East China Sea
Author:
Affiliation:

East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key and Open Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, Shanghai 200090, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为揭示同方差和异方差结构对鱼类生长模型估计精度的影响2007生长模型并采用似然比检验和

    Abstract:

    Growth models are important components of population biology study and are generally essential to adequately assess the impact of fishery. Given a specific functional form, the appropriate estimation of growth parameters depends on the error structure assumed for the data. For example, if variability in size is constant as a function of age, an additive error structure is suitable. However, if the variability in size increases with age, a multiplicative error or variance modeling is appropriate. Variance heterogeneity will typically not influence the parameter estimates significantly, but if ignored it may result in severely misleading the standard error and prediction intervals. The four parameters model formulated by Schnute contains a number of specific growth models that can be used to explain the pattern of growth in small yellow croaker(). We used data transformation and variance modeling to investigate the effect of assuming a different error structure in the model. We used data from stow net surveys conducted between May–September in 2007–2008 and from bottom trawls conducted in the northern region of the East China Sea between October–April in 2007–2009. We used the likelihood ratio test ( distribution) and Akaike’s Information Criterion to quantitatively compare the fit of nested submodels. Error structure had a significant effect on the fitted models. The estimated parameter values for the lognormal error, power variance. Furthermore, relatively small standard errors and narrow confidence intervals suggest that the integration of variance structure in the growth models is more accurate and robust than in the additive models. The log-transforma­tion models and variance structure models fit the data better than the additive models. The funneling observed in the plots of deviance residuals against age for the additive models was reduced in the corresponding plots for the lognormal error and variance structure models. The power variance and exponential variance models yielded significantly different estimates than the additive models

    参考文献
    相似文献
    引证文献
引用本文

刘尊雷,袁兴伟,严利平,杨林林,黎雨轩,程家骅.东海北部小黄鱼异方差生长模型[J].中国水产科学,2012,19(3):453-461
LIU Zunlei, YUAN Xingwei, YAN Liping, YANG Linlin, LI Yuxuan, CHENG Jiahua. Modeling variance heterogeneity in growth: An example for small yellow croaker, Larimichthys polyactis in the northern East China Sea[J]. Journal of Fishery Sciences of China,2012,19(3):453-461

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-05-14
  • 出版日期:
文章二维码