偏分离条件下牙鲆生长性状QTL的主成分定位
作者:
作者单位:

1. 上海海洋大学 水产与生命学院, 上海 201306;
2. 中国水产科学研究院, 农业部水生动物基因组重点实验室, 北京 100141;
3. 南京农业大学 无锡渔业学院, 江苏 无锡 214081

作者简介:

李宁(1988-),男,硕士研究生,主要研究方向为水产遗传育种.E-mail:nienglee@163.com

中图分类号:

S917

基金项目:

国家自然科学基金项目(31172190,30972077);中央级公益性科研院所基本科研业务费专项资金项目(2017A001)


Mapping QTLs for principle components of growth traits using distorted markers in Japanese flounder Paralichthys olivaceus
Author:
Affiliation:

1. College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
2. Key Laboratory of Aquatic Genomics, Ministry of Agriculture; Chinese Academy of Fishery Science, Beijing 100141, China;
3. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究利用有丝分裂雌核发育建立牙鲆()双单倍体(Doubled Haploids,DH)群体,对牙鲆体重、全长、背鳍长、腹鳍长、体高、尾柄高、头高和躯干长共8组表型性状标准化处理后,进行主成分分析,得到可解释全部性状 90.4%的表型主成分性状。然后,基于JoinMap 4、MapDisto、JoinMap 4-DistortedMap、MapDisto-DistortedMap构建4个连锁图谱,用偏分离标记矫正数量性状位点(Quantitative Trait Locus,QTL)基因型条件概率,采用Bayesian模型选择方法定位牙鲆表型主成分性状的加性QTL和上位性QTL。结果表明,用不同方法构建的遗传图谱和表型主成分性状QTL定位结果均有所不同。在图谱构建中,与基于JoinMap 4构建的图谱相比,基于MapDisto构建的图谱中偏分离标记的相对位置和遗传距离都发生了变化,甚至有5个偏分离标记没有被定位到相应的连锁群上;相对于基于JoinMap 4和MapDisto构建的图谱,经DistortedMap校正后的图谱中偏分离标记的相对位置没有发生变化,但是偏分离标记间遗传距离发生了变化。另外,在4个图谱中都检测到3个加性QTL,分别位于6号连锁群上,可解释表型变异的12.95%、14.85%、11.56%和11.76%,9号、22号连锁群上,具有负向加性效应;9号连锁群上,可解释表型变异的13.86%、13.27%、11.17%和11.25%,具有负向加性效应;22号连锁群上,可解释表型变异的5.68%、4.36%、4.97%和3.58%,具有正向加性效应。同时,分别检测到28对、19对、29对和20对上位性QTL,主要分布在6号、7号、9号、17号、20号和22号连锁群上,可解释表型主成分性状变异的2.19%~17.62%、2.40%~22.26%、2.08%~26.0%、3.16%~22.05%。研究结果表明,基于MapDisto软件构建、经DistortedMap软件包矫正后的图谱,定位结果更加准确,但仍需进一步验证。

    Abstract:

    For this study, a double haploid population of Japanese flounder was produced using mitotic gynogenetics. Body weight and 7 morphological traits (i.e., total length, dorsal-fin length, pelvic-fin length, body height, caudal peduncle width, head width and trunk length) were measured. After normalizing the measures, we acquired a data set that could explain 90.4% of these principal-component analysis traits (PPCTs), and accordingly we denoted these PPCTs. Next, by modifying conditional probabilities of quantitative trait loci (QTL) genotypes on the distorted flanking markers, Bayesian model sel­ection was used to dissect the genetic arc­hitecture of the PPCTs with four genetic linkage maps, created with the software JoinMap4, MapDisto, JoinMap-DistortedMap and MapDisto-DistortedMap. The different methods used to construct the genetic maps and QTL mapping of the PPCTs produced variable results. Comparing the map produced with JoinMap4, the rel­ative positions and the genetic map distances of the partial separation markers differed from the map produced with MapDisto. Furthermore, five separation markers were not located at the corresponding linkage groups. Comparing the maps based on JoinMap 4 and MapDisto and after correction by DistortedMap, the positions were not changed, but the genetic map distances of the partial separation markers were changed. In the overall maps, three additive-effect QTL were detected in linkage groups 6, 9 and 22, of which a negative effect could account for 12.95%, 14.85%, 11.56% and 11.76% in linkage group 6; a negative effect could account for 13.86%, 13.27%, 11.17% and 11.25% in linkage group 9; and a positive effect could account for 5.68%, 4.36%, 4.97% and 3.58% in linkage group 22. At the same time, 28, 19, 29 and 20 pairs of additive-additive interactions were identified, mainly distri­buted in linkage groups 6, 7, 9, 17, 20 and 22, and these interactions could account for approximately 2.19%-17.62%, 2.40%-22.26%, 2.08%-26.0%, and 3.16%-22.05% of the variance in the PPCTs, respectively. We believe that the results of QTL mapping were more accurate in the linkage map using DistortedMap based on JoinMap4.

    参考文献
    [1] Falconer D S, Mackay T F C. Introduction to Quantitative Genetics[M]. 4th ed. London: Longman, 1996.
    [2] Rexroad C E, Y. Palti Y, Gahr S A, et al. A second generation genetic map for rainbow trout (Oncorhynchus mykiss)[J]. BMC Genet, 2008, 9(1): 74-87.
    [3] Castaño-Sánchez C, Fuji K, Ozaki A, et al. A second gene­ration genetic linkage map of Japanese flounder (Paralichthys olivaceus)[J]. BMC Genom, 2010, 11(1): 554-664.
    [4] Song W T, Pang R Y, Niu Y Z, et al. Construction of high-density genetic linkage maps and mapping of growth-related quantitative trail loci in the Japanese flounder (Paralichthys olivaceus)[J]. PLoS ONE, 2012, 7(11): e50404.
    [5] Wang C M, Bai Z Y, He X P, et al. A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass, Lates calcarifer[J]. BMC Genom, 2011, 12(1): 1-18.
    [6] Lien S, Gidskehaug L, Moen T, et al. A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns[J]. BMC Genom, 2011, 12(1): 615-624.
    [7] Ninwichian P, Peatman E, Hong L, et al. Second-generation genetic linkage map of catfish and its integration with the BAC-based physical map[J]. G3-Genes Genom Genet, 2012, 2(10): 1233-1241.
    [8] Guyon R, Rakotomanga M, Azzouzi N, et al. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs[J]. BMC Genom, 2012, 13(1): 1-17.
    [9] Sun X W, Liu D Y, Zhang X F, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and gen­otyping using high-throughput sequencing[J]. PLoS ONE, 2013, 8(3): e58700.
    [10] Song W T, Li Y Z, Zhao Y W, et al. Construction of a high-density microsatellite genetic linkage map and mapping of sexual and growth-related traits in half-smooth tongue sole (Cynoglossus semilaevis)[J]. PLoS ONE, 2013, 8(5): e52097.
    [11] Liu Y, Liu Y X, Liu Y L, et al. Constructing a genetic link­age map and mapping quantitative trait loci for skeletal traits in Japanese flounder[J]. Biologia, 2013, 68(6): 1221-1228.
    [12] Massault C, Hellemans B, Louro B, et al. QTL for body weight, morphometric traits and stress response in European sea bass Dicentrarchus labrax[J]. Anim Genet, 2010, 41(4): 337-345.
    [13] Niu Y Z, Liao X L, Song W T, et al. Genetic mapping and QTLs analysis of growth traits in olive flounder (Par­alichthys olivaceus)[J]. Journal of Fisheries of China, 2012, 36(11): 1640-1649. [牛余泽, 廖小林, 宋文涛, 等. 牙鲆遗传作图及生长性状QTL定位[J]. 水产学报, 2012, 36(11): 1640-1649.]
    [14] Cui Y, Wang H W, Qiu X M, et al. Bayesian analysis for genetic architectures of body weights and morphological traits using distorted markers in Japanese flounder Par­ali­chthys olivaceus[J]. Mar Biotechnol, 2015, 17(6): 693-702.
    [15] Guo X, Li Q, Wang Q Z, et al. Genetic mapping and QTL analysis of growth-related traits in the Pacific oyster[J]. Mar Biotechnol, 2012, 14(2): 218-226.
    [16] Ozaki A, Sakamoto T, Khoo S, et al. Quantitative trait loci (QTLs) associated with resistance susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Onc­or­hynchus mykiss)[J]. Mol Genet Genom, 2001, 265(1): 23-31.
    [17] Fuji K, Kobayashi K, Hasegawa O, et al. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus)[J]. Aquaculture, 2006, 254(1-4): 203-210.
    [18] Akiyuki O, Hiroyuki O, Toshiyuki Y, et al. Linkage analysis of resistance to Streptococcus iniae infection in Japanese flounder (Paralichthys olivaceus)[J]. Aquaculture, 2010, 308 (S1): S62-S67.
    [19] Wang L, Fan C X, Liu Y, et al. A genome scan for qua­ntitative trait loci associated with Vibrio anguillarum infection resistance in Japanese flounder (Paralichthys oliv­aceus) by Bulked Segregant Analysis[J]. Mar Biotechnol, 2014, 16(5): 513-521.
    [20] Cnaani A, Hallerman E M, Ron M, et al. Detection of a chromosomal region with two quantitative trait loci affecting cold tolerance and fish size in an F2 tilapia hybrid[J]. Aquaculture, 2003, 223(1-4): 117-128.
    [21] Xu S. Quantitative trait locus mapping can benefit from seg­regation distortion[J]. Genetics, 2008, 180(4): 2201-2208.
    [22] Hackett C, Broadfoot L. Effects of genotyping errors, miss­ing values and segregation distortion in molecular marker data on the construction of linkage maps[J]. Heredity, 2003, 90(1): 33-38.
    [23] Lorieux M. MapDisto: fast and efficient computation of gen­etic linkage maps[J]. Mol Breed, 2012, 30(2): 1231-1235.
    [24] Xie S Q, Geng Q C, Zhang Y M. DistortedMap: A software package for linkage group correction and quantitative trait locus mapping in distorted segregation populations[J]. Jou­rnal of Nanjing Agricultural University, 2014, 37(5): 13-18. [谢尚潜, 耿青春, 章元明. 偏分离群体连锁图矫正和QTL定位软件包DistortedMap的研制[J]. 南京农业大学学报, 2014, 37(5): 13-18.]
    [25] Xie S Q, Wen J, Zhang Y M. Multi-QTL mapping for quantitative traits using epistatic distorted markers[J]. PLoS ONE, 2013, 8(7): e68510.
    [26] Zhu C S, Wang C M, Zhang Y M. Modeling segregation distortion for viability selection I. Reconstruction of linkage maps with distorted markers[J]. Theor Appl Genet, 2007, 114(2): 295-305.
    [27] Zhu C S, Wang F H, Wang J F, et al. Reconstruction of linkage maps in the distorted segregation populations of backcross, doubled haploid and recombinant inbred lines[J]. Chin Sci Bull, 2007, 52(12): 1648-1653.
    [28] Wen J, Can V T, Zhang Y M. Multi-QTL mapping for quantitative traits using distorted markers[J]. Mol Breeding, 2013, 31(2): 395-404.
    [29] Wang B H. Multivariate Statistical Analysis and Modeling for R Language[M]. Guangzhou: Ji'nan University Press, 2011. [王斌会. 多元统计分析及R语言建模[M]. 广州: 暨南大学出版社, 2011.]
    [30] Hélène G, Pascale L R. Power of three multitrait methods for QTL detection in crossbred populations[J]. Genet Sel Evol, 2004, 36(3): 347-361.
    [31] Yi N J, Yandell B S, Churchill G A, et al. Bayesian model selection for genome-wide epistatic quantitative trait loci analysis[J]. Genetics, 2005, 170(3): 1333-1344.
    [32] Kao C H, Zeng Z B. Modeling epistasis of quantitative trait loci using Cockerham's model[J]. Genetics, 2002, 160: 1243-1261.
    [33] Yandell B S, Mehta T, Banerjee S, et al. R/qtlbim: QTL with Bayesian interval mapping in experimental crosses[J]. Bioinformatics, 2007, 23(5): 641-643.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李宁,张丽怡,李停,李艳红,刘海金,杨润清.偏分离条件下牙鲆生长性状QTL的主成分定位[J].中国水产科学,2017,24(3):440-448
LI Ning, ZHANG Liyi, LI Ting, LI Yanhong, LIU Haijin, YANG Runqing. Mapping QTLs for principle components of growth traits using distorted markers in Japanese flounder Paralichthys olivaceus[J]. Journal of Fishery Sciences of China,2017,24(3):440-448

复制
分享
文章指标
  • 点击次数:727
  • 下载次数: 735
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-05-17
文章二维码