11种鲈形目鱼类的核糖体基因GC含量及其与硬骨鱼类的特征比较
作者:
作者单位:

1. 中国科学院 热带海洋生物资源与生态重点实验室, 广东 广州 510301;
2. 中国科学院大学, 北京 100049

作者简介:

司李真(1990-),女,硕士,从事鱼类分类及系统进化研究.E-mail:lzsi314003@126.com

中图分类号:

S963

基金项目:

国家自然科学基金项目(31272273;41276166).


Analysis of the GC content of ribosomal genes of 11 species of Perci-formes and comparison with other teleostean fishes
Author:
Affiliation:

1. CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou 510301, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    核糖体基因为串联重复多拷贝的基因,包括3个编码基因(18S,5.8S,28S)和两个间隔区ITS1(internal transcribed spacer 1)和ITS2(internal transcribed spacer 2)。目前,对核糖体基因的相关报道主要集中在个体内不同拷贝间的多态特征,以及其作为分子标记在系统演化关系中的应用,GC含量作为一项非常重要的核苷酸序列指标,而鲜有报道。为了探讨鱼类的核糖体基因GC含量特征以及间隔区是否也存在GC平衡现象,本研究选择了鲈形目(Perciformes)5科11种鱼类5个片段的核糖体基因进行研究,包括尖吻鲈科(Latidae)、射水鱼科(Toxotidae)、军曹鱼科(Rachycentridae)、剑鱼科(Xiphiidae)、鲹科(Carangidae)。获得了1651个单克隆序列,通过分析并比较已有的其他硬骨鱼序列片段的GC含量变化特征,结果发现:本研究鱼类的18S的GC含量为52.6%~57.1%(平均54.6%),5.8S为55.6%~58.9%(平均57.4%),28S为64.2%~65.8%(平均64.6%),ITS1为56.5%~73.0%(平均65.0%),ITS2为62.3%~77.5%(平均69.1%)。编码区的GC含量相对较保守,变异范围较小,18S和5.8S变化范围明显小于间隔区,28S则位于间隔区的最低值和最高值之间。因此,我们发现硬骨鱼核糖体ITS高于60%的GC含量是该类群的一个特征,并且高GC含量的ITS1和ITS2序列中不存在明显的高GC富集区,其含量高低的变化与序列长度也没有相关性。本研究11种鱼类的ITS1和ITS2的GC含量在种内的相似性既有大于也有小于种间相同片段的相似性,因此GC平衡现象只存在部分种类中。本研究结果可为鱼类核糖体基因序列特征的进一步研究及利用提供科学依据。

    Abstract:

    The ribosomal RNA gene (rDNA) cluster consists of multiple units of three coding genes (18S, 5.8S, and 28S) as well as two internal transcribed spacers (ITS1 and ITS2) separating the coding regions. Thus far, studies on these five fragments mainly focused on the polymorphism of different copies within each individual sample and identification of useful markers for phylogenetic relationship analysis. However, there are limited studies related to the features of GC content, which is a very important characteristic of ribosomal RNA gene. The characteristics of rDNA GC content and whether the GC balance phenomenon exists in the coding regions in fishes were investigated by selecting 11 species from five families of Perciformes, including Latidae, Toxotidae, Rachycentridae, Xiphiidae, and Carangidae. In all, 1651 monoclones from the five fragments mentioned above were obtained. The GC content features were analyzed based on the sequences from the 11 species or the datasets from other teleostean fishes retrieved from GenBank. The results from the above two analyses were compared. The following results were obtained. First, the GC content of 18S, 5.8S, 28S, ITS1, and ITS2 ranged from 52.6% to 57.1% (average, 54.6%), 55.6% to 58.9% (average, 57.4%), 64.2% to 65.8% (average, 64.6%), 56.5% to 73.0% (average, 65.0%), and 62.3% to 77.5% (average, 69.1%), respectively. Second, compared with non-coding regions, coding regions were relatively conserved. The GC content of the coding genes varied in smaller ranges than those of the internal transcribed spacers. The GC contents of 18S and 5.8S were lower than those of ITS1 and ITS2, but that of 28S was between the lowest and highest values of ITS1 and ITS2. Therefore, we found that the GC content of non-coding regions was higher than 60%, which was a remarkable characteristic of these fishes, and no correlation was found between fragment length and higher GC content. Further, no obvious G, C, or GC rich block was found in the high-GC-content regions of ITS1 and ITS2 sequences. Third, the similarity of GC content between ITS1 and ITS2 within the same species could be higher or lower than that of the same fragment among different species within the 11 species. Therefore, the GC balance phenomenon is not universal and only exists in species whose intra-species GC content similarity is lower than the inter-species GC content similarity. The results of this study might provide a scientific basis for further studies and facilitate the utilization of the ribosomal gene characteristics of fish.

    参考文献
    [1] Hillis D M, Dixon M T. Ribosomal DNA:Molecular evolu-tion and phylogenetic inference[J]. Quart Rev Biol, 1991, 66(4):411-453.
    [2] Reed K M, Hackett J D, Phillips R B. Comparative analysis of intra-individual and inter-species DNA sequence varia-tion in salmonid ribosomal DNA cistrons[J]. Gene, 2000, 249(2000):115-125.
    [3] Aktas M, Bendele K G, Altay K, et al. Sequence polymor-phism in the ribosomal DNA internal transcribed spacers differs among Theileria species[J]. Veterin Parasitol, 2007, 147(3-4):221-230.
    [4] Xiao L Q, Zhu H. Intra-genomic polymorphism in the internal transcribed spacer (ITS) regions of Cycas revoluta:evidence of incomplete concerted evolution[J]. Biodivers Sci, 2009, 17(5):476-481.
    [5] Harpke D, Peterson A. Non-concerted ITS evolution in Mammillaria (Cactaceae)[J]. Molec Phylogenetics Evol, 2006, 41(3):579-593.
    [6] Xu H, Li J, Kong X Y, et al. Phylogenetic relationship and length variation in the first ribosomal internal transcribed spacer of Cynoglossinae species[J]. Oceanologia et Limno-logia Sinica, 2008, 39(1):35-41.[徐晖, 李军, 孔晓瑜, 等. 6种舌鳎亚科鱼类ITS1序列长度多态性及系统分析[J]. 海洋与湖沼, 2008, 39(1):35-41.]
    [7] Gong L, Shi W, Yang M, et al. Non-concerted evolution in ribosomal ITS2 sequence in Cynoglossus zanzibarensis (Pleuronectiformes:Cynoglossidae)[J]. Biochem System Ecol, 2016, (66):181-187.
    [8] Gong L, Xu H, Li J, et al. Characterization of the first inter-nal transcribed spacer of ribosomal DNA in Paralichthys olivaceus (♀) and P. dentatus (♂) hybrids[J]. Journal of Fishery Sciences of China, 2015, 22(1):17-23.[龚理, 徐晖, 李军, 等. 褐牙鲆(♀)、夏鲆(♂)及其杂交子一代的ITS1序列特征分析[J]. 中国水产科学, 2015, 22(1):17-23.]
    [9] Worheide G, Nichols S A, Goldberg J. Intragenomic varia-tion of the rDNA internal transcribed spacers in sponges (Phylum Porifera):implications for phylogenetic studies[J]. Molec Phylogen Evol, 2004, 33(3):816-830.
    [10] Fairley T L, Kilpatrick C W, Conn J E. Intragenomic heter-ogeneity of internal transcribed spacer rDNA in neotropical malaria vector Anopheles aquasalis (Diptera:Culicidae)[J]. J Med Entomol, 2005, 42(5):795-800.
    [11] Li C, Wilkerson R. Intragenomic ITS2 variation and its impact on PCR identification of an anopheles malaria vector group[J]. Am J Trop Med Hyg, 2005, 73(6):297-297.
    [12] Li C, Wilkerson R C. Intragenomic rDNA ITS2 variation in the neotropical Anopheles (Nyssorhynchus) albitarsis com-plex (Diptera:Culicidae)[J]. J Hered, 2007, 98(1):51-59.
    [13] Smith M E, Douhan G W, Rizzo D M. Intra-specific and intra-sporocarp ITS variation of ectomycorrhizal fungi as assessed by rDNA sequencing of sporocarps and pooled ectomycorrhizal roots from a Quercus woodland[J]. Mycorrhiza, 2007, 18(1):15-22.
    [14] Bezzhonova O V, Goryacheva I I. Intragenomic heterogene-ity of rDNA internal transcribed spacer 2 in Anopheles mes-seae (Diptera:Culicidae)[J]. J Med Entomol, 2008, 45(3):337-341.
    [15] Lindner D L, Banik M T. Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and in-flates estimates of operational taxonomic units in genus Laetiporus[J]. Mycologia, 2011, 103(4):731-740.
    [16] Yao H, Song J Y, Liu C, et al. Use of ITS2 region as the universal DNA barcode for plants and animals[J]. PLoS ONE, 2010, 5(10):e13102.
    [17] Mu X D, Gu D D, Yang Y X, et al. Genetic diversity and phylogeny of the family Osteoglossidae by the nuclear 18S ribosomal RNA and implications for its conservation[J]. Biochem System Ecol, 2013, 51:280-287.
    [18] Stock D, Moberg K, Maxson L, et al. A phylogenetic analy-sis of the 18S ribosomal RNA sequence of the coelacanth Latimeria chalumnae[J]. Environm Biol Fishes, 1991, 32(1-4):99-117.
    [19] Pleyte K A, Duncan S D, Phillips R B. Evolutionary rela-tionships of the salmonid fish genus salvelinus inferred from DNA sequences of the first internal transcribed Spacer (ITS1) of ribosomal DNA[J]. Molec Phylogen Evol, 1992, 1(3):223-230.
    [20] Huyse T, Van Houdt J, Volckaert F A M. Paleoclimatic history and vicariant speciation in the "sand goby" group (Gobiidae, Teleostei)[J]. Molec Phylogen Evol, 2004, 32(1):324-336.
    [21] Chu K H, Li C P, Ho H Y. The first internal transcribed spacer (ITS1) of ribosomal DNA as a molecular marker for phylogenetic and population analyses in crustacea[J]. Mar Biotechnol, 2001, 3(4):355-361.
    [22] Galtier N, Piganeau G, Mouchiroud D, et al. GC-content evolution in mammalian genomes:The biased gene conver-sion hypothesis[J]. Genetics, 2001, 159(2):907-911.
    [23] Rodriguez-Trelles F, Tarrio R, Ayala F J. Evidence for a high ancestral GC content in Drosophila[J]. Molec Biol Evol, 2000, 17(11):1710-1717.
    [24] Musto H, Naya H, Zavala A, et al. Genomic GC level, opti-mal growth temperature, and genome size in prokaryotes[J]. Biochem Biophys Res Communicat, 2006, 347(1):1-3.
    [25] Mitchell D. GC content and genome length in chargaff com-pliant genomes[J]. Bioch Biophys Res Commun, 2007, 353(1):207-210.
    [26] Chow S, Ueno Y, Toyokawa M, et al. Preliminary analysis of length and GC content variation in the ribosomal first in-ternal transcribed spacer (ITS1) of marine animals[J]. Mar Biotechnol, 2009, 11(3):301-306.
    [27] Freire R, Arias A, Mendez J, et al. Sequence variation of the internal transcribed spacer (ITS) region of ribosomal DNA in Cerastoderma species (Bivalvia:Cardiidae)[J]. J Mollus Stud, 2009, 76(1):77-86.
    [28] Kumar R, Singh M, Kushwaha B, et al. Molecular character-ization of major and minor rDNA repeats and genetic varia-bility assessment in different species of mahseer found in North India[J]. Gene, 2013, 527(1):248-258.
    [29] Tarallo A, Angelini C, Sanges R, et al. On the genome base composition of teleosts, the effect of environment and life-style[J]. BMC Genom, 2016, 17:173.
    [30] Bohlin J, Snipen L, Hardy S P, et al. Analysis of in-tra-genomic GC content homogeneity within prokaryotes[J]. BMC Genom, 2010, 11:464.
    [31] Torres R A, Ganal M, Hemleben V. GC balance in the inter-nal transcribed spacers ITS1 and ITS2 of nuclear ribosomal RNAgenes[J]. J Molec Evol, 1990, 30(2):170-181.
    [32] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucl Acids Res, 1997, 25(24):4876-4882.
    [33] Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molec Biol Evol, 2011, 28(10):2731-2739.
    [34] Ghada B, Olfa S, Khaled C, et al. Sequence analysis of the internal transcribed spacers (ITSs) region of the nuclear ri-bosomal DNA (nrDNA) in fig cultivars (Ficus carica L.)[J]. Sci Horticult, 2009, 120(1):34-40.
    [35] Yu D H, Chu K H. Species identity and phylogenetic rela-tionship of the pearl oysters in Pinctada Röding, 1798 based on ITS sequence analysis[J]. Biochem System Ecol, 2006, 34(3):240-250.
    [36] Mullineux T, Hausner G. Evolution of rDNA ITS1 and ITS2 sequences and RNA secondary structures within members of the fungal genera Grosmannia and Leptographium[J]. Fung Gen Biol, 2009, 46(11):855-867.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

司李真,武宝生,孔晓瑜,杨敏,龚理,时伟.11种鲈形目鱼类的核糖体基因GC含量及其与硬骨鱼类的特征比较[J].中国水产科学,2017,24(4):657-668
SI Lizhen, WU Baosheng, KONG Xiaoyu, YANG Min, GONG Li, SHI Wei. Analysis of the GC content of ribosomal genes of 11 species of Perci-formes and comparison with other teleostean fishes[J]. Journal of Fishery Sciences of China,2017,24(4):657-668

复制
分享
文章指标
  • 点击次数:616
  • 下载次数: 645
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-07-21
文章二维码