运用数据缺乏方法估算印度洋大青鲨可持续渔获量
作者:
作者单位:

1. 上海海洋大学 海洋科学学院, 上海 201306;
2. 农业部大洋渔业开发重点实验室, 上海 201306

作者简介:

耿喆(1993-),男,硕士研究生,从事渔业资源评估、渔业生态学研究.E-mail:gengzhe1993@sohu.com

中图分类号:

S931

基金项目:

国家自然科学基金项目(41676120).


Estimate of sustainable yield of blue shark (Prionace glauca) in the Indian Ocean using data-poor approach
Author:
Affiliation:

1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
2. Key Laboratory of Exploitation of Oceanic Fisheries, Ministry of Agriculture, Shanghai 201306, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    运用数据缺乏方法,即基于资源衰减的可持续渔获量估算模型(DCAC),结合Monte Carol模拟,对印度洋大青鲨(增大或最大可持续产量对应的捕捞死亡系数()增大;若呈减小趋势。资源丰度指数的选择对DCAC结果有较大影响,基于日本延绳钓渔业1998-2014年和2001-2014年两个时间序列的丰度指数得到的结果可靠,且与其他模型估算的MSY值接近。2014年印度洋大青鲨的年渔获量正好处在或略高于最大可持续产量(MSY)水平,但该结果仍具有一定的不确定性。本研究表明运用DCAC方法估算印度洋大青鲨可持续渔获量是可行的,但对其他鲨鱼种类的适用性仍需进一步研究,该结果可为数据缺乏方法在大洋和中国近海渔业中的应用提供参考。

    Abstract:

    Sharks occupy the top trophic level in the marine community and play an important role in maintaining ecosystem stability and diversity. The stock status of shark species is often difficult to assess by formal stock assessment methods due to limited fishery data. Blue shark () is the most widely distributed pelagic shark species in tropical and temperate oceanic waters. This species is often caught as bycatch in oceanic longline fisheries that target billfishes and tunas, and also in the artisanal longline fisheries that operate in coastal areas such as Chile. Because of its slow growth and late maturity, the blue shark is defined as "Near Threatened" globally in the IUCN species list. Determining the stock status of Indian Ocean blue shark using a data-poor approach has been assigned as a high research priority by the Indian Ocean Tuna Commission. In this study, we assessed the Indian Ocean blue shark stock status using the depletion-corrected average catch (DCAC) approach and Monte Carlo simulation. DCAC is a data-poor approach that only needs basic biological information (natural mortality, was estimated by the Hoeing method, resulting in a mean of 0.05. In addition to the annual catch data, the application of DCAC also needs the means and standard errors of the following parameters:depletion of the biomass (. First, we estimated the sustainable yield () of blue shark using abundance indices (standardized catch per unit effort[CPUE] time series) derived from different longline fleets (i.e., Spain, Portugal, Japan, and Taiwan, China). Second, we evaluated the sensitivity of DCAC by considering multiple combinations of different levels of , CPUE indices, and lengths of time series of data. Lastly, we summarized the estimated values and compared our estimates with the results from other assessment approaches for this species. The results showed that when FMSY/M when was close to zero or negative. The results were sensitive to the CPUE index. The estimated was reliable and close to the maximum sustainable yield (estimated from other assessment models) when the Japanese longline CPUE index (1998-2014 or 2001-2014) was used. The current (2014) annual catch of blue shark might be at or just above the estimated maximum sustainable yield, although the estimate is subject to uncertainties. This study suggests that DCAC is suitable for estimating the of Indian Ocean blue shark using catch data and CPUE indices as the main sources. This study also provides guidelines for the application of data-poor approaches in domestic fisheries of China.

    参考文献
    [1] Dai X J, Xu L X, Zhu J F, et al. Illustrations of Catch Species for Global Tuna Fishery[M]. Beijing:Ocean Press, 2007:176-177.[戴小杰, 许柳雄, 朱江峰, 等. 世界金枪鱼渔业渔获物物种原色图鉴[M]. 北京:海洋出版社, 2007:176-177.]
    [2] Dai X J, Xu L X, Song L M. Analysis on length composition, hepatosomatic indices of Prionace glauca caught by longline fishery in the tropical Eastern Pacific Ocean[J]. Journal of Shanghai Fisheries University, 2005, 14(1):93-96.[戴小杰, 许柳雄, 宋利明. 东太平洋热带海域大青鲨长度组成、肝重指数特征分析[J]. 上海水产大学学报, 2005, 14(1):93-96.]
    [3] Camhi M D, Pikitch E K, Babcock E A. Sharks of the Open Ocean[M]. America:Blackwell, 2008:140-145.
    [4] Carlos B, Michael B B. Insights into the reproductive biology and fisheries of two commercially exploited species, shortfin mako (Isurus oxyrinchus) and blue shark (Prionace glauca), in the south-east Pacific Ocean[J]. Fish Res, 2013, 143:174-183.
    [5] Mejuto J, Garcia C B. Reproductive and distribution parameters of blue shark (Prionace glauca) on the Atlantic Indian and Pacific Ocean[J]. Collective Volume of Scientific Papers of ICCAT, 2005, 58(3):951-973.
    [6] IOTC. Status of the indian Ocean blue shark (BSH:Prionace glauca):IOTC-2015-SC18-ES17[R]. Seychelles:IOTC, 2015.
    [7] Baum J K, Myers R A, Kehler D G, et al. Collapse and conservation of shark populations in the Northwest Atlantic[J]. Science, 2003, 299(5605):389-392.
    [8] Gao C X, Dai X J, Tian S Q, et al. Demographic analysis of the blue shark, Prionace glauca, in the North Atlantic Ocean[J]. Chinese Journal of Applied Ecology, 2016, 27(2):622-628.[高春霞, 戴小杰, 田思泉, 等. 北大西洋大青鲨种群统计分析[J]. 应用生态学报, 2016, 27(2):622-628.]
    [9] Clarke S C, McAllister M K, Milner G E J, et al. Global estimates of shark catches using trade records from commercial markets[J]. Ecol lett, 2006, 9(10):1115-1126.
    [10] Kleiber P, Clarke S, Bigelow K, et al. North Pacific Blue Shark Stock Assessment[M]. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, 2009.
    [11] ICCAT. Report of the 2015 ICCAT blue shark stock assessment session[R]. Lisbon Portugal, 2015, 7:27-31.
    [12] Rice J, Harley S, Maunder M, et al. Stock assessment of blue shark in the north Pacific Ocean using stock synthesis[C]. Western and Central Pacific Fisheries Commission, Scientific Committee, Ninth Regular Session, 2013:6-14.
    [13] Rice J. Stock assessment blue shark (Prionace glauca) in the Indian Ocean using Stock Synthesis:IOTC-2015-WPEB11-28 Rev_1[R]. Victoria:IOTC, 2015.
    [14] Rosenberg A A, Fogarty M J, Cooper A B, et al. Developing New Approaches to Global Stock Status Assessment and Fishery Production Potential of The Seas[M]. Rome:FAO, 2014.
    [15] Punt A E, Smith D C, Koopman M T. Using Information for Data-rich Species to Inform Assessments of Data-poor Species through Bayesian Stock Assessment Methods[M]. Victoria:Primary Industries Research, 2005.
    [16] Pilling G M, Apostolaki P, Failler P, et al. Assessment and management of data-poor fisheries[J]. Adv Fish Sci, 2009, 50:280-305.
    [17] MacCall A D. Depletion-corrected average catch:a simple formula for estimating sustainable yields in data-poor situations[J]. ICES J Mar Sci, 2009, 66(10):2267-2271.
    [18] Dick E J, MacCall A D. Depletion-based stock reduction analysis:A catch-based method for determining sustainable yields for data-poor fish stocks[J]. Fish Res, 2011, 110(2):331-341.
    [19] Newman D, Berkson J, Suatoni L. Current methods for setting catch limits for data-limited fish stocks in the United States[J]. Fish Res, 2015, 164:86-93.
    [20] Cortes E. Application of data-poor stock assessment methods to Atlantic sharks[C]. 144th Annual Meeting of the American Fisheries Society, 2014.
    [21] IOTC. Review of the statistical data available for the bycatch species:IOTC-2011-WPEB07-08[R]. Victoria:IOTC, 2011.
    [22] IOTC. Report of the 12th session of the IOTC working party on ecosystems and bycatch:IOTC-2016-WPEB12-R[R]. Victoria:IOTC, 2016.
    [23] Gulland J. The Fish Resources of the Oceans[M]. Rome:FAO, 1970(97):1-4.
    [24] MacCall A D. Depletion-corrected average catch:a simple formula for estimating sustainable yields in data-poor situations[J]. ICES J Mar Sci, 2009, 66(10):2267-2271.
    [25] Rabehagasoa N, Vigliola L, Lorrain A. Modelling growth of blue shark (Prionace glauca) and silky shark (Carcharhinus falciformis) in the southwest Indian Ocean assessed by backcalculated length from vertebrae. IOTC-2014-WPEB10-22[R]. Yokohama:IOTC, 2014.
    [26] Pauly D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks[J]. Journal du Conseil, 1980, 39(2):175-192.
    [27] Hoenig J M. Empirical use of longevity data to estimate mortality rates[J]. Fish Bull, 1983, 82(1):898-903.
    [28] Jensen A L. Beverton and holt life history invariants result from optimal trade-off of reproduction and survival[J]. Can J Fish Aqua Sci, 1996, 53(4):820-822.
    [29] Hewitt D A, Hoenig J M. Comparison of two approaches for estimating natural mortality based on longevity[J]. Fish Bull, 2005, 103(2):433-437.
    [30] Musick J A, Bonfil R. Management Techniques for Elasmobranch Fisheries[M]. Rome:FAO, 2005:129-130.
    [31] Rice J, Semba Y. Age and sex specific natural mortality of the blue shark (Prionace glauca) in the North Pacific Ocean:ISC/14/SHARKWG-1[R]. Majuro:WCPFC, 2014.
    [32] Kleiber P, Clarke S, Bigelow K, et al. North Pacific Blue Shark Stock Assessment[M]. US Department of Commerce, NOAA, NMFS, Pacific Islands Fisheries Science Center, 2009.
    [33] Restrepo V R, Thompson G G, Mace P M, et al. Technical Guidance on The Use of Precautionary Approaches to Implementing National Standard 1 of The Magnuson-stevens Fishery Conservation And Sanagement Act[M]. US Department of Commerce, NOAA, NMFS, 1998:23-24.
    [34] Walters C, Martell S. Fisheries Ecology and Management[M]. Princeton:Princeton University Press, 2004:59-61.
    [35] Yasuko S, Minoru K, Kotaro Y. Update of standardized CPUE of blue shark (Prionace glauca) in the Indian Ocean estimated from Japanese observer data in the period between 1992 and 2014:IOTC-2015-WPEB11-30 Rev_1[R]. Victoria:IOTC, 2015.
    [36] Tsai W P, Liu K M. Updated and revised standardized catch rate of blue sharks caught by the Taiwanese longline fishery in the Indian Ocean:IOTC-2015-WPEN11-52 Rev_1[R]. Victoria:IOTC, 2015.
    [37] IOTC. Report of the 18th Session of the IOTC Scientific Committee:IOTC-2015-SC18-R[R]. Bali:IOTC. 2015.
    [38] Andrade H A. Preliminary stock assessment of blue shark (Prionace glauca) caught in the Indian Ocean using a Bayesian state-space production model:IOTC-2015-WPEB11-27[R]. Victoria:IOTC, 2015.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

耿喆,朱江峰,夏萌,马璐璐.运用数据缺乏方法估算印度洋大青鲨可持续渔获量[J].中国水产科学,2017,24(5):1099-1106
GENG Zhe, ZHU Jiangfeng, XIA Meng, MA Lulu. Estimate of sustainable yield of blue shark (Prionace glauca) in the Indian Ocean using data-poor approach[J]. Journal of Fishery Sciences of China,2017,24(5):1099-1106

复制
分享
文章指标
  • 点击次数:1344
  • 下载次数: 638
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2017-09-12
文章二维码