黄斑蓝子鱼LC-PUFA 合成代谢与渗透压调节的关系研究
作者:
作者单位:

1. 汕头大学 海洋生物研究所 广东省海洋生物技术重点实验室, 广东 汕头 515063; 2. 河南师范大学 水产学院, 河南 新乡 453007; 3. 广东溢多利生物科技股份有限公司, 广东 珠海 519060

作者简介:

作者简介: 谢帝芝(1986−), 男, 博士, 讲师, 研究方向为水产动物营养与饲料. E-mail: xiedizhi@qq.com 通信作者: 李远友, 教授, 博士生导师. E-mail: yyli@stu.edu.cn

中图分类号:

S963

基金项目:

国家自然科学基金重大国际合作研究项目(31110103913); 国家自然科学基金面上项目(41276179); 国家自然科学基金青年科学基金项目(31202012, 31202011).


Research on relationship between LC-PUFA biosynthesis andosmoregulation in Siganus canaliculatus
Author:
  • XIE Dizhi1

    XIE Dizhi1

    1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Shantou University, Shantou 515063, China; 2. College of Fisheries, Henan Normal University, Xinxiang 453007, China; 3. Guangdong VTR Bio-tech Co., Ltd., Zhuhai 5190
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 2

    2

    1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Shantou University, Shantou 515063, China; 2. College of Fisheries, Henan Normal University, Xinxiang 453007, China; 3. Guangdong VTR Bio-tech Co., Ltd., Zhuhai 5190
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Shude1

    XU Shude1

    1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Shantou University, Shantou 515063, China; 2. College of Fisheries, Henan Normal University, Xinxiang 453007, China; 3. Guangdong VTR Bio-tech Co., Ltd., Zhuhai 5190
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 3

    3

    1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Shantou University, Shantou 515063, China; 2. College of Fisheries, Henan Normal University, Xinxiang 453007, China; 3. Guangdong VTR Bio-tech Co., Ltd., Zhuhai 5190
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Fang1

    CHEN Fang1

    1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Shantou University, Shantou 515063, China; 2. College of Fisheries, Henan Normal University, Xinxiang 453007, China; 3. Guangdong VTR Bio-tech Co., Ltd., Zhuhai 5190
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Shuqi1

    WANG Shuqi1

    1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Shantou University, Shantou 515063, China; 2. College of Fisheries, Henan Normal University, Xinxiang 453007, China; 3. Guangdong VTR Bio-tech Co., Ltd., Zhuhai 5190
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YOU Cuihong1

    YOU Cuihong1

    1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Shantou University, Shantou 515063, China; 2. College of Fisheries, Henan Normal University, Xinxiang 453007, China; 3. Guangdong VTR Bio-tech Co., Ltd., Zhuhai 5190
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Yuanyou1

    LI Yuanyou1

    1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Shantou University, Shantou 515063, China; 2. College of Fisheries, Henan Normal University, Xinxiang 453007, China; 3. Guangdong VTR Bio-tech Co., Ltd., Zhuhai 5190
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Shantou University, Shantou 515063, China; 2. College of Fisheries, Henan Normal University, Xinxiang 453007, China; 3. Guangdong VTR Bio-tech Co., Ltd., Zhuhai 5190

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨黄斑蓝子鱼(Siganus canaliculatus)长链多不饱和脂肪酸(long-chain polyunsaturated fatty acids,LC-PUFA)合成代谢与渗透压调节的关系, 本研究以鱼油(FO)和混合植物油(苏子油与双低菜籽油, VO)为脂肪源配制两种等氮等脂饲料, 投喂饲养在3 种盐度(10、20 和32)下的黄斑蓝子鱼幼鱼8 周后, 分析了各处理组幼鱼的生长性能和鳃的磷脂脂肪酸组成、Na+/K+-ATPase (NKA)活力及其基因表达。结果显示, 相同盐度下, VO 组和FO 组鱼的生长性能差异不显著(P>0.05); FO 组鱼鳃磷脂中的n-3 LC-PUFA 含量显著高于VO 组(P<0.05), 但VO 组鱼的n-6 LC-PUFA水平显著高于FO组(P<0.05); VO 组鱼鳃的NKA酶活力及其mRNA表达量都显著高于FO组(P<0.05)。不同盐度下, 无论VO 组还是FO 组的鱼, 盐度10 组鱼的生长性能显著低于盐度20 和32 组(P<0.05), 而其鳃的LC-PUFA 含量、NKA 酶活力及其mRNA 表达量都显著高于盐度20 和32 组(P<0.05), 各指标在后两个盐度组之间差异不显著(P>0.05)。由此可见, 盐度10 对黄斑蓝子鱼具有一定的胁迫性, 导致其生长性能较差。摄食鱼油脂肪源饲料, 可以提高鱼鳃磷脂的n-3 LC-PUFA 水平; 而摄食植物脂肪源饲料时, 鱼体可能通过自身合成的n-6LC-PUFA 调控鳃的NKA 基因表达及其酶活力以调节渗透压。

    Abstract:

    To explore the relationship between osmoregulation and long-chain polyunsaturated fatty acid(LC-PUFA) biosynthesis in rabbitfish (), an 8-week feeding trial was performed in juvenilerabbitfish with diets that contained fish oil (FO) or a blend of vegetable oils (VO; perilla and canola oils) at threesalinities: 10, 20, and 32. The growth performance, fatty acid composition of gill phospholipids, and activity andexpression levels of gill NaATPase (NKA) under different treatments were analyzed. The results showed that,at the same salinity, there was no effect of dietary lipid source on growth performance (0.05), whereas n-3LC-PUFA content in gill phospholipids in the FO dietary groups was significantly higher than those in VO treatments(0.05). In particular, although the contents of n-6 LC-PUFA in VO-fed fish were lower than in FO-fedfish, the opposite was observed for n-6 LC-PUFA contents. Furthermore, the activity and mRNA expression levelsof gill NKA in VO groups were significantly higher than those in FO groups (0.05). Under different salinities,the growth indexes at a salinity of 10 were significantly lower than those at salinities of 20 and 32 in both dietarygroups (0.05), whereas the LC-PUFA contents, and activity and mRNA expression levels of NKA in fish fedVO were significantly higher than that in fish fed VO (0.05). In addition, there were no significant differencesin either of the higher two salinities treatments (0.05). The results indicate that a salinity of 10 may not suitablefor rabbitfish culture. Furthermore, FO-derived diets can improve n-3 LC-PUFA content in gill phospholipids,which helps maintain membrane lipid fluidity and osmotic balance. Alternatively, VO-derived diets can regulateosmotic pressure by synthesizing n-6 LC-PUFA to up-regulate NKA expression and activity.

    参考文献
    [1] Evans D H, Piermarini P M, Choe K P. The multifunctionalfish gill: dominant site of gas exchange, osmoregulation,acid-base regulation, and excretion of nitrogenous waste[J].Physiol Rev, 2005, 85(1): 97[2] Kang C K, Tsai S C, Lee T H, et al. Differential expressionof branchial Na+/K+-ATPase of two medaka species, Oryziaslatipes and Oryzias dancena, with different salinity tolerancesacclimated to fresh water, brackish water and seawater[J]. Comp Biochem Physiol A, 2008, 151(4): 566[3] Tang C H, Lai D Y, Lee T H. Effects of salinity acclimationon Na+/K+–ATPase responses and FXYD11 expression inthe gills and kidneys of the Japanese eel (Anguilla japonica)[J]. Comp Biochem Physiol A, 2012, 163(3–– [4] Urbina M A, Schulte P M, Bystriansky J S, et al. Differentialexpression of Na+, K+-ATPase α-1 isoforms during seawateracclimation in the amphidromous galaxiid fish Galaxiasmaculatus[J]. J Comp Physiol B, 2013, 183(3): 345[5] Flores A M, Shrimpton J M. Differential physiological andendocrine responses of rainbow trout, Oncorhynchus mykiss,transferred from fresh water to ion-poor or salt water[J]. Gen5 期 谢帝芝等: 黄斑蓝子鱼LC-PUFA 合成代谢与渗透压调节的关系研究 957Comp Endocrinol, 2012, 175(2): 244[6] Lin Y M, Chen C N, Lee T H. The expression of gill Na,K-ATPase in milkfish, Chanos chanos, acclimated to seawater,brackish water and fresh water[J]. Comp BiochemPhysiol A, 2003, 135(3): 489[7] Kang C K, Liu F C, Chang W B, et al. Effects of low environmentalsalinity on the cellular profiles and expression ofNa+, K+-ATPase and Na+, K+, 2Clcotransporter 1 of branchialmitochondrion-rich cells in the juvenile marine fishMonodactylus argenteus[J]. Fish Physiol Biochem, 2012,38(3): 665[8] Atalah E, Hernández-Cruz C M, Ganuza E, et al. Importanceof dietary arachidonic acid for the growth, survival and stressresistance of larval European sea bass (Dicentrarchus labrax)fed high dietary docosahexaenoic and eicosapentaenoic acids[J]. Aquacult Res, 2011, 42(9): 1261[9] Van Anholt R D, Koven W M, Lutzky S, et al. Dietary supplementationwith arachidonic acid alters the stress responseof gilthead seabream (Sparus aurata) larvae[J]. Aquaculture,2004, 238(1–– [10] Carrier J K, Watanabe W O, Harel M, et al. Effects of dietaryarachidonic acid on larval performance, fatty acid profiles,stress resistance, and expression of Na+/K+ ATPase mRNAin black sea bass Centropristis striata[J]. Aquaculture, 2011,319(1–– [11] Yehuda S, Rabinovitz S, Carasso R L, et al. The role ofpolyunsaturated fatty acids in restoring the aging neuronalmembrane[J]. Neurobiol Aging, 2002, 23(5): 843[12] Nano J L, Nobili C, Girard-Pipau F, et al. Effects of fattyacids on the growth of Caco-2 cells[J]. Prostagl Leuk EssFatty Acids, 2003, 69(4): 207[13] Zheng X Z, Torstensen B E, Tocher D R, et al. Environmentaland dietary influences on highly unsaturated fattyacid biosynthesis and expression of fatty acyl desaturase andelongase genes in liver of Atlantic salmon (Salmo salar)[J].Biochim Biophys Acta-Mol Cell Biol Lipids, 2005, 1734(1):13[14] Li Y Y, Hu C B, Zheng Y J, et al. The effects of dietary fattyacids on liver fatty acid composition and Δ6-desaturase expressiondiffer with ambient salinities in Siganus canaliculatus[J]. Comp Biochem Physiol B, 2008, 151(2): 183[15] Sarker M A A, Yamamoto Y, Haga Y, et al. Influences oflow salinity and dietary fatty acids on fatty acid compositionand fatty acid desaturase and elongase expression in red seabream Pagrus major[J]. Fish Sci, 2011, 77(3): 385[16] Li Y Y, Chen W Z, Sun Z W, et al. Effects of n-3 HUFAcontent in broodstock diet on spawning performance andfatty acid composition of eggs and larvae in Plectorhynchuscinctus[J]. Aquaculture, 2005, 245(1–– [17] Whelan J A, Russell N B, Whelan M A. A method for absolutequantification of cDNA using real-time PCR[J]. J ImmunolMeth, 2003, 278: 261[18] Hiroi J, McCormick S D. New insight into gill ionocyte andion transporter function in euryhaline and diadromous fish[J].Respir Physiol Neurobiol 2012, 184(3): 257[19] Hwang P P, Lee T H, Lin L Y. Ion regulation in fish gills:recent progress in the cellular and molecular mechanisms[J].Am J Physiol-Regul Integr Comp Physiol, 2011, 301(1):R28[20] Tzeng W N, Lizuka Y, Shiao J C, et al. Identification andgrowth rate comparison of divergent migratory contingentsof Japanese eel (Anguilla japonica)[J]. Aquaculture, 2003,216(1–– [21] Luo M Z, Guan R Z, Jin H. Effects of salinity onNa+/K+-ATPase activity in gill and kidney of Anguillamarmorata and A. bicolor pacifica elver[J]. Oceanologia etLimnologia Sinica, 2013, 44(3): 807罗鸣钟, 关瑞章,靳恒. 盐度对花鳗鲡 (Anguilla marmorata) 和太平洋双色鳗鲡 (A. bicolor pacifica) 幼鳗鳃丝及肾脏Na+/K+-ATP 酶活力的影响[J]. 海洋与湖沼, 2013, 44: 807[22] Bystriansky J S, Richards J G, Schulte P M, et al. Reciprocalexpression of gill Na+/K+-ATPase ααα1b during seawater acclimation of three salmonid fishesthat vary in their salinity tolerance[J]. J Exp Biol, 2006,209(10): 1848– [23] Hwang P P, Lee T H. New insights into fish ion regulationand mitochondrion-rich cells[J]. Comp Biochem Phys A,2007, 148(3): 479[24] Fonseca-Madrigal J, Pineda-Delgado D, Martínez-Palacios C,et al. Effect of salinity on the biosynthesis of n-3 long-chainpolyunsaturated fatty acids in silverside Chirostoma estor[J].Fish Phsiol Biochem, 2012, 38(4): 1047[25] Sheridan M A, Allen W V, Kerstetter T H. Changes in thefatty acid composition of steelhead trout (Salmo gairdneriiRichardson), associated with parr-smolt transformation[J].Comp Biochem Phys B, 1985, 80(4): 671[26] Li H O, Yamada J. Changes of the fatty acid composition insmolts of masu salmon (Oncorhynchus masou), associatedwith desmoltification and sea-water transfer[J]. CompBiochem Phys A, 1992, 103(1): 221[27] Bell J G, Tocher D R, Farndale B M, et al. The effect ofdietary lipid on polyunsaturated fatty acid metabolism in Atlanticsalmon (Salmo salar) undergoing parr-smolt transformation[J]. Lipids, 1997, 32(5): 515 [28] Tocher D R, Bell J G, Dick J R, et al. Polyunsaturated fattyacid metabolism in Atlantic salmon (Salmo salar) undergoingparr–smolt transformation and the effects of dietary linseedand rapeseed oils[J]. Fish Physiol Biochem, 2000, 23(1):59– [29] Alava V R. Effect of salinity, dietary lipid source and levelon growth of milkfish (Chanos chanos) fry[J]. Aquaculture,1998, 167(3–– [30] Bell J G, Farndale B M, Dick J R, et al. Modification ofmembrane fatty acid composition, eicosanoid production,and phospholipase a activity in Atlantic Salmon (Salmo salar)gill and kidney by dietary lipid[J]. Lipids, 1996, 31(11):1163[31] Hurtado M A, Racotta I S, Civera R, et al. Effect of hypoandhypersaline conditions on osmolality andNa+/K+-ATPase activity in juvenile shrimp (Litopenaeusvannamei) fed low- and high-HUFA diets[J]. Comp BiochemPhys A, 2007, 147(3): 703[32] Watanabe T, Arakawa T, Takeuchi T, et al. Comparisonbetween eicosapentaenoic and docosahexaenoic acids interms of essential fatty acid efficiency in juvenile striped jackPseudocaranx dentex[J]. Nippon Suisan Gakk, 1989, 55(11):1989[33] Watanabe T. Importance of docosahexaenoic acid in marinelarval fish[J]. J World Aquacult Soc, 1993, 24(2): 152[34] Rainuzzo J R, Reitan K I, Olsen Y. The significance of lipidsat early stages of marine fish: a review[J]. Aquaculture, 1997,155(1–– [35] Moya-Falcóøy E, et al. Effects of 3-thiafatty acids on feed intake, growth, tissue fatty acid composition,β+, K+-ATPase activity in Atlanticsalmon[J]. Comp Biochem Physiol B, 2004, 139(4):657[36] Hurtado M A, Racotta I S, Arjona O, et al. Effect of hypoandhyper-saline conditions on osmolarity and fatty acidcomposition of juvenile shrimp Litopenaeus vannamei(Boone, 1931) fed low- and high-HUFA diets[J]. AquacultRes, 2006, 37(13): 1316[37] Romano N, Wu X G, Zeng C S, et al. Growth, osmoregulatoryresponses and changes to the lipid and fatty acidcomposition of organs from the mud crab, Scylla serrata,over a broad salinity range[J]. Mar Biol Res, 2014, 10(5):460[38] Harel M, Gavasso S, Leshin J, et al. The effect of tissuedocosahexaenoic and arachidonic acids levels on hypersalinetolerance and leucocyte composition in striped bass (Moronesaxatilis) larvae[J]. Fish Physiol Biochem, 2001, 24(2):113[39] Koven W, Barr Y, Lutzky S, et al. The effect of dietary arachidonicacid (20: 4n–6) on growth, survival and resistanceto handling stress in gilthead seabream (Sparus aurata) larvae[J]. Aquaculture, 2001, 193(1–– [40] Willey S, Bengtson D A, Harel M. Arachidonic acid requirementsin larval summer flounder, Paralichthys dentatus[J]. Aquacult Int, 2003, 11(1–– [41] Blaustein M P, Goldman W F, Fontana G, et al. Physiologicalroles of the sodium-calcium exchanger in nerve and muscle[J]. Ann NY Acad Sci, 1991, 639: 254[42] Taffet G E, Pham T T, Bick D L M, et al. The calcium uptakeof the rat heart sarcoplasmic reticulum is altered by dietarylipid[J]. J Membrane Biol, 1993, 131(1): 35[43] Van Anholt R D, Spanings F A T, Koven W M, et al. Dietarysupplementation with arachidonic acid in tilapia (Oreochromismossambicus) reveals physiological effects not mediatedby prostaglandins[J]. Gen Comp Endocr, 2004, 139(3):215[44] Sargent J R, Tocher D R, Bell J G. The Lipids. Fish Nutrition[M]. 3rd ed. San Diego: Academic Press, 2002. [45] Lands W E M. Biosynthesis of prostaglandins[J]. Annu RevNutr, 1991, 11: 41[46] Kaplan J H. Biochemistry of Na, K-ATPase[J]. Annu RevBiochem, 2002, 71: 511
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢帝芝,徐树德,陈芳,王树启,游翠红,李远友.黄斑蓝子鱼LC-PUFA 合成代谢与渗透压调节的关系研究[J].中国水产科学,2015,22(5):950-959
XIE Dizhi, XU Shude, CHEN Fang, WANG Shuqi, YOU Cuihong, LI Yuanyou. Research on relationship between LC-PUFA biosynthesis andosmoregulation in Siganus canaliculatus[J]. Journal of Fishery Sciences of China,2015,22(5):950-959

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2015-09-16
文章二维码