[1] Zhang Y L, Luo Y, Peng X X. Advancement on the functionof hemocyanin[J]. Marine Sciences, 2007, 31(2): 77–80. [章跃陵, 罗芸, 彭宣宪. 血蓝蛋白功能研究新进展[J]. 海洋科学, 2007, 31(2): 77–80.]
[2] Coates C J, Nairn J. Diverse immune functions of hemocyanins[J]. Dev Comp Immunol, 2014, 45(1): 43–55.
[3] Decker H, Ryan M, Jaenicke E, et al. SDS-inducedphenoloxidase activity of hemocyanins from Limulus polyphemus,Eurypelma californicum, and Cancer magister[J]. JBiol Chem, 2001, 276: 17796–17799.
[4] Zhang X B, Huang C H, Qin Q W. Antiviral properties ofhemocyanin isolated from shrimp Penaeus monodon[J].Antiviral Res, 2004, 61(2): 93–99.
[5] Jiang N X, Tan N S, Ho B, et al. Respiratoryprotein–generated reactive oxygen species as anantimicrobial strategy[J]. Nat Immunol, 2007, 8: 1114–1122.
[6] Zhang Y L, Wang S Y, Xu A L, et al. Affinity proteomicapproach for identification of an IgA-like protein in Litopenaeusvannamei and study on its agglutination characterization[J]. J Proteome Res, 2006, 5(4): 815–821.
[7] Yan F, Zhang Y L, Jiang R P, et al. Identification and agglutinationproperties of hemocyanin from the mud crab (Scyllaserrata)[J]. Fish Shellfish Immunol, 2011, 30(1): 354–360.
[8] Zhang Y L, Yan F, Hu Z, et al. Hemocyanin from shrimpLitopenaeus vannamei shows hemolytic activity[J]. FishShellfish Immunol, 2009, 27(2): 330–335.
[9] Yan F, Qiao J, Zhang Y L, et al. Hemolytic properties ofhemocyanin from mud crab Scylla serrata[J]. J Shellfish Res,2011, 30(3): 957–962.
[10] Riggs D R, Jackson B J, Vona-Davis L, et al. In vitro effectsof keyhole limpet hemocyanin in breast and pancreaticcancer in regards to cell growth, cytokine production, andapoptosis[J]. Am J Surg, 2005, 189(6): 680–684.
[11] Arancibia S, Espinoza C, Salazar F, et al. A novelimmunomodulatory hemocyanin from the limpet Fissurellalatimarginata promotes potent anti-tumor activity inmelanoma[J]. PLoS ONE, 2014, 9(1): e87240.
[12] Arancibia S, Campo M D, Nova E, et al. Enhanced structuralstability of Concholepas hemocyanin increases its immunogenicityand maintains its non-specific immunostimulatory effects[J]. Eur J Immunol, 2012, 42(3): 688–699.
[13] Destoumieux-Garzón D, Saulnier D, Garnier J, et al. Antifungalpeptides are generated from the C terminus of shrimphemocyanin in response to microbial challenge[J]. J BiolChem, 2001, 276: 47070–47077.
[14] Lee S Y, Lee B L, Söderhäll K. Processing of an antibacterialpeptide from hemocyanin of the freshwater crayfishPacifastacus leniusculus[J]. J Biol Chem, 2003, 278:7927–7933.
[15] Zhang Y L, Ye X Q, Chen J H, et al. A new fragment with28.5 kD degraded from hemocyanin in shrimp Litopenaeusvannamei[J]. Journal of Fishery Sciences of China, 2008,15(3): 425–430. [章跃陵, 叶向群, 陈洁辉, 等. 凡纳滨对虾28.5 kD 血蓝蛋白的降解新片段[J]. 中国水产科学,2008, 15(3): 425–430.]
[16] Zhang Y L, Wang S Y, Liu G M, et al. Variation ofphenoloxidase activity affected by hemocyanin in shrimpPenaeus vannamei[J]. Journal of Fishery Sciences of China,2005, 12(4): 402–406. [章跃陵, 王三英, 刘光明, 等. 南美白对虾血蓝蛋白对酚氧化酶活性的影响[J]. 中国水产科学, 2005, 12(4): 402–406.]
[17] Wang L, Li G Y, Mao Y X. Measuring methods and variationsof some haemolymph factors in Penaeus chinensis aftertheir oral ingestion of immuno drugs[J]. Oceanologia etLimnologia Sinica, 1995, 26(1): 34–41. [王雷, 李光友, 毛远兴. 口服免疫药物后中国对虾某些血淋巴因子的测定及方法研究[J]. 海洋与湖沼, 1995, 26(1): 34–41.]
[18] Schägger H. Tricine–SDS-PAGE[J]. Nat Protoc, 2006, 1(1):16–22.
[19] Zhang Y L, Wang S Y, Peng X X. Identification of a type ofhuman IgG-like protein in shrimp Penaeus vannamei bymass spectrometry[J]. J Exp Mar Biol Ecol, 2004, 301(1):39–54.
[20] Sainz J C, García-Carreño F L, Hernández-Cortés P. Penaeusvannamei isotrypsins: purification and characterization[J].Comp Biochem Physiol B: Biochem Mol Biol, 2004, 138(2):155–162.
[21] Wu C L, Söderhäll K, Söderhäll I. Two novel ficolin-likeproteins act as pattern recognition receptors for invading pathogensin the freshwater crayfish Pacifastacus leniusculus[J].Proteomics, 2011, 11(11): 2249–2264.
[22] Qiao J, Du Z H, Zhang Y L, et al. Proteomic identification ofthe relate immune-enhancing proteins in shrimp Litopenaeusvannamei stimulated with vitamin C and Chinese herbs[J].Fish Shellfish Immunol, 2011, 31(6): 736–745.
[23] Kondori N, Baltzer L, Dolphin G T, et al. Fungicidalactivity of human lactoferrin-derived peptides based onthe antimicrobial αβ region[J]. Int J Antimicrob Agents,2011, 37(1): 51–57.
[24] Nguyen L T, Chan D I, Boszhard L, et al. Structure–functionstudies of chemokine-derived carboxy-terminal antimicrobialpeptides[J]. BBA–Biomembranes, 2010, 1798(6): 1062–1072.
[25] Zhang D L, Guan R Z, Huang W S, et al. Isolation and characterizationof a novel antibacterial peptide derived fromhemoglobin alpha in the liver of Japanese eel, Anguilla japonica[J]. Fish Shellfish Immunol, 2013, 35(3): 625–631.
[26] Patat S A, Carnegie R B, Kingsbury C, et al. Antimicrobialactivity of histones from hemocytes of the Pacific whiteshrimp[J]. Eur J Biochem, 2004, 271(23–24): 4825–4833.
[27] Sila A, Nedjar-Arroume N, Hedhili K, et al. Antibacterialpeptides from barbel muscle protein hydrolysates: Activityagainst some pathogenic bacteria[J]. LWT–Food Sci Technol,2014, 55(1): 183–188.
[28] Sathyan N, Philip R, Chaithanya E R, et al. Identification andmolecular characterization of molluskin, a histone-H2A- derivedantimicrobial peptide from molluscs[J]. ISRN Mol Biol,2012, 2012: 1–6.
[29] Chongsatja P, Bourchookarn A, Lo C F, et al. Proteomicanalysis of differentially expressed proteins in Penaeus vannameihemocytes upon Taura syndrome virus infection[J].Proteomics, 2007, 7(19): 3592–3601.